ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
|
|
- Σουσάννα Διαμαντόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι κροφςθ δφο ςωμάτων από τα οποία το ζνα αρχικά είναι ακίνθτο, οπότε οι ταχφτθτζσ τουσ μετά τθν κροφςθ δίνονται από τισ ςχζςεισ: υ = - υ + υ = υ + Τα ςώματα μετά τθν κροφςθ κα κινθκοφν ςτθν ίδια διεφκυνςθ, αλλά με αντίκετεσ φορζσ. Όπωσ προκφπτει από τισ πιο πάνω ςχζςεισ το ςώμα Σ κα ζχει ίδια φορά με αυτι που είχε πριν τθν κροφςθ το Σ. Συνεπώσ για τα μζτρα των ταχυτιτων κα ιςχφει: - -υ = υ - υ = υ + + πό όπου προκφπτει: - + = = 3 = 3. Σωςτι είναι θ απάντθςθ α. ελίδα από 7
2 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ φοφ το ςυςςωμάτωμα μζνει ακίνθτο, το ςώμα τριπλάςιασ μάηασ κινείται ςε αντίκετθ κατεφκυνςθ. Επίςθσ, επειδι το ςυςςωμάτωμα μζνει ακίνθτο, όλθ θ κινθτικι ενζργεια που είχαν τα ςώματα πριν τθν κροφςθ μετατρζπεται ςε κερμότθτα. Q=Κ +Κ Β () πό τθ διατιρθςθ τθσ ορμισ προκφπτει: p πριν = pμετά υ +υ = 0 υ - 3υ = 0 υ = 3 υ Με αντικατάςταςθ ςτθ ςχζςθ ()παίρνουμε: υ Q=Κ + Κ Β = υ + υ Q = υ + 3( ) = υ + υ 3 3 K 4 Q = K + Q = K Σωςτι απάντθςθ είναι θ β. Στθ διάρκεια τθσ ζκρθξθσ θ ορμι διατθρείται, p ολ(πριν) = pολ(μετά) Η p ολ(πριν) ζχει μζτρο υ και κατεφκυνςθ οριηόντια. Για να είναι θ p ολ(μετά) οριηόντια κα πρζπει θ ταχφτθτα του δεφτερου κομματιοφ να αναλφεται ςε δφο κάκετεσ ςυνιςτώςεσ ωσ εξισ: -Μια ςυνιςτώςα υ y κάκετθ ςτθν αρχικι διεφκυνςθ θ οποία κα ζχει τζτοιο μζτρο ώςτε να αναιρεί τθν ορμι του πρώτου κομματιοφ. -Μια ςυνιςτώςα υ x παράλλθλθ ςτθν αρχικι διεφκυνςθ θ οποία κα ζχει τζτοιο μζτρο ώςτε να δίνει ορμι ίςθ με τθν αρχικι (υ). ελίδα από 7
3 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ Τα δφο κομμάτια ζχουν ίδια μάηα. Το πρώτο κομμάτι ζχει ορμι υ, άρα για να αναιρείται θ ορμι του πρζπει θ ςυνιςτώςα υ y του δεφτερου κομματιοφ να ζχει ίδιο μζτρο ταχφτθτασ με το πρώτο κομμάτι, υ y =υ. Για να είναι θ p ολ(μετά) μζτρο υ, ζτςι. Άρα υ x =υ. 4. Σωςτι είναι θ απάντθςθ β = υ, πρζπει θ ςυνιςτώςα υ x του δεφτερου κομματιοφ να ζχει Η πθγι προσ τον παρατθρθτι εκπζμπει ιχο με μικοσ κφματοσ υηχ λ 39 λ = λ -υt = λ - λ = λ - λ = λ 40 f Η πθγι προσ τον παρατθρθτι Β εκπζμπει ιχο με μικοσ κφματοσ υηχ λ 4 λ B = λ+υt = λ+ λ B = λ+ λ B = λ 40 f Με διαίρεςθ κατά μζλθ των δφο ςχζςεων προκφπτει: 39 λ λ λ 39 = 40 = λ 4 B λ λb 4 40 ΘΔΜ Γ ελίδα 3 από 7
4 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ α) Για τθν κροφςθ ιςχφει θ αρχι διατιρθςθ τθσ ορμισ A A kg 0 / p p A A ( A ) V V V kg 4kg β) Το ζργο τθσ δφναμθσ που άςκθςε το ςώμα Β ςτο ςώμα ςτθ διάρκεια τθσ κροφςθσ, είναι ίςο με τθ μεταβολι τθσ κινθτικισ ενζργειασ του ςώματοσ. Έτςι, εφαρμόηουμε για το ςώμα το κεώρθμα ζργου-ενζργειασ για τισ κζςεισ λίγο πριν και λίγο μετά τθν κροφςθ. WF K K A( ) K A( ) WF AV A A WF kg ( / ) kg (0 / ) WF 48J γ) E E ( ) E ( ) ( A B ) V A A E (kg 4 kg) ( / ) kg (0 / ) E 40J Το αρνθτικό πρόςθμο ςθμαίνει ότι θ μθχανικι ενζργεια ελαττώκθκε. A δ) Εφαρμόηουμε το κεώρθμα ζργου-ενζργειασ για το ςυςςωμάτωμα μεταξφ των κζςεων αμζςωσ μετά τθν κροφςθ και τθσ τελικισ, όταν αυτό ςταματάει. K K WF 0 ( A B ) V T x ( A B ) V ( A B ) gx ( / ) V x x 0,4 g 0,50 / ε) Η ςυνολικι κερμότθτα είναι ίςθ με τo άκροιςμα τθσ κερμότθτασ που αναπτφχκθκε λόγω κροφςθσ και τθσ κερμότθτασ που αναπτφχκθκε λόγω τθσ τριβισ ολίςκθςθσ μετά τθν κροφςθ. φοφ το ςφςτθμα των δφο ςωμάτων τελικά ςταματά, θ ςυνολικι κερμότθτα που μεταφζρκθκε ςτο περιβάλλον είναι ίςθ και με τθν αρχικι κινθτικι ενζργεια του ςυςτιματοσ, δθλαδι ίςθ με τθν κινθτικι ενζργεια του ςώματοσ. (0 / ) A A 50 Q kg Q J ελίδα 4 από 7
5 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΘΔΜ Δ α) Για τθ ςτακερά επαναφοράσ του ταλαντοφμενου ςυςτιματοσ ιςχφει: k 900 N / D k kg (30 rad / ) Το ςώμα Σ ζχει μζγιςτθ ταχφτθτα όταν διζρχεται από τθ κζςθ ιςορροπίασ του και είναι ίςθ με : rad ax A 30 0, 4 ax β) Έχουμε κεντρικι ελαςτικι κροφςθ με το ςώμα μάηασ ακίνθτο. To ςώμα μάηασ πριν τθν κροφςθ ζχει ταχφτθτα ax Τα ςώματα μετά τθν κροφςθ κα κινθκοφν με ταχφτθτεσ: kg 3kg 6 kg kg 3 kg 6 kg kg 3 ελίδα 5 από 7
6 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ Το πρόςθμο (-) για το ςώμα Σ ςθμαίνει ότι αυτό αλλάηει κατεφκυνςθ κίνθςθσ, κινείται προσ τθν αρνθτικι φορά του άξονα χχ. Το πρόςθμο (+) για το ςώμα Σ ςθμαίνει ότι κινείται προσ τθ κετικι φορά του άξονα χχ. γ) Μετά τθν κροφςθ το ςώμα Σ με τθν θχθτικι πθγι απομακρφνεται με ςτακερι ταχφτθτα 6, ενώ το ςώμα Σ γυρνά πίςω ξεκινώντασ νζα ταλάντωςθ που ζχει ίδια κζςθ ιςορροπίασ και ίδια περίοδο με τθν αρχικι ταλάντωςθ. Η νζα ταλάντωςθ κα ζχει μζγιςτθ ταχφτθτα ax 6 Με εφαρμογι τθσ διατιρθςθσ τθσ ενζργειασ για τθ νζα ταλάντωςθ βρίςκουμε τθν ταχφτθτα του ςώματοσ όταν διζρχεται από τθ κζςθ x 30 k kx x ax ax 900 N / 6 5 kg 30 Τθν θ φορά που ο δζκτθσ διζρχεται από τθ κζςθ x κινείται προσ τα δεξιά, 30 κατευκυνόμενοσ προσ τθν πθγι, άρα ανιχνεφει ιχο ςυχνότθτασ f, ιςχφει: f f 69Hz f 690 Hz για τθν οποία Τθν θ φορά που ο δζκτθσ διζρχεται από τθ κζςθ x κινείται προσ τα αριςτερά 30,απομακρυνόμενοσ από τθν πθγι, άρα ανιχνεφει ιχο ςυχνότθτασ f, για τθν οποία ιςχφει: f f 69Hz f 670 Hz δ) Η δυναμικι ενζργεια τθσ ταλάντωςθσ δίνεται κάκε ςτιγμι από τθ ςχζςθ ελίδα 6 από 7
7 U kx Για τθ ςυχνότθτα 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ f A που ανιχνεφεται από το δζκτθ κάκε ςτιγμι ιςχφει: 340 A ( ) f f SI A A A Άρα, το ςώμα Σ βρίςκεται ςε ακραία κζςθ, και θ απομάκρυνςι του από τθ κζςθ ιςορροπίασ του είναι ίςθ με το πλάτοσ τθσ νζασ ταλάντωςθσ. Η νζα ταλάντωςθ ζχει μζγιςτθ ταχφτθτα ax 6, οπότε ζχουμε: 6 / A A A 30 rad / ax ax 0, Με αντικατάςταςθ ςτον τφπο τθσ ενζργειασ ταλάντωςθσ παίρνουμε: N 900 0, 8 U kx U J ελίδα 7 από 7
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΘΕΜΑ Β
4 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 03: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ ΘΕΜΑ Β. Σωστή είναι η
Διαβάστε περισσότεραΆπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου
Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Διαβάστε περισσότεραΑ2. το ςτιγμιότυπο αρμονικοφ μθχανικοφ κφματοσ του χιματοσ 1, παριςτάνονται οι ταχφτθτεσ ταλάντωςθσ δφο ςθμείων του.
ΘΕΜΑ Α. Στισ ερωτήςεισ Α1-Α4 να γράψετε ςτο τετράδιό ςασ τον αριθμό τησ ερϊτηςησ και, δίπλα, το γράμμα που αντιςτοιχεί ςτην επιλογή η οποία ςυμπληρϊνει ςωςτά την ημιτελή πρόταςη. Α1. τθ ςφνκεςθ δφο απλϊν
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτθ
Διαβάστε περισσότεραΗ ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;
; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ
Διαβάστε περισσότεραΑ1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου;
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΡΩΝΥMΟ: ΗΜΕΟΜΗΝΙΑ: 1/3/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΚΥΜΑΤΑ ΚΑΙ ΣΤΕΕΟ ΣΩΜΑ ΘΕΜΑ Α Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε)
Διαβάστε περισσότεραΑπάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).
Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για
Διαβάστε περισσότεραΔιαγώνιςμα Γ Λυκείου Ιανουάριοσ2018
Διαγώνιςμα Γ Λυκείου Ιανουάριοσ08 Διάρκεια Εξζταςησ 3ώρεσ Ονοματεπώνυμο. ΘΕΜΑ Α: Στισ ερωτήςεισ Α ωσ και Α4 επιλζξτε την ςωςτή απάντηςη: Α.Αν το πλάτοσ Α μιασ φκίνουςασ ταλάντωςθσ μεταβάλλεται με το χρόνο
Διαβάστε περισσότεραΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται
Διαβάστε περισσότεραΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Διαβάστε περισσότεραΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ
ΜΑΘΗΜΑ /ΣΑΞΗ: ΦΤΙΚΗ ΚΑΣΕΤΘΤΝΗ / Β ΛΤΚΕΙΟΤ ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ ΘΕΜΑ Α 1. Δφο ςθμειακά φορτία απζχον μεταξφ τοσ απόςταςθ r και θ δναμικι
Διαβάστε περισσότεραΚροφςεισ Αν ζνα κινοφμενο ςϊμα ςυγκρουςτεί μετωπικά και ελαςτικά με άλλο ακίνθτο ίςθσ μάηασ, τότε θ ταχφτθτά
Κροφςεισ - - Ερωτθςεισ πολλαπλθσ επιλογθσ Οδηγία: Για να απαντιςετε ςτισ παρακάτω ερωτιςεισ πολλαπλισ επιλογισ αρκεί να γράψετε ςτο φφλλο απαντιςεων τον αρικμό τθσ ερϊτθςθσ και δεξιά από αυτόν το γράμμα
Διαβάστε περισσότεραΗ ζννοια της δφναμης. 1.Nα αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι Στιλθ-Ι
1 Η ζννοια της δφναμης. 1.Nα αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι Στιλθ-Ι Στιλθ-ΙΙ Είδοσ δφναμθσ 1. Η δφναμθ που αςκοφμε με ζνα ςκοινί κακώσ τραβάμε μία βάρκα 2. Η δφναμθ
Διαβάστε περισσότεραΤάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται
Διαβάστε περισσότεραΘΕΜΑ Α Να γράψετε ςτο τετράδιό ςασ τον αριθμό καθεμιάσ από τισ παρακάτω ερωτήςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη.
ΣΤΠΟΤ ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ (ΚΡΟΤΕΙ-ΣΑΛΑΝΣΩΕΙ-ΚΤΜΑΣΑ) ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΕΣΑΡΣΗ 6 ΙΑΝΟΤΑΡΙΟΤ 2016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΤΙΚΗ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ (ΚΑΙ ΣΩΝ ΔΤΟ
Διαβάστε περισσότεραΔιαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα
Διαβάστε περισσότεραΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ.
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ. Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα
Διαβάστε περισσότεραΦσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση
Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση 4.43. Η ταχφτθτα του κζντρου μάηασ μιασ ςυμπαγοφσ ςφαίρασ που κυλίεται ςε οριηόντιο επίπεδο είναι υ = 0 m/s ενϊ θ ακτίνα τθσ R = 0, m. Η ςφαίρα ςτθν πορεία
Διαβάστε περισσότεραΕνδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
Διαβάστε περισσότεραΣράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ
Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ ΚΑΜΠΤΛΟΓΡΑΜΜΕ ΚΙΝΗΕΙ 1.1 ΟΡΙΖΟΝΣΙΑ ΒΟΛΗ 1. Τα ςκαλοπάτια μιασ ςκάλασ είναι όλα όμοια μεταξφ τουσ και ζχουν φψοσ h = 20 cm και πλάτοσ d = 40 cm. Από
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. ΕΝΟΤΗΤΑ: ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ Τάξη : Β ΛΥΚΕΙΟΥ
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ Τάξη : Β ΛΥΚΕΙΟΥ Α) ΔΙΔΑΚΣΙΚΟΙ ΣΟΧΟΙ Οι μακθτζσ, μετά το τζλοσ τθσ διδαςκαλίασ, να είναι ςε κζςθ : α) Γνώςεισ: 1. Να διατυπϊνουν τθν αρχι διατιρθςθσ
Διαβάστε περισσότεραΑνάλυςη κλειςτϊν δικτφων
Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ
Διαβάστε περισσότεραlim x και lim f(β) f(β). (β > 0)
. Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ XHMEIAΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ:
ΔΙΑΓΩΝΙΣΜΑ XHMEIAΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ: 1-2-3-4-5 Ονοματεπϊνυμο:..... Ημ/νία:.. Σάξθ: Χρονικι Διάρκεια:... Βακμόσ: ΘΕΜΑ Α Για τισ προτάςεισ Α1 ζωσ Α5 να γράψετε ςτο τετράδιό ςασ τον αρικμό τθσ πρόταςθσ
Διαβάστε περισσότεραΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς
Διαβάστε περισσότεραΔιάδοση θερμότητας σε μία διάσταση
Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν
Διαβάστε περισσότερα3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
Διαβάστε περισσότεραΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Διαβάστε περισσότεραςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
Διαβάστε περισσότεραΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι
Διαβάστε περισσότεραΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας
1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει
Διαβάστε περισσότεραΠαράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Διαβάστε περισσότεραΑςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ
Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε
Διαβάστε περισσότεραΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ
4 ν Γεληθό Λύθεην Κνδάλεο Φπσηθή θατεύζπλσεο Γ τάμεο ΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΠΑΡΑΣΗΡΗΕΙ 1. ηημ ελαζηική κοξύζη όποσ ηο έκα ζώμα είκαη αθίκεηο αρτηθά εθαρμόδω ηης γκωζηές ζτέζεης
Διαβάστε περισσότεραΕγχειρίδιο: Honeybee Small
ΚΟΚΚΙΝΟΣ ΔΗΜΗΤΡΗΣ Τηλ/Fax: 20 993677 Άγιος Δημήτριος, Αττικής 73 42 Ν. Ζέρβα 29 e-mail: Kokkinos@kokkinostoys.gr www.kokkinostoys.gr Εγχειρίδιο: Honeybee Small HEYBEE SMALL CRANE MACHINE DIP SW 2 3 4 5
Διαβάστε περισσότεραΘεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Διαβάστε περισσότεραΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙ Α: Απαντιςεισ ΗΜΕ ΟΜΗΝΙΑ: 08/03/2015
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2014-2015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙ Α: Απαντιςεισ ΗΜΕ ΟΜΗΝΙΑ: 08/03/2015 Τηαγκαράκθσ Γιάννθσ, Δθμοποφλου Ηρϊ, Αδάμθ Μαρία, Αγγελίδθσ ΕΡΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άγγελοσ,
Διαβάστε περισσότεραΠόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
Διαβάστε περισσότεραΦυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010
Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Περιεχόμενα Μεγζκθ Κίνθςθσ: ελίδεσ 1-4 Μετατόπιςθ, Σαχφτθτα, Μζςθ Σαχφτθτα Ευκφγραμμεσ Κινιςεισ: ελίδεσ 5-20 Ευκφγραμμθ Ομαλι Ευκ. Ομαλά
Διαβάστε περισσότεραΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ. Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ
ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ Μιςθρλισ Δθμιτριοσ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑ ΣΕ 1 Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ
Διαβάστε περισσότεραΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
Λφκειο Ακρόπολθσ 2015 Επιμζλεια Μάριοσ Πουργουρίδθσ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1. Η πιο κάτω μπάλα αφινεται να πζςει από το ςθμείο Α,κτυπά ςτο ζδαφοσ ςτο ςθμείο Ε και αναπθδά ςε μικρότερο
Διαβάστε περισσότεραΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ
1 ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ.ΣΙΡΚΑ 8 και ΑΝΣΤΠΑ 30100 ΑΓΡΙΝΙΟ Email: nakosk@sch.gr Σηλ 64105400 κι.69749695 ΜΕΓΙΣΑ-ΕΛΑΧΙΣΑ ΧΩΡΙ ΠΑΡΑΓΩΓΟΤ 3 ΕΙΣΑΓΩΓΗ Σα
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΣΑΞΗ : ΦΤΙΚΗ Γ ΓΤΜΝΑΙΟΤ ΕΙΡΑ: Απαντιςεισ ΗΜΕΡΟΜΗΝΙΑ: 08/03/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΜΑΣΟ:
ΜΑΘΗΜΑ / ΣΑΞΗ : ΦΤΙΚΗ Γ ΓΤΜΝΑΙΟΤ ΕΙΡΑ: Απαντιςεισ ΗΜΕΡΟΜΗΝΙΑ: 08/03/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΜΑΣΟ: Σηαγκαράκθσ Γιάννθσ, Δθμοποφλου Ηρώ, Αδάμθ Μαρία, Αγγελίδθσ Άγγελοσ, Παπακαναςίου Θάνοσ, Παπαςταμάτθσ τζφανοσ
Διαβάστε περισσότεραΈνα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Διαβάστε περισσότεραΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ
ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ 1. Νόμοσ των ελλειπτικών τροχιών Η τροχιζσ των πλανθτϊν είναι ελλείψεισ, των οποίων τθ μία εςτία κατζχει ο Ήλιοσ. Προφανϊσ όλοι οι πλανιτεσ του ίδιου πλανθτικοφ ςυςτιματοσ
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑ Α A1. i A2. i A. ii A4. i A. iii ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Β Β1. -1 0-2 0 4HCl (g) + O 2(g) 2H 2 O (g) + 2Cl 2(g), ΔΘ
Διαβάστε περισσότεραΑυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
Διαβάστε περισσότεραΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν
Διαβάστε περισσότεραΤάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Β. 1.1 Νόμοσ Coulomb
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Β 1.1 Νόμοσ Coulomb 1. Δφο ίςα κετικά ςθμειακά θλεκτρικά φορτία q 1 και q βρίςκονται πάνω ςτθν ίδια ευκεία. Τα φορτία q 1 και q είναι ςτακερά
Διαβάστε περισσότεραΠίεςη. 1. Αν ςε μία επιφάνεια με εμβαδό Α αςκείται κάκετα δφναμθ F Κ,τότε ορίηουμε ωσ πίεςθ Ρ (επιλζξτε μία ςωςτι απάντθςθ):
9 Πίεςη. 1. Αν ςε μία επιφάνεια με εμβαδό Α αςκείται κάκετα δφναμθ F Κ,τότε ορίηουμε ωσ πίεςθ Ρ (επιλζξτε μία ςωςτι απάντθςθ): A FK α. Ρ=F K S β. P= γ. P= F A 9 K 2.τθ ςυγκεκριμζνθ φράςθ να επιλζξετε μία
Διαβάστε περισσότεραΠαράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Διαβάστε περισσότεραΔείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Διαβάστε περισσότεραΟ ήχοσ ωσ φυςικό φαινόμενο
Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ
Διαβάστε περισσότεραΠανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου
Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη
Διαβάστε περισσότεραΤεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις στα κευ 1 και 2
Επαναληπτικές Ασκήσεις στα κευ 1 και 2 1. Αζριο με όγκο 0,004 m 3 κερμαίνεται με ςτακερι πίεςθ p =1,2 atm μζχρι ο όγκοσ του να γίνει 0,006 m 3. Τπολογίςτε το ζργο που παράγει το αζριο. Δίνεται 1 atm =
Διαβάστε περισσότεραΣράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Β
Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. Θέμα Β ΚΑΜΠΤΛΟΓΡΑΜΜΕ ΚΙΝΗΕΙ. ΟΡΙΖΟΝΣΙΑ ΒΟΛΗ. Η ςφαίρα του ςχιματοσ εκτοξεφεται δφο φορζσ με διαφορετικζσ αρχικζσ ταχφτθτεσ εκτελϊντασ οριηόντια βολι, από το
Διαβάστε περισσότεραΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν
ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ
Διαβάστε περισσότεραΑΚΗΕΙ ΡΕΤΣΩΝ. 2. Σωλινασ ςχιματοσ U περιζχει νερό πυκνότθτασ ρ ςε ιςορροπία. Τα
ΑΚΗΕΙ ΡΕΤΣΩΝ 1. Το κλειςτό δοχείο του ςχιματοσ περιζχει ακίνθτο υγρό πυκνότθτασ ρ και φψουσ h και βρίςκεται εντόσ πεδίου βαρφτθτασ και εντόσ ατμόςφαιρασ. Το δοχείο κλείνεται πλευρικά με εφαρμοςτό ζμβολο
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ
Διαβάστε περισσότεραΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ
ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ Άςκθςθ 1 Η μζγιςτθ τιμι του ρεφματοσ που διαρρζει μία κεραία είναι 0.5 Α, θ αντίςταςθ ακτινοβολίασ τθσ είναι 200 Ω, θ πυκνότθτα ιςχφοσ ςε απόςταςθ 10 km από τθν κεραία είναι 1
Διαβάστε περισσότεραΜεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του
Διαβάστε περισσότεραThe European Tradesman - Basics of electricity - Czech Republic
Ηλεκτρικά φορτία Q Coulomb [C] Ζνταςθ Amper [A] (Βαςικι μονάδα του διεκνοφσ ςυςτιματοσ S) Πυκνότθτα ζνταςθσ J [Am -2 ] Τάςθ Volt [V] Αντίςταςθ Ohm [W] Συχνότθτα f Hertz [Hz] Το άτομο αποτελείται από τον
Διαβάστε περισσότεραΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ
ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Διαβάστε περισσότεραΜθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ
Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά
Διαβάστε περισσότερα25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και
25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραSlide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
Διαβάστε περισσότεραΑν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.
1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. α.. δ. 3. β. 4. γ. 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ B. Σωστή απάντηση είναι η (β). Εφαρμόζουμε την αρχή της διατήρησης
Διαβάστε περισσότεραΗ γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.
ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε.
ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΤΣΗΜΑΣΑ ΑΤΣΟΜΑΣΟΤ ΕΛΕΓΧΟΤ Ι ΑΚΗΕΙ ΠΡΑΞΗ Καθηγητήσ: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΤΛΟ Καθ. Εφαρμ:. ΒΑΙΛΕΙΑΔΟΤ
Διαβάστε περισσότεραΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ. Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια
ΘΕΡΜΟΔΤΝΑΜΙΚΗ IΙ Ενότθτα 4: Χθμικζσ αντιδράςεισ αερίων τακερά Χθμικισ Ιςορροπίασ Πρότυπθ Ελεφκερθ Ενζργεια ογομών Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικών Μθχανικών κοποί ενότθτασ κοπόσ τθσ ενότθτασ αυτισ
Διαβάστε περισσότεραΚλαςικι Ηλεκτροδυναμικι
Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν
Διαβάστε περισσότεραΑρχή διατήρηςησ τησ μηχανικήσ ενζργειασ
Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ Φφλλο εργαςίασ Α. Όργανα και υλικά που απαιτοφνται Βάςθ παραλλθλόγραμμθ φιγκτιρασ τφπου G Μία (1) ράβδοσ μεταλλικι 80 cm Δφο () ράβδοι μεταλλικζσ 30 cm Δφο () απλοί
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
Διαβάστε περισσότερα1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM
1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM ΣΙ ΕΙΝΑΙ ΠΟΜΠΟ FM; Πρόκειται για μια θλεκτρονικι διάταξθ που ςκοπό ζχει τθν εκπομπι ραδιοςυχνότθτασ
Διαβάστε περισσότεραΔC= C - C. Μια γρήγορη επανάληψη. Αρτές λειηοσργίας
Αρτές λειηοσργίας Μια γρήγορη επανάληψη Αρχή λειτουργίασ H φυςικι αρχι ςτθν οποία βαςίηεται θ λειτουργία του αιςκθτιρα. (Ειδικότερα, το φυςικό μζγεκοσ ςτο οποίο βαςίηεται ο μετατροπζασ του αιςκθτιρα.)
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ'ΛΥΚΕΙΟΥ. Ονοματεπϊνυμο:... Ημ/νία:... Τάξθ:...Χρονικι Διάρκεια:...
ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ'ΛΥΚΕΙΟΥ Κεφάλαια 1,2,3,4,5(μέχρι ενότητα 5) Ονοματεπϊνυμο:... Ημ/νία:... Τάξθ:...Χρονικι Διάρκεια:... Βακμόσ: ΘΕΜΑ Α Για τισ προτάςεισ Α1 ζωσ Α5 να γράψετε ςτο τετράδιό ςασ τον αρικμό
Διαβάστε περισσότεραΑσκήσεις Επανάληψης. 2εφφ. γ..
1. Σαιρίδιο μάηασ m διαγράει οριηόντιο κκλο ακτίνασ 0 πάνω ςε οριηόντιο τραπζηι με κινθτικι ενζργεια Κ, μζςω νιματοσ που περνάει από τρπα που υπάρχει ςτο κζντρο τθσ κυκλικισ τροχιάσ. Στο άλλο άκρο του
Διαβάστε περισσότεραΓια τισ δυνάμεισ αυτζσ ιςχφουν: Ν=w λόγω ιςορροπίασ ςτον κατακόρυφο άξονα
Γ'ΤΑΞΗ ΑΡΑΝΤΗΣΕΙΣ ΣΤΟ ΚΙΤΗΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ: ΚΕ ΣΤΕΕΟ ΘΕΜΑ 1ο Α. 1(Λ), (Σ), (Σ), 4(Σ), 5(Λ) Β. 1(β) (γ) (β) 4(γ) ΘΕΜΑ ο T λεκ F Α. Το ςτερεό δζχεται τισ δυνάμεισ : T Τ
Διαβάστε περισσότεραΖρευνα ικανοποίθςθσ τουριςτϊν
Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν
Διαβάστε περισσότεραΙςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων
Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου
Διαβάστε περισσότεραΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ ΙΙ Ανάλυςθ
ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ ΙΙ Ανάλυςθ Θράςοσ Πανίδθσ ΕΡΓΑΣΗΡΙΟ ΣΕΧΝΙΚΗ ΘΕΡΜΟΔΤΝΑΜΙΚΗ & ΕΦΑΡΜΟΓΩΝ ΣΑΣΙΣΙΚΗ ΜΗΧΑΝΙΚΗ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΤΠΗΓΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ 01 Οριςμοί φςτθμα (υλικό) τακερό ςφνολο ςωματιδίων
Διαβάστε περισσότεραΟι μορφζσ τησ ενζργειασ είναι:
ΕΝΕΡΓΕΙΑ-ΙΧΤ ΕΝΕΡΓΕΙΑ Κάκε φυςικό ςφςτθμα περιζχει (ι εναλλακτικά αποκθκεφει) μία ποςότθτα που ονομάηεται ενζργεια. Ενζργεια, ςυνεπώσ, είναι θ ικανότθτα ενόσ ςώματοσ ι ςυςτιματοσ να παραγάγει ζργο. Η ενζργεια
Διαβάστε περισσότεραΕνεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria
Ενεργειακά Τηάκια Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.facebook.com/energeiaka.ktiria Σελ. 2 Η ΕΣΑΙΡΕΙΑ Η εταιρεία Ενεργειακά Κτίρια δραςτθριοποιείται ςτθν παροχι ολοκλθρωμζνων υπθρεςιϊν και ςτθν
Διαβάστε περισσότερα1. ΠΕΡΙΓΡΑΦΗ ΜΗΧΑΝΗ. Τα δφο γρανάηια του μετρθτικοφ (N 3 και Ν 4 ) μαηί με τον τεντωτιρα τθσ αλυςίδασ. Ο τροχόσ εδάφουσ με τα δφο γρανάηια N 1 και
1. ΠΕΡΙΓΡΑΦΗ ΜΗΧΑΝΗ Θ μθχανι κακολικισ εφαρμογισ κοκκωδών ςκευαςμάτων εφαρμόηεται επάνω ςτθν φρζηα ι ςτον καλλιεργθτι και μπροςτά από αυτόν ζχει 14 εξαγωγζσ (ςωλθνάκια). Κατά τθν πτώςθ του ςκευάςματοσ
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ'ΛΥΚΕΙΟΥ. Κεφάλαια 1,2,3,4,5(μέχρι ενότητα 3) Ονοματεπϊνυμο:... Ημ/νία:... Τάξθ:...Χρονικι Διάρκεια:...
ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ'ΛΥΚΕΙΟΥ Κεφάλαια 1,2,3,4,5(μέχρι ενότητα 3) Ονοματεπϊνυμο:... Ημ/νία:... Τάξθ:...Χρονικι Διάρκεια:... Βακμόσ: ΘΕΜΑ Α Για τισ προτάςεισ Α1 ζωσ Α5 να γράψετε ςτο τετράδιό ςασ τον αρικμό
Διαβάστε περισσότεραΒάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.
Διαβάστε περισσότεραΗ αυτεπαγωγή ενός δακτυλίου
Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα
Διαβάστε περισσότεραΓενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιαδικασία με βήματα. 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333).
Διαδικασία με βήματα 1. Αλλάηω το χρϊμα ςκθνικοφ ςε γκρι(#3333). 2. Διαλζγω το Polystar Tool. Από τα Options κάνω το Polygon ςε Star και τα υπόλοιπα όπωσ είναι. Ζωγραφίηω ζνα αςτζρι πάνω αριςτερά. Fill
Διαβάστε περισσότεραΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΡΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΧΕΣ ΟΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΡΙΧΕΙΗΣΕΩΝ & ΥΡΗΕΣΙΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Α1. Να χαρακτηρίςετε τισ προτάςεισ που ακολουθοφν, γράφοντασ ςτο τετράδιό ςασ, δίπλα
Διαβάστε περισσότερα