Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α."

Transcript

1 1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη με ƒ(χ)= Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α. 5. Ζςτω μια ςυνάρτηςη με πεδίο οριςμοφ (0,+ ) είναι ςυνεχήσ ςτο. Αν ιςχφει (χ-1) ƒ(χ)=4( με να υπολογίςετε το ƒ(1) 6. Να βρείτε τισ παραγώγουσ των ςυναρτήςεων 1. ƒ(χ)=( 2. ƒ(χ)= 3. ƒ(χ)= ) 7. Αν να δείξετε ότι 8. Αν ƒ(χ)=χ+ να δείξετε ότι Ι. ƒ(χ)= ƒ (χ) ΙΙ. (

2 2 9. Δίνεται η ςυνάρτηςη. Να βρείτε Α) την ƒ (χ) Β) τον ςυντελεςτή διεφθυνςησ τησ εφαπτομζνησ τησ καμπφλησ τησ ƒ ςτο ςημείο με τετμθμζνθ Γ) Τθν εξίςωςθ τθσ εφαπτομζνθσ τθσ καμπφλθσ τθσ ƒ ςτο ςθμείο (2,ƒ(2)) κακϊσ και τθ γωνία που ςχθματίηει αυτι με τον άξονα χ χ 10. Δίνονται οι ςυναρτιςεισ ƒ(χ)= και g(χ)= α) να βρείτε τθν εξίςωςθ τθσ εφαπτομζνθσ τθσ καμπφλθσ Ι. τθσ ƒ ςτο ςθμείο (1,ƒ(1)) ΙΙ. τθσ g ςτο ςθμείο Β(1,g(1)) β) Να αποδειχκεί ότι οι παραπάνω εφαπτόμενεσ είναι κάκετεσ 11. Δίνεται θ ςυνάρτθςθ ƒ(χ)=, χϵ α) να βρείτε τθν ƒ (χ) β) Αν θ γραφικι παράςταςθ τθσ ƒ διζρχεται από το ςθμείο Α(1.5) και ο ςυντελεςτισ διεφκυνςθσ τθσ εφαπτομζνθσ τθσ καμπφλθσ τθσ ƒςτο Α είναι 4, να προςδιορίςετε τα α και β γ)να βρείτε τθν εξίςωςθ τθσ παραπάνω εφαπτομζνθσ 12. α) Να βρείτε τθν εξίςωςθ τθσ εφαπτομζνθσ τθσ ƒ(χ)= lnx ςτο ςθμείο τθσ ( με β) Ποια είναι θ εξίςωςθ τθσ παραπάνω εφαπτομζνθσ που διζρχεται από τθν αρχι των αξόνων 13. Δίνεται θ ςυνάρτθςθ με τφπο ƒ(χ)=2, χϵr. Να βρείτε α. Τθν ƒ (χ) β. Τθν εξίςωςθ τθσ εφαπτομζνθσ τθσ καμπφλθσ τθσ ƒ, που ςχθματίηει με τον άξονα χ χ γωνία 14. Δίνεται θ ςυνάρτθςθ με τφπο. Να βρείτε α. τθν ƒ (χ) β. τισ εξιςϊςεισ των εφαπτομζνων τθσ καμπφλθσ τθσ ƒ που είναι παράλλθλεσ ςτον χ χ 15. Δίνεται ς ςυνάρτθςθ με τφπο α) Να βρείτε το πεδίο οριςμοφ τθσ ςυνάρτθςθσ ƒ β) Να υπολογίςετε το γ) Να βρεκεί θ πρϊτθ παράγωγοσ τθσ ƒ δ) Να βρεκοφν οι εφαπτόμενεσ τθσ καμπφλθσ τθσ ςυνάρτθςθσ ƒ που είναι παράλλθλεσ με τθν ευκεία ψ-2χ-5 =0

3 3 16. ϋεςτω ƒ: R R για τθν οποία ιςχφουν * θ ƒ είναι παραγωγίςιμθ ςτο R * ƒ(1)=2 και ƒ (1)=1 Θεωροφμε τθν ςυνάρτθςθ g(χ)= α) Να βρείτε τθν εξίςωςθ τθε εφαπτομζνθσ τθσ καμπφλθσ τθσ ƒ ςτο ςθμείο (1,ƒ(1)) β) Να δείξετε ότι g(1)=-13 και g (1)=-1 γ) Να βρείτε τθν εξίςωςθ τθσ εφαπτομζνθσ τθσ g ςτο ςθμείο Β(1,g(1)) δ) Να δείξετε ότι οι παραπάνω εφαπτόμενεσ είναι κάκετεσ. 17. Ζςτω ƒ μια ςυνάρτθςθ παραγωγίςιμθ ςτο R για τθν οποία ιςχφει ƒ (χ)+2ƒ(χ)=4χ, χϵr Αν θ καμπφλθ διζρχεται από το ςθμείο Α(1,0) τότε: α) Να υπολογίςετε το ƒ (1) β) Να βρείτε τθν εξίςωςθ τθσ καμπφλθσ τθσ ƒ ςτο ςθμείο τθσ Α(1,0) 18. Οι διαςτάςεισ ενόσ ορκογωνίου παραλλθλεπιπζδου είναι α=χ, β=χ+1, χ=χ+2 με χ>0. Να βρείτε α. Τον όγκο V(χ) του ορκογωνίου παραλλθλεπιπζδου ςυναρτιςει του χ β. Τθν V (χ) γ. Το ρυκμό μεταβολισ του V(χ) ωσ προσ χ όταν χ=2 19. Σε ζνα ορκογϊνιο ςφςτθμα αξόνων Οχψ δίνονται τα ςθμεία Α(0,χ+1) και Β( με χ>0. Να βρείτε α. Το εμβαδόν Ε(χ) του τριγϊνου ΟΑΒ β. Τθν Ε (χ) γ. Το ρυκμό μεταβολισ του εμβαδοφ του τριγϊνου ΟΑΒ ωσ προσ χ όταν χ=2 20. Ζνα ςϊμα κινείται ςε ζναν άξονα ϊςτε θ κζςθ του ςε χρόνο t να δίνεται από τον τφπο: χ(t)= α. Να βρείτε τθν ταχφτθτα του ςϊματοσ ςε χρόνο t β. Να προςδιορίςετε πότε το ςϊμα είναι ακίνθτο γ. Ποια θ επιτάχυνςθ του ςϊματοσ όταν ςτισ χρονικζσ ςτιγμζσ που το ςϊμα είναι ακίνθτο; 21. Δίδεται θ ςυνάρτθςθ με τφπο α. Να βρείτε τθν ƒ (χ) β. το ρυκμό μεταβολισ τθσ ƒ(χ) ωσ προσ χ όταν χ=1 γ. τισ τιμζσ των α,β αν θ διζρχεται από το ςθμείο Α(1,5) και θ κλίςθ τθσ εφαπτομζνθσ τθσ καμπφλθσ τθσ ƒ ςτο ςθμείο Α είναι ίςθ με Δίδεται θ ςυνάρτθςθ με τφπο ƒ(χ)= α. Να βρείτε τθν εξίςωςθ τθσ εφαπτομζνθσ ςτο ςθμείο Α(1,1) β. Από τυχαίο ςθμείο Μ(χ,ψ) τθσ γραφικισ παράςταςθσ τθσ ƒ φζρνουμε παράλλθλεσ προσ τουσ άξονεσ χχ και ψψ, οι οποίεσ ςχθματίηουν με τουσ θμιάξονεσ ΟΧ και ΟΨ ορκογϊνιο παραλλθλόγραμμο. Να βρεκοφν οι ςυντεταγμζνεσ του Μ ϊςτε θ περίμετροσ του ορκογωνίου να είναι ελάχιςτθ

4 4 23. Δίνεται θ ςυνάρτθςθ.να βρείτε a) το ςθμείο ςτο οποίο θ γραφικι παράςταςθ τθσ κόβει τον άξονα χ χ b) το c) τθν παράγωγο τθσ d) τα διαςτιματα ςτα οποία θ είναι γνθςίωσ φκίνουςα και εκείνα ςτα οποία είναι γνθςίωσ αφξουςα. e) τα ακρότατα τθσ (Εξετάσεις 2003) 24. Δίνεται θ ςυνάρτθςθ με πεδίο οριςμοφ το R και κϵr. Α. Αν θ γραφικι παράςταςθ τθσ διζρχεται από το ςθμείο (3,8) να βρείτε το κ. Β. Για κ=-1: 1ο. Να αποδείξετε ότι για κάκε πραγματικό αρικμό χ 2ο. Να βρείτε τα ακρότατα τθσ (Εξετάςεισ 2008) 25. Δίνεται θ ςυνάρτθςθ 1ο. Να βρείτε το πεδίο οριςμοφ τθσ 2ο. Να δείξετε ότι ο ρυκμόσ μεταβολισ τθσ ςυνάρτθςθσ, όταν χ=3, ιςοφται με 3ο. (Εξετάςεισ 2004) 26. Δίνεται θ ςυνάρτθςθ με τφπο 1ο. Να βρείτε τθ μονοτονία και τα ακρότατα τθσ ςυνάρτθςθσ 2ο. Να αποδείξετε ότι (χ)+ (χ)= 3ο. Να βρείτε τθν εξίςωςθ τθε εφαπτομζνθσ τθσ γραφικισ παράςταςθσ τθσ ςτο ςθμείο Α(0, (0)) 27. Δίνεται θ ςυνάρτθςθ A. Να βρείτε τισ τιμζσ των α,β ϊςτε θ να ζχει τοπικό ακρότατο ςτο ςθμείο (3,1). B. Για α=-2 και β=3 να βρείτε: 1ο. τθ μονοτονία και τα ακρότατα τθσ 2ο. 3ο. τθν ελάχιςτθ τιμι του ρυκμοφ μεταβολισ τθσ ωσ προσ χ 4ο. τισ εξιςϊςεισ των εφαπτομζνων τθσ που είναι παράλλθλεσ ςτθν ψ=3χ.

5 5

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α. ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ

Διαβάστε περισσότερα

lim x και lim f(β) f(β). (β > 0)

lim x και lim f(β) f(β). (β > 0) . Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα

Διαβάστε περισσότερα

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό. ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία) ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ

ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ 1. Αν οι ςυναρτιςεισ f και g ζχουν όρια ςτο x πραγματικοφσ αρικμοφσ, δθλαδι lim f( x) l 1 και lim g( x) l 2 με l 1, l 2 IR, τότε lim

Διαβάστε περισσότερα

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ.

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ. Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ. Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο

Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα

Διαβάστε περισσότερα

δ) Αf=R-{ 2}=(-,-2)U(-2,2)U(2,+ ). f (x) f(x) ε) Αf=R- 3 =(-,- 3 )U(- 3, 3 )U( 3,+ ).

δ) Αf=R-{ 2}=(-,-2)U(-2,2)U(2,+ ). f (x) f(x) ε) Αf=R- 3 =(-,- 3 )U(- 3, 3 )U( 3,+ ). ΡΑΡΑΝΙΚΟΛΑΟΥ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ ) Nα μελετιςετε ωσ προσ τθ μονοτονία τισ ςυναρτιςεισ: β) f ( ) α) f ( ) γ) f ( ) δ) Αf=R-{ }=(-,-)U(-,)U(,+ ) ( 4) ( 4) ( 4) fϋ()= ( 4) f ( ) δ) f ( ) ε)

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτθ

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια

Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

Απάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).

Απάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για

Διαβάστε περισσότερα

Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου;

Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου; ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΡΩΝΥMΟ: ΗΜΕΟΜΗΝΙΑ: 1/3/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΚΥΜΑΤΑ ΚΑΙ ΣΤΕΕΟ ΣΩΜΑ ΘΕΜΑ Α Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ Γ' ΓΤΜΝΑΙΟΤ ΧΟΛΙΚΗ ΧΡΟΝΙΑ: δ) 2 6

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ Γ' ΓΤΜΝΑΙΟΤ ΧΟΛΙΚΗ ΧΡΟΝΙΑ: δ) 2 6 ΕΠΑΝΑΗΠΣΙΚΕ ΑΚΗΕΙ Γ' ΓΤΜΝΑΙΟΤ ΧΟΙΚΗ ΧΡΟΝΙΑ: 01-01 ΕΝΟΣΗΣΑ 1: Ιδιότητεσ Αναλογιών - Ποςοςτά 1. Να υπολογιςτεί το χ ςτισ πιο κάτω αναλογίεσ. 7 α) 6 4 β) 1 7 γ) δ) 6 4 4 7. Στθν αναλογία να βρείτε τα α και

Διαβάστε περισσότερα

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; ; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

ΝΟΕΜΒΡΙΟ Ημερομηνία: 12/11/2016 Ώρα Εξέτασης: 10:00-12:00

ΝΟΕΜΒΡΙΟ Ημερομηνία: 12/11/2016 Ώρα Εξέτασης: 10:00-12:00 ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟ ΔΙΑΓΩΝΙΜΟ ΝΟΕΜΒΡΙΟ 016 Α ΓΤΜΝΑΙΟΤ Ημερομηνία: 1/11/016 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕ: 1. Να λφςετε όλα τα κζματα, αιτιολογϊντασ πλιρωσ τισ απαντιςεισ ςασ.. Κάκε

Διαβάστε περισσότερα

Το Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,.

Το Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Το Ρολφεδρο Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ Διαγϊνιοσ: ΑΚ Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Θ Ρριςματικι - Ρρίςμα οσ Οριςμόσ οσ Οριςμόσ Δίδεται μια Θ κλειςτι κυρτι πολυγωνικι γραμμι,

Διαβάστε περισσότερα

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι

Διαβάστε περισσότερα

4. Πότε δφο ποςά ονομάηονται ανάλογα ; 5. Να ςυμπλθρϊςετε τα κενά ςτισ παρακάτω προτάςεισ i) θ γραφικι παράςταςθ τθσ ςυνάρτθςθσ είναι

4. Πότε δφο ποςά ονομάηονται ανάλογα ; 5. Να ςυμπλθρϊςετε τα κενά ςτισ παρακάτω προτάςεισ i) θ γραφικι παράςταςθ τθσ ςυνάρτθςθσ είναι επιςτροφι ΘΕΩΡΙΑ 1. Ποια γωνία λζγεται εγγεγραμμζνθ ; 2. Ποια είναι θ ςχζςθ μεταξφ μιασ εγγεγραμμζνθσ γωνίασ και τθσ επίκεντρθσ που ζχουν το ίδιο αντίςτοιχο τόξο; 3. Να ςυμπλθρϊςετε τισ παρακάτω προτάςεισ

Διαβάστε περισσότερα

Διάδοση θερμότητας σε μία διάσταση

Διάδοση θερμότητας σε μία διάσταση Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν

Διαβάστε περισσότερα

ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ

ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΧΕΔΙΑΜΟ ΠΡΟΪΟΝΣΩΝ ΜΕ Η/Τ ΚΑΜΠΤΛΕ ΕΛΕΤΘΕΡΗ ΜΟΡΦΗ Χριςιμεσ για τθν περιγραφι ομαλών και ελεφκερων ςχθμάτων Αμάξωμα αυτοκινιτου, πτερφγια αεροςκαφών, ςκελετόσ πλοίου χιματα χαρακτιρων κινουμζνων ςχεδίων Περιγραφι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Λφκειο Ακρόπολθσ 2015 Επιμζλεια Μάριοσ Πουργουρίδθσ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1. Η πιο κάτω μπάλα αφινεται να πζςει από το ςθμείο Α,κτυπά ςτο ζδαφοσ ςτο ςθμείο Ε και αναπθδά ςε μικρότερο

Διαβάστε περισσότερα

Διαγώνισμα Χημείας Γ Λυκείου στα Κεφάλαια 1-4

Διαγώνισμα Χημείας Γ Λυκείου στα Κεφάλαια 1-4 Διαγώνισμα Χημείας Γ Λυκείου στα Κεφάλαια 1-4 Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-5 και δίπλα το γράμμα που αντιςτοιχεί ςτθ

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

(2 x) ( x 5) 2(2x 11) 1 x 5

(2 x) ( x 5) 2(2x 11) 1 x 5 ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 Ο ΑΝΑΛΥΣΗΣ 1. ίνεται η συνάρτηση ƒ µε τύπο, + 5 6 < + + 7 5 f( ) = < < 5 ( ) ( 5) 006 ( 11) 1 5 Υπολογίστε τα παρακάτω όρια της συνάρτησης, Α) Β) f ( ) f ( ) 1 Γ) f ( ) + και f ( )

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ 1. Από τυχαίο ςθμείο Γ θμικυκλίου διαμζτρου ΑΒ φζρω παράλλθλθ προσ τθν ΑΒ, που τζμνει το θμικφκλιο ςτο Δ. i. Να δείξετε ότι το τετράπλευρο ΑΒΓΔ που ςχθματίηεται είναι

Διαβάστε περισσότερα

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ ΓΕΩΜΕΣΡΙΑ ΣΗ Β ΛΤΚΕΙΟΤ Θ Ε Ω Ρ Ι Α ΘΕΜΑ 1

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ ΓΕΩΜΕΣΡΙΑ ΣΗ Β ΛΤΚΕΙΟΤ Θ Ε Ω Ρ Ι Α ΘΕΜΑ 1 1 ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ ΓΕΩΜΕΣΡΙΑ ΣΗ Β ΛΤΚΕΙΟΤ Θ Ε Ω Ρ Ι Α ΘΕΜΑ 1 Α1. Να αποδείξετε ότι ςε κάκε ορκογϊνιο τρίγωνο, το άκροιςμα των τετραγϊνων των κάκετων πλευρϊν του είναι ίςο με το τετράγωνο τθσ υποτείνουςασ.

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση

Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση 4.43. Η ταχφτθτα του κζντρου μάηασ μιασ ςυμπαγοφσ ςφαίρασ που κυλίεται ςε οριηόντιο επίπεδο είναι υ = 0 m/s ενϊ θ ακτίνα τθσ R = 0, m. Η ςφαίρα ςτθν πορεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Α2. το ςτιγμιότυπο αρμονικοφ μθχανικοφ κφματοσ του χιματοσ 1, παριςτάνονται οι ταχφτθτεσ ταλάντωςθσ δφο ςθμείων του.

Α2. το ςτιγμιότυπο αρμονικοφ μθχανικοφ κφματοσ του χιματοσ 1, παριςτάνονται οι ταχφτθτεσ ταλάντωςθσ δφο ςθμείων του. ΘΕΜΑ Α. Στισ ερωτήςεισ Α1-Α4 να γράψετε ςτο τετράδιό ςασ τον αριθμό τησ ερϊτηςησ και, δίπλα, το γράμμα που αντιςτοιχεί ςτην επιλογή η οποία ςυμπληρϊνει ςωςτά την ημιτελή πρόταςη. Α1. τθ ςφνκεςθ δφο απλϊν

Διαβάστε περισσότερα

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ. Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ 6 Γ Τ Α Ξ Η Β. Ρ. Θ Ε Μ Α ο Α. Έστω μια συνάρτηση f ορισμένη στο Δ. Αν η f είναι συνεχής στο Δ και f (χ)= για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

Σχέσεις δύο μεταβλητών - Συναρτήσεις

Σχέσεις δύο μεταβλητών - Συναρτήσεις Σέσεις δύο μεταβλητών - Συναρτήσεις. Από τι εξαρτάται; ΠΜΑ Βϋ Γυμναςίου Α. Αναγνωρίηουν ςυμμεταβαλλόμενα ποςά (μεταβλθτζσ) ςε ςυγκεκριμζνεσ καταςτάςεισ και διακρίνουν ποιο ποςό εξαρτάται από το άλλο. Α.

Διαβάστε περισσότερα

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΥΡΤΟΤΗΤΑ 1) Nα βρείτε τα Σ.Κ. τθσ ςυνάρτθςθσ

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΥΡΤΟΤΗΤΑ 1) Nα βρείτε τα Σ.Κ. τθσ ςυνάρτθςθσ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΥΡΤΟΤΗΤΑ Nα βρείτε τα ΣΚ τθσ ςυνάρτθςθσ - 0 - Άρα A [-] - 0 - + - + KK KA KK KA ΣΚ ΣΚ ΣΚ Τα ςθμεία Α Β00 και Γ είναι ςθμεία καμπισ Nα βρείτε τα ΣΚ τθσ ςυνάρτθςθσ ϋϋ0 θμ0 κπ κη κπ κπ+π

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 ΚΥΚΛΩΜΑΤΑ LSI Πανεπιςτιμιο Ιωαννίνων Ασκήσεις Ι Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 Γ. Τσιατούχας Άσκηση 1 1) Σχεδιάςτε τισ ςφνκετεσ COS λογικζσ πφλεσ (ςε επίπεδο τρανηίςτορ) που υλοποιοφν τισ

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Πανεπιςτιμιο Κφπρου ΟΙΚ 3: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Φάμπιο Αντωνίου τοιχεία Επικοινωνίασ: email: fantoniou@aueb.gr ; fabio@ucy.ac.cy Σθλ:893683 Προςωπικι Ιςτοςελίδα: fantoniou.wordpress.com

Διαβάστε περισσότερα

ΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH

ΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH ΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH Οδηγίες Τι να προσέχουμε 1. Προσέχουμε πάντα τα χ για τα οποία ορίζεται μία συνάρτηση ή μία συναρτησιακή σχέση. Αν δεν μας δίνονται πρέπει να τα βρίσκουμε. Είναι το Πεδίο

Διαβάστε περισσότερα

Modellus 4.01 Συ ντομοσ Οδηγο σ

Modellus 4.01 Συ ντομοσ Οδηγο σ Νίκοσ Αναςταςάκθσ 4.01 Συ ντομοσ Οδηγο σ Περιγραφή Σο είναι λογιςμικό προςομοιϊςεων που ςτθρίηει τθν λειτουργία του ςε μακθματικά μοντζλα. ε αντίκεςθ με άλλα λογιςμικά (π.χ. Interactive Physics, Crocodile

Διαβάστε περισσότερα

Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ

Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ ΕΚΦΕ Αχαρνών Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 9_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ Εφαρμογζσ τθσ Αρχισ του Αρχιμιδθ & τθσ ςυνκικθσ

Διαβάστε περισσότερα

ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε.

ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΤΣΗΜΑΣΑ ΑΤΣΟΜΑΣΟΤ ΕΛΕΓΧΟΤ Ι ΑΚΗΕΙ ΠΡΑΞΗ Καθηγητήσ: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΤΛΟ Καθ. Εφαρμ:. ΒΑΙΛΕΙΑΔΟΤ

Διαβάστε περισσότερα

ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ

ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ 1. Νόμοσ των ελλειπτικών τροχιών Η τροχιζσ των πλανθτϊν είναι ελλείψεισ, των οποίων τθ μία εςτία κατζχει ο Ήλιοσ. Προφανϊσ όλοι οι πλανιτεσ του ίδιου πλανθτικοφ ςυςτιματοσ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

= x + στο σηµείο της που

= x + στο σηµείο της που Ασκήσεις στην εφαπτοµένη καµπύλης 1. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f ( ) = + στο σηµείο της που έχει τετµηµένη.. Σε ποια σηµεία της γραφικής παράστασης της

Διαβάστε περισσότερα

Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ

Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ ΚΑΜΠΤΛΟΓΡΑΜΜΕ ΚΙΝΗΕΙ 1.1 ΟΡΙΖΟΝΣΙΑ ΒΟΛΗ 1. Τα ςκαλοπάτια μιασ ςκάλασ είναι όλα όμοια μεταξφ τουσ και ζχουν φψοσ h = 20 cm και πλάτοσ d = 40 cm. Από

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Εµβαδά Θέµα 1 ίνεται η συνάρτηση x e e, x< 1 (x) = l nx, x 1 x Να δείξετε ότι η είναι συνεχής και να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από την C, τον άξονα

Διαβάστε περισσότερα

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α 1 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση

Διαβάστε περισσότερα

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται

Διαβάστε περισσότερα

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις γωνίες

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης. 2εφφ. γ..

Ασκήσεις Επανάληψης. 2εφφ. γ.. 1. Σαιρίδιο μάηασ m διαγράει οριηόντιο κκλο ακτίνασ 0 πάνω ςε οριηόντιο τραπζηι με κινθτικι ενζργεια Κ, μζςω νιματοσ που περνάει από τρπα που υπάρχει ςτο κζντρο τθσ κυκλικισ τροχιάσ. Στο άλλο άκρο του

Διαβάστε περισσότερα

Λφσεις των θεμάτων ΣΕΣΑΡΣΘ 18 MAΪΟΤ 2016 ΜΑΘΘΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ (ΚΑΣΕΤΘΤΝΘ)

Λφσεις των θεμάτων ΣΕΣΑΡΣΘ 18 MAΪΟΤ 2016 ΜΑΘΘΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ (ΚΑΣΕΤΘΤΝΘ) ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΘΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ (ΚΑΣΕΤΘΤΝΘ) ΣΕΣΑΡΣΘ 8 MAΪΟΤ 6 Λφσεις των θεμάτων Ζκδοση η (8/5/6, 3:) Οι ααντιςεισ

Διαβάστε περισσότερα

ΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ

ΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ 4 ν Γεληθό Λύθεην Κνδάλεο Φπσηθή θατεύζπλσεο Γ τάμεο ΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΠΑΡΑΣΗΡΗΕΙ 1. ηημ ελαζηική κοξύζη όποσ ηο έκα ζώμα είκαη αθίκεηο αρτηθά εθαρμόδω ηης γκωζηές ζτέζεης

Διαβάστε περισσότερα

ΑΚΗΕΙ ΡΕΤΣΩΝ. 2. Σωλινασ ςχιματοσ U περιζχει νερό πυκνότθτασ ρ ςε ιςορροπία. Τα

ΑΚΗΕΙ ΡΕΤΣΩΝ. 2. Σωλινασ ςχιματοσ U περιζχει νερό πυκνότθτασ ρ ςε ιςορροπία. Τα ΑΚΗΕΙ ΡΕΤΣΩΝ 1. Το κλειςτό δοχείο του ςχιματοσ περιζχει ακίνθτο υγρό πυκνότθτασ ρ και φψουσ h και βρίςκεται εντόσ πεδίου βαρφτθτασ και εντόσ ατμόςφαιρασ. Το δοχείο κλείνεται πλευρικά με εφαρμοςτό ζμβολο

Διαβάστε περισσότερα

Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου

Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη

Διαβάστε περισσότερα

1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ) ( ) = ) ( ) = 2 3, ) ( ) = 4, i f x x x x ii f x x iii f x x. x 4x. iv f x x v f x x vi f x vii f x

1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ) ( ) = ) ( ) = 2 3, ) ( ) = 4, i f x x x x ii f x x iii f x x. x 4x. iv f x x v f x x vi f x vii f x 1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΕ ΙΟ ΟΡΙΣΜΟΥ - ΟΡΙΣΜΟΣ, ΤΙΜΕΣ ΣΥΝΑΡΤΗΣΗΣ 1. ίνονται τα σύνολα A= (,5], B= [2,7], Γ= (6, + ) µε σύνολο αναφοράς το R Να βρείτε τα σύνολα : A, B, A B, A Β,( B

Διαβάστε περισσότερα

Κριτθριο αξιολόγηςησ χημείασ προςανατολιςμοφ Γ Λυκείου

Κριτθριο αξιολόγηςησ χημείασ προςανατολιςμοφ Γ Λυκείου ΘΕΜΑ Α. Στισ παρακάτω ερωτήςεισ πολλαπλήσ επιλογήσ Α1 έωσ και Α4 να επιλέξετε το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη. Α1. Ο αρικμόσ οξείδωςθσ του C ςτθν φορμαλδεΰδθ είναι : α. 0 β. -1 γ. +1 δ. +2

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R ΠΕΡΙΣΤΕΡΙΟΥ Α. ΠΕΔΙΟ ΟΡΙΣΜΟΥ. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους 4 ι) () = 6 + 6 iv) () = log ( log4(- )) v) () = ii) () = iii) () = log ( + ) 5 log 4 vii) () = 5 + 4 viii) ()

Διαβάστε περισσότερα

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Περιεχόμενα Μεγζκθ Κίνθςθσ: ελίδεσ 1-4 Μετατόπιςθ, Σαχφτθτα, Μζςθ Σαχφτθτα Ευκφγραμμεσ Κινιςεισ: ελίδεσ 5-20 Ευκφγραμμθ Ομαλι Ευκ. Ομαλά

Διαβάστε περισσότερα

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1 Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει

Διαβάστε περισσότερα

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Διαβάστε περισσότερα

Τ α Μ α θ η μ α τ ι κ ά τ η σ. Β ϋ Γ υ μ ν α ς ί ο υ. Θ ε ω ρ ε ί α & Α ς κ ή ς ε ι σ ς τ η Γ ε ω μ ε τ ρ ί α

Τ α Μ α θ η μ α τ ι κ ά τ η σ. Β ϋ Γ υ μ ν α ς ί ο υ. Θ ε ω ρ ε ί α & Α ς κ ή ς ε ι σ ς τ η Γ ε ω μ ε τ ρ ί α Τ α Μ α θ η μ α τ ι κ ά τ η σ Β ϋ Γ υ μ ν α ς ί ο υ Θ ε ω ρ ε ί α & Α ς κ ή ς ε ι σ ς τ η Γ ε ω μ ε τ ρ ί α Σ χ ο λ ι κ ό Ζ τ ο σ 2 0 1 5 2 0 1 6 Τςατςαρϊνησ Δημήτριοσ ΠΕ03 Μθηματικόσ Μονάδεσ μζτρηςησ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε ςτο τετράδιό ςασ τον αριθμό καθεμιάσ από τισ παρακάτω ερωτήςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη.

ΘΕΜΑ Α Να γράψετε ςτο τετράδιό ςασ τον αριθμό καθεμιάσ από τισ παρακάτω ερωτήςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη. ΣΤΠΟΤ ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ (ΚΡΟΤΕΙ-ΣΑΛΑΝΣΩΕΙ-ΚΤΜΑΣΑ) ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΕΣΑΡΣΗ 6 ΙΑΝΟΤΑΡΙΟΤ 2016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΤΙΚΗ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ (ΚΑΙ ΣΩΝ ΔΤΟ

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γενικής Παιδείας Β Λυκείου Κεφάλαιο 2 - υνεχές Ηλεκτρικό Ρεύμα

Διαγώνισμα Φυσικής Γενικής Παιδείας Β Λυκείου Κεφάλαιο 2 - υνεχές Ηλεκτρικό Ρεύμα Διαγώνισμα Φυσικής Γενικής Παιδείας Β Λυκείου Κεφάλαιο 2 - υνεχές Ηλεκτρικό Ρεύμα Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και

Διαβάστε περισσότερα

Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ

Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ Φφλλο εργαςίασ Α. Όργανα και υλικά που απαιτοφνται Βάςθ παραλλθλόγραμμθ φιγκτιρασ τφπου G Μία (1) ράβδοσ μεταλλικι 80 cm Δφο () ράβδοι μεταλλικζσ 30 cm Δφο () απλοί

Διαβάστε περισσότερα

Κεφ 3 ο. - Συναρτήσεις.

Κεφ 3 ο. - Συναρτήσεις. Μαθηματικά B Γυμνασίου Κεφ 3 ο. - Συναρτήσεις. Μέρος Α. Θεωρία. 1. Τι λέμε συνάρτηση; 2. Με τι αντιστοιχούμε κάθε σημείο Μ στο επίπεδο; 3. Πως λέγεται ο άξονας χ χ και πως ο άξονας ψ ψ; 4. Τι είναι το

Διαβάστε περισσότερα

ΘΕΜΑ 4 Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που

ΘΕΜΑ 4 Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που είναι στερεωμένα με έντεκα καρφιά (Α, Β, Γ, Δ, Θ, Ε, Μ, Η, Κ, Λ,

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ ΣΥΝΕΧΕΙΑ - ΠΑΡΑΓΩΓΟΣ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΑΣΚΗΣΕΙΣ ) ίνεται η συνάρτηση f: ΙR ΙR με τύπο: 3, 4 a, 4 f ( ) 4 3, 4,

Διαβάστε περισσότερα

ΔΙΑΘΛΑΗ - ΠΕΙΡΑΜΑΣΙΚΟ ΤΠΟΛΟΓΙΜΟ ΔΕΙΚΣΗ ΔΙΑΘΛΑΗ ΕΛΑΙΟΛΑΔΟΤ

ΔΙΑΘΛΑΗ - ΠΕΙΡΑΜΑΣΙΚΟ ΤΠΟΛΟΓΙΜΟ ΔΕΙΚΣΗ ΔΙΑΘΛΑΗ ΕΛΑΙΟΛΑΔΟΤ ΕΚΦΕ ΑΧΑΡΝΩΝ ΔΙΑΘΛΑΗ - ΠΕΙΡΑΜΑΣΙΚΟ ΤΠΟΛΟΓΙΜΟ ΔΕΙΚΣΗ ΔΙΑΘΛΑΗ ΕΛΑΙΟΛΑΔΟΤ Η άςκηςη αποτελεί τροποποιημζνη εκδοχή του θζματοσ τησ Ευρωπαϊκήσ Ολυμπιάδασ Φυςικών Επιςτημών EUSO 2014_Επιμζλεια Παπαμιχάλησ Κ.

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΕΩΝ 1 ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΕΩΝ 1. Να δείξετε ότι η συνάρτηση ƒ(χ)=χ-ημχ είναι γνησίως αύξουσα στο R 2. Εστω η συνάρτηση ƒ με ƒ 0 0,11,2 και ότι η συνάρτηση είναι συνεχής στο κλειστό διάστημα [0,2]. Να δείξετε

Διαβάστε περισσότερα

Λφσεις των θεμάτων ΔΕΤΣΕΡΑ 28 MAΪΟΤ 2012 ΜΑΘΘΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΘ

Λφσεις των θεμάτων ΔΕΤΣΕΡΑ 28 MAΪΟΤ 2012 ΜΑΘΘΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΘ ΑΡΟΛΥΤΗΙΕΣ ΕΞΕΤΑΣΕΙΣ Γϋ ΤΑΞΗΣ ΗΜΕΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΡΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γϋ ΤΑΞΗΣ ΕΡΑΛ (ΟΜΑΔΑ Βϋ) ΜΑΘΘΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΘ ΔΕΤΣΕΡΑ 8 MAΪΟΤ Λφσεις των θεμάτων Ζκδοση η (8/5/, :4) Οι απαντιςεισ και οι

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 11 η : Μζγιςτα και Ελάχιςτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις στα κευ 1 και 2

Επαναληπτικές Ασκήσεις στα κευ 1 και 2 Επαναληπτικές Ασκήσεις στα κευ 1 και 2 1. Αζριο με όγκο 0,004 m 3 κερμαίνεται με ςτακερι πίεςθ p =1,2 atm μζχρι ο όγκοσ του να γίνει 0,006 m 3. Τπολογίςτε το ζργο που παράγει το αζριο. Δίνεται 1 atm =

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ Η ΕΞΙΣΩΣΗ αχ +βχ+γ=0, α ¹ 0 ΠΑΡΑΤΗΡΗΣΕΙΣ v Εξίσωση δευτέρου βαθμού καλείται η εξίσωση της μορφής : αχ + βχ + γ = 0, α ¹ 0 () v Για την επίλυση της εξίσωσης

Διαβάστε περισσότερα

Διαγώνιςμα Γ Λυκείου Ιανουάριοσ2018

Διαγώνιςμα Γ Λυκείου Ιανουάριοσ2018 Διαγώνιςμα Γ Λυκείου Ιανουάριοσ08 Διάρκεια Εξζταςησ 3ώρεσ Ονοματεπώνυμο. ΘΕΜΑ Α: Στισ ερωτήςεισ Α ωσ και Α4 επιλζξτε την ςωςτή απάντηςη: Α.Αν το πλάτοσ Α μιασ φκίνουςασ ταλάντωςθσ μεταβάλλεται με το χρόνο

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα