ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
|
|
- Ευσέβιος Δεσποτόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού αναλογικού σήµατος, ο οποίος παρέχει τη δυνατότητα µετάβασης από το πεδίο του χρόνου στο πεδίο της συχνότητας. Δώσουµε τη φυσική σηµασία του αναπτύγµατος σε σειρά Fourier και του µετασχηµατισµού Fourier. 1 Εφαρµόσουµε το παραπάνω ανάπτυγµα/µετασχηµατισµό στις περιπτώσεις α) του περιοδικού τετραγωνικού σήµατος, β) του τετραγωνικού παλµού και γ) του αιτιατού εκθετικού σήµατος. Θα αναφέρουµε τις ιδιότητες του µετασχηµατισµού Fourier. Υπολογίσουµε το µετασχηµατισµό Fourier µερικών βασικών συναρτήσεων. Επεκτείνουµε τις έννοιες της ενέργειας και της ισχύος τόσο στο πεδίο του χρόνου όσο και στο πεδίο των συχνοτήτων. 2 1
2 Στο χώρο των n-διαστάσεων κάθε διάνυσµα παριστάνεται ως Το εσωτερικό γινόµενο δύο διανυσµάτων ορίζεται από τη σχέση Για µια ορθοκανονική βάση διανυσµάτων οι συντεταγµένες, ενός διανύσµατος., είναι οι προβολές του σε κάθε ένα από τα διανύσµατα βάσης και προσδιορίζονται από τη σχέση Το µέτρο (norm) ή µήκος ενός διανύσµατος, ορίζεται από τη σχέση καλεί- Ένα σύνολο διανυσµάτων ται ορθοκανονικό όταν a k, a m = δ ( k m) = 1, k = m 0, k m x (t) = n =1 x (t),y(t) = x n = x (t),ψ n (t) = x n ψ n (t) b a b a x (t) y * (t) dt x (t) ψ n (t) dt x (t) 2 = x (t),x (t) 1 2 = x(t) 2 dt a b 3 Περιγραφή των σηµάτων στο πεδίο του χρόνου και της συχνότητας Υπάρχουν δύο τρόποι περιγραφής ενός αιτιοκρατικού σήµατος. Ο πρώτος τρόπος περιγραφής πραγµατοποιείται στο πεδίο του χρόνου, ενώ ο δεύτερος στο πεδίο της συχνότητας. Ο πρώτος τρόπος είναι άµεσα αντιληπτός και η χρονική µεταβολή του σήµατος δίδεται είτε µέσω αναλυτικής σχέσης (µαθηµατικός τύπος) είτε µε γραφική παράσταση. 4 2
3 Η περιγραφή των σηµάτων στο πεδίο της συχνότητας περιλαµβάνει, κατά περίπτωση, τη χρήση της σειρά ή του µετασχηµατισµού Fourier µέσω των οποίων ένα σήµα περιγράφεται από το φασµατικό του περιεχόµενο. Η συνάρτηση η οποία περιέχει τη φασµατική περιγραφή ενός σήµατος ονοµάζεται φάσµα του σήµατος. Πλάτος Φάση Συχνότητα Συχνότητα Το φάσµα του σήµατος x(t) 5 Χρόνος Συχνότητα Πλάτος Πλάτος Πλάτος Συχνότητα Χρόνος Συχνότητα Χρόνος 6 3
4 Το σύνολο των ορθογωνίων αναλογικών εκθετικών περιοδικών σηµάτων Για τα εκθετικά σήµατα,,, παρατηρούµε Τα εκθετικά σήµατα,,, σε οποιοδήποτε πεπερασµένο χρονικά διάστηµα, διάρκειας, καλούνται αρµονικά συσχετιζόµενα εκθετικά σήµατα και σχηµατίζουν ένα ορθογώνιο σύνολο. Εποµένως κάθε σήµα x(t) στο χρονικό αυτό διάστηµα εκφράζεται x (t) = k = a k e j kω 0 t 7 Το περιοδικό σήµα x(t) µπορεί να περιγραφεί από την περίοδό του T 0 (ή από τη θεµελιώδη συχνότητα f 0 ) και από την ακολουθία των µιγαδικών αριθµών {α k }, (των συντελεστών του αναπτύγµατος ), δηλαδή, να περιγραφεί στο πεδίο συχνότητας. Για να περιγράψουµε το x(t) αρκεί να προδιορίσουµε ένα αριθµήσιµο σύνολο (ενγένει µιγαδικών) αριθµών. Αυτό οδηγεί σε σηµαντική µείωση της πολυπλοκότητας της περιγραφής του σήµατος x(t), αφού για να ορίσουµε το x(t) για κάθε χρονική στιγµή t, πρέπει να προσδιορίσουµε τις τιµές του σε ένα µη αριθµήσιµο σύνολο τιµών. 8 4
5 Έστω τώρα ένα σήµα x(t) στο διάστηµα [t 0, t 0 + T ], και ας υποθέσουµε ότι είναι δυνατόν να αναπτυχθεί σε άθροισµα εκθετικών στοιχειωδών σηµάτων, Ο υπολογισµός των συντελεστών α k γίνεται αν πολλαπλασιάσουµε και τα δύο µέλη της µε και ολοκληρώσουµε από t 0 έως t 0 + T, δηλαδή, αν υπολογίσουµε το εσωτερικό γινόµενο του x(t) µε το. = +a n 1 e j(n 1)ω 0 t e jnω 0 t + a n e jnω 0 t e jnω 0 t + a n +1 e j(n +1)ω 0 t e jnω 0 t + 9 ΑΝΑΠΤΥΓΜΑ ΣΕ ΣΕΙΡΑ FOURIER - ΣΕΙΡΑ FOURIER Εκθετική σειρά Fourier x t + ( ) = a k e jkω o t k = Εξίσωση σύνθεσης a k = 1 T t 0 +T t 0 x(t)e j kω 0 t dt Εξίσωση ανάλυσης 10 5
6 Η σειρά αποτελεί την εκθετική σειρά Fourier ή το ανάπτυγµα Fourier του σήµατος Οι µιγαδικοί συντελεστές καλούνται συντελεστές Fourier ή φασµατικές γραµµές του και ορίζουν το φάσµα του σήµατος Η σταθερά φάσµατος a 0 είναι η συνεχής ή η σταθερά συνιστώσα του Κάθε δηλώνει το φασµατικό περιεχόµενο του σήµατος. στη συχνότητα και ονοµάζεται αρµονική συνιστώσα 11 Το σύνολο των ορθογωνίων αναλογικών τριγωνοµετρικών περιοδικών σηµάτων. Για τα σήµατα, sin (kω 0 t) και cos (kω 0 t), παρατηρούµε ότι sin (kω 0 t),sin (mω 0 t) = T 2 δ ( k m) cos (kω 0 t),cos (mω 0 t) = T 2 δ ( k m) sin (kω 0 t),cos (mω 0 t) = 0, k, m Τα σήµατα, sin (kω 0 t) και cos (kω 0 t),, σε οποιοδήποτε πεπερασµένο χρονικά διάστηµα, διάρκειας. καλούνται αρµονικά συσχετιζόµενα σήµατα και σχηµατίζουν ένα ορθογώνιο σύνολο. Εποµένως κάθε σήµα x(t) στο χρονικό αυτό διάστηµα εκφράζεται x(t) = a 0 + b k cos( kω 0 t) + c k sin kω 0 t k =1 k =1 ( ) 12 6
7 Τριγωνοµετρική σειρά Fourier x(t) = a 0 + b k cos( kω 0 t) + c k sin kω 0 t k =1 k =1 ( ) Η Μέση Τιµή του σήµατος b k = 2 T t 0 +T x(t) cos( kω 0 t ) dt, k =1, 2, t 0 c k = 2 T t 0 +T x(t) sin( kω 0 t ) dt, k =1, 2, t 0 13 Αν χρησιµοποιήσουµε την γνωστή τριγωνοµετρική ταυτότητα b cos ϕ + c sin ϕ = A cos (ϕ+θ) όπου και Γενικά x(t) = A 0 + k =1 A k = b 2 2 k +c k και A k cos( kω 0 t +θ k ) tanθ k = c k b k 14 7
8 Σειρές Fourier µη περιοδικών σηµάτων a k = 1 T t 0 +T t 0 x(t)e j kω 0 t dt Ορίσαµε το ανάπτυγµα σε σειρά Fourier ενός µη περιοδικού σήµατος σ ένα διάστηµα [t 0, t 0 +T]. Έξω από το διάστηµα αυτό η σειρά Fourier δεν συγκλίνει κατ ανάγκη στο σήµα x(t), δηλαδή, x(t) = a k e j kω 0 t, t 0 t t 0 + T k = 15 Σειρές Fourier περιοδικών σηµάτων a k = 1 T t 0 +T t 0 x(t)e j kω 0 t dt Σηµειώνουµε ότι όταν το σήµα είναι περιοδικό, η ολοκλήρωση στις εξισώσεις ανάλυσης µπορεί να γίνει σ ένα αυθαίρετο διάστηµα εύρους Τ 0. Ορίσαµε το ανάπτυγµα σε σειρά Fourier ενός περιοδικού σήµατος, x(t + T) = x(t), σ ένα διάστηµα [t 0, t 0 +T ]. Παρατηρούµε ότι η σειρά Fourier συγκλίνει στο σήµα x(t) για κάθε χρονική στιγµή t, δηλαδή, 16 8
9 Ύπαρξη σειράς Fourier Ικανή Συνθήκη: Σε κάθε περίοδο το σήµα x (t) να είναι απόλυτα ολοκληρώσιµο: Ικανή Συνθήκη: Το σήµα x (t) σε κάθε πεπερασµένο χρονικό διάστηµα είναι συνεχές ή να περιέχει πεπερασµένο αριθµό ασυνεχειών, κάθε µια απο τις οποίες να είναι πεπερασµένου ύψους. 18 9
10 3. Ικανή Συνθήκη: Το σήµα σε κάθε πεπερασµένο χρονικό διάστηµα να είναι φραγµένης κύµανσης, δηλαδή να υπάρχουν πεπερασµένος αριθµός µεγίστων και ελαχίστων στο διάστηµα. 19 Κατασκευή του σήµατος x(t) από αρµονικά συσχετιζόµενα συνηµίτονα. Φυσική σηµασία της εκθετικής σειράς Fourier
11 ή x( t) =1+ cos (2πt) cos (6πt) + 1 cos (10πt) 5 21 Σειρές Fourier Παρατηρούµε ότι τα πλάτη του τριγωνοµετρικού αναπτύγµατος A k είναι ίσα µε το διπλάσιο των αντιστοίχων συντελεστών του εκθετικού αναπτύγµατος a k
12 Παράδειγµα Να υπολογιστεί η µέση ισχύς κάθε όρου της εκθετικής σειράς Fourier Απάντηση 23 Ταυτότητα του Parseval Η ολική µέση ισχύς ενός περιοδικού σήµατος είναι ίση µε το άθροισµα των ισχύων όλων των όρων της εκθετικής σειράς Fourier, πράγµατι, Αν το σήµα είναι πραγµατικό λόγω της α k * = α -k έχουµε 24 12
13 Παράδειγµα Να υπολογιστεί η µέση ισχύς κάθε όρου της τριγωνοµετρικής σειράς Fourier Απάντηση 25 Παράδειγµα Να υπολογιστούν οι συντελεστές της εκθετικής σειράς Fourier για τα σήµατα: 26 13
14 Να υπολογιστούν οι συντελεστές της εκθετικής σειράς και της τριγωνοµετρικής σειράς Fourier για το περιοδικό ορθογώνιο σήµα 27 Περιβάλλουσα Η συνεχής συνιστώσα του φάσµατος είναι Η θεµελειώδης συχνότητα είναι Η απόσταση µεταξύ των φασµατικών γραµµών είναι Ο πρώτος µηδενισµός της περιβάλλουσας του φάσµατος γίνεται όταν Η συχνότητα του πρώτου µηδενισµού είναι 28 14
15 29 Φαινόµενο Gibbs Ας προσπαθήσουµε να προσεγγίσουµε το περιοδικό σήµα το πεπερασµένο άθροισµα από Το σφάλµα προσέγγισης είναι Εφαρµογή Για έχουµε x N ( ) ( t) = π cos ω t
16 x N ( ) ( t) = π cos ω t
17 Στα σηµεία ασυνεχείας του το ανάπτυγµα σε σειρά Fourier δίνει τη µέση τιµή του αριστερού και του δεξιού ορίου του σήµατος, δηλαδή, ( t) = 1 2 x t x N [ ( ) + x( t + )] 33 Ο Μετασχηµατισµός Fourier ή το φάσµα του x(t) ή Η συνάρτηση X(ω) αποτελεί την εξίσωση ανάλυσης και είναι ο Μετασχηµατισµός Fourier (ΜF) του σήµατος x(t). Ακριβέστερα, µετασχηµατισµός Fourier είναι ο κανόνας εύρεσης της X(ω) από την x(t). ή Η εξίσωση αποτελεί την εξίσωση σύνθεσης και ανασυνθέτει το σήµα στο πεδίο του χρόνου 34 17
18 Στο µετασχηµατισµό Fourier, η εξίσωση ανάλυσης αναλύει ένα µη περιοδικό σήµα x(t) στο διάστηµα περιοδικών εκθετικών σηµάτων. σ ένα συνεχές φάσµα X(ω) είναι το φασµατικό περιεχόµενο στο απειροστό διάστηµα συχνοτήτων [ω, ω + dω]. Η συνεισφορά των συχνοτήτων [ω, ω + dω] έχει πλάτος Ο µετασχηµατισµός Fourier X(ω) είναι η φασµατική πυκνότητα πλάτους. Όταν x(t) είναι σήµα τάσης, τότε ο X(ω) έχει µονάδα µέτρησης Volts ανά µονάδα συχνότητας
19 Να υπολογιστεί ο µετασχηµατισµός Fourier του τετραγωνικού παλµού διάρκειας x (t) = 1, t < T 1 0, otherwise Απάντηση 37 Να υπολογιστεί ο µετασχηµατισµός Fourier του αιτιατού εκθετικού σήµατος x(t) = e at u(t) a R Απάντηση 38 19
20 Ο µετασχηµατισµός Fourier παρέχει τη δυνατότητα µετάβασης από το πεδίο του χρόνου στο πεδίο συχνότητας. Με το µετασχηµατισµό Fourier αναλύουµε µη περιοδικά σήµατα µε εκθετικά σήµατα και µε το τρόπο αυτό αποκαλύπτεται το φασµατικό τους περιεχόµενο. Το αιτιατό εκθετικό σήµα έχει µετασχηµατισµό Fourier Το αιτιατό εκθετικό σήµα x(t). Το πλάτος του MF του σήµατος x(t). H φάση του MF του σήµατος x(t). 39 Να υπολογιστεί το σήµα, του οποίου ο µετασχηµατισµός Fourier είναι, παράθυρο συχνοτήτων µε πλάτος W, δηλαδή, Απάντηση ( ) = 1, ω < W X ω 0, otherwise 40 20
21 Συνάρτηση Δειγµατοληψίας sinc( x) 41 Ιδιότητες του µετασχηµατισµού Fourier x (t) F X( ω) F{ x (t)} = X ( ω) Συζυγία Γραµµικότητα 42 21
22 Άρτιο-περιττό µέρος σήµατος. Πραγµατικόφανταστικό µέρος φάσµατος Ολίσθηση στο χρόνο για κάθε πραγµατικό αριθµό 43 Ολίσθηση συχνότητας Η ιδιότητα αυτή αποτελεί τη βάση της διαµόρφωσης που χρησιµοποιείται ευρέως στις τηλεπικοινωνίες
23 Εφαρµογή: Αν το σήµα µηνύµατος m(t) έχει φάσµα M(ω) το µέτρο του οποίου είναι Το φάσµα του µηνύµατος για ένα αυθαίρετο σήµα m(t). Να βρεθεί το φάσµα του σήµατος z(t) = x(t) cos(ω 0 t) Το φάσµα του διαµορφωµένου σήµατος. 45 Αλλαγή κλίµακας στο χρόνο και τη συχνότητα - Ανάκλαση x (at) F 1 a X ( ω a ) και 46 23
24 Ανάκλασης Θεώρηµα της Συνέλιξης 47 Θεώρηµα του Parseval 48 24
25 Παραγώγιση α) στο πεδίο του χρόνου β) στο πεδίο συχνότητας Ολοκλήρωση Συµµετρίες για πραγµατικά σήµατα 49 Δυϊσµός Το σήµα έχει µετασχηµατισµό Fourier: 50 25
26 Να υπολογιστεί ο µετασχηµατισµός Fourier του τριγωνικού παλµού διάρκειας 2T 1. Ο τριγωνικός παλµός διάρκειας 2T 1. Η πρώτη παράγωγος του τριγωνικού παλµού διάρκειας 2T 1. Η δεύτερη παράγωγος του τριγωνικού παλµού διάρκειας 2T Να βρεθεί ο µετασχηµατισµός Fourier του σήµατος Το σήµα x(t) γράφεται και ως εποµένως ο µετασχηµατισµός Fourier του σήµατος είναι Ο µετασχηµατισµός Fourier του σήµατος x(t) = cos (ω 0 t)
27 Να βρεθεί ο µετασχηµατισµός Fourier του σήµατος Το σήµα x(t) γράφεται και ως εποµένως ο µετασχηµατισµός Fourier του σήµατος είναι Διακριτό τµήµα του φάσµατος Συνεχές τµήµα του φάσµατος 53 Μετασχηµατισµός Fourier περιοδικών σηµάτων Όπως γνωρίζουµε ένα περιοδικό σήµα αναπτύσσεται σε σειρά Fourier Παρατηρούµε ότι ο µετασχηµατισµός Fourier επεκτείνεται και στα περιοδικά σήµατα
28 Ο µετασχηµατισµός Fourier για το περιοδικό ορθογώνιο κύµα Το φάσµα ενός περιοδικού σήµατος µε περίοδο T 0 αποτελείται από συναρτήσεις δέλτα οµοιόµορφα κατανεµηµένες σε απόσταση ω 0 = 2π / Τ 0 µε πλάτος 2π φορές το αντίστοιχο πλάτος του συντελεστή της εκθετικής σειράς Fourier του σήµατος. 55 Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης Η συνάρτηση αυτοσυσχέτισης R x (τ) εξαρτάται από το πλάτος του σήµατος x(t). Ορίζεται ο συντελεστής αυτοσυσχέτισης ο οποίος είναι ανεξάρτητος από το πλάτος του σήµατος
29 Ιδιότητες της συνάρτησης αυτοσυσχέτισης Η ενέργεια, E x, σήµατος, x(t), είναι ίση µε τη τιµή της συνάρτησης αυτοσυσχέτισης του σήµατος, R x (τ), για τ = 0. Ο MF της συνάρτησης αυτοσυσχέτισης ενός σήµατος ισούται µε τη φασµατική πυκνότητα ενέργειας του σήµατος. Η συνάρτηση αυτοσυσχέτισης της εξόδου ΓΧΑ συστήµατος ισούται µε τη συνέλιξη της συνάρτησης αυτοσυσχέτισης της εισόδου µε τη συνάρτηση αυτοσυσχέτισης της κρουστικής απόκρισης του συστήµατος Σχέσεις µεταξύ των συναρτήσεων εισόδου-εξόδου ενός ΓΧΑ συστήµατος. 57 Ιδιότητες της µέσης χρονικής συνάρτησης αυτοσυσχέτισης Η µέση ισχύς, P x, σήµατος είναι αυτοσυσχέτισης, R x (τ), για τ = 0. είναι ίση µε τη µέση χρονική συνάρτηση Ο µετασχηµατισµός Fourier της µέσης χρονικής συνάρτησης αυτοσυσχέτισης, ισούται µε τη φασµατική πυκνότητα ισχύος του σήµατος. Η συνάρτηση S x (ω) περιγράφει τον τρόπο µε τον οποίο κατανέµεται η ισχύς του σήµατος στο χώρο των συχνοτήτων. Σχέσεις µεταξύ των συναρτήσεων εισόδου-εξόδου ενός ΓΧΑ συστήµατος
30 Αρχή λειτουργίας Radar Με τη βοήθεια ενός radar είναι δυνατή η µέτρηση της απόστασης στην οποία βρίσκεται ένας στόχος (π.χ. αεροπλάνο). Το σήµα εκποµπής αποτελείται από ορθογώνιους παλµούς διάρκειας T, οι οποίοι επαναλαµβάνονται µε περίοδο Τ 0. Υποθέτουµε ότι ο στόχος βρίσκεται σε απόσταση d. Το χρονικό διάστηµα Δτ από τη στιγµή εκποµπής του παλµού µέχρι τη στιγµή που φτάνει η ηχώ του στόχου είναι όπου c είναι η ταχύτητα του φωτός. Η διάταξη προσδιορίζει το χρονικό διάστηµα Δτ, και στη συνέχεια προσδιορίζει την απόσταση d. Ο παλµός εκποµπής x t (t), και ο παλµός λήψης r(t), σε ένα ιδανικό σύστηµα Radar. 59 Η ηχώ του σήµατος εκποµπής από το στόχο διαβρώνεται από θόρυβο. Εποµένως ο προσδιορισµός του Δτ πρακτικά είναι αδύνατο να προσδιορισθεί απευθείας από το σήµα εκποµπής και από την ηχώ του. Ο παλµός εκποµπής x t (t), και ο παλµός λήψης r(t), σε ένα πραγµατικό σύστηµα Radar. Το σήµα ηχούς, r(t) εφαρµόζεται στη είσοδο ενός ΓΧΑ συστήµατος το οποίο ονοµάζεται προσαρµοσµένο φίλτρο (matched filter). Η κρουστική απόκριση του προσαρµοσµένου φίλτρου είναι η ανάκλαση του σήµατος εκποµπής x t (t), δηλαδή, Προσαρµοσµένο φίλτρο στο σήµα 60 30
31 Η έξοδος του προσαρµοσµένου φίλτρου y(t), είναι η συνέλιξη του σήµατος ηχούς r (t), µε την κρουστική απόκριση h(t), δηλαδή, y(t) = r(t) * h(t). Ο παλµός εκποµπής x t (t), και ο παλµός λήψης r(t), και η έξοδος του προσαρµοσµένου σήµατος y(t), σε ένα πραγµατικό σύστηµα Radar. Το χρονικό διάστηµα Δτ είναι ίσο µε τη χρονική στιγµή κατά την οποία η έξοδος του προσαρµοσµένου φίλτρου αποκτά τη µέγιστη τιµή της. 61 Η διαµόρφωση και η αποδιαµόρφωση στη µετάδοση σήµατος. Η διαµόρφωση χρησιµοποιεί το σήµα πληροφορίας m(t) για να µεταβάλλει το πλάτος ενός ηµιτονοειδούς φέροντος cos(ω c t). Κανάλι Χαµηλοπερατό Φίλτρο (α) Διαµορφωτής (β) Σύγχρονη (ή σύµφωνη) αποδιαµόρφωση Το διαµορφωµένο σήµα είναι Το λαµβανόµενο σήµα απουσία θορύβου µέσω ιδανικού καναλιού είναι Το αποδιαµορφωµένο σήµα είναι Το σήµα αυτό διέρχεται µέσα από ιδανικό χαµηλοπερατό φίλτρο µε εύρος-ζώνης W. Η έξοδος του φίλτρου είναι 62 31
32 Μελέτη της διαµόρφωσης και αποδιαµόρφωσης στο πεδίο συχνότητας Το φάσµα του µηνύµατος για ένα αυθαίρετο m(t) Το φάσµα U( f ) του διαµορφωµένου σήµατος απόκριση φίλτρου διέλευσης χαµηλ. συχν. Το φάσµα Ζ( f ) του σήµατος στην είσοδο του φίλτρου 63 32
ΑΝΑΠΤΥΓΜA -ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA -ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουμε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήματος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ OURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουμε τον τρόπο ανάπτυξης σε σειρά ourir ενός περιοδικού αναλογικού σήματος. Ορίσουμε το μετασχηματισμό ourir ενός μη περιοδικού
Συναρτήσεις Συσχέτισης
Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =
Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού
Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier
ΑΝΑΠΤΥΓΜA -ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA -ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόο ανάτυξης σε σειρά Fourir ενός εριοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourir ενός µη εριοδικού αναλογικού
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 2: Ανάλυση Fourier και Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Ανάλυση Fourier 2 Ανάλυση Fourier 1. Ορισμός του Μετασχηματισμού Fourier
Εισαγωγή στις Τηλεπικοινωνίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourir μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης. Υπολογίζουμε εύκολα την απόκριση
Τι είναι σήµα; Σεραφείµ Καραµπογιάς
Τι είναι σήµα; Σεραφείµ Καραµπογιάς Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές Παραδείγµατα: Σήµα οµιλίας Σήµα εικόνας
Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Αναπαράσταση Σημάτων και Συστημάτων στο πεδίο της συχνότητας + Περιεχόμενα n Εισαγωγή n Ανάλυση Fourier n Μετασχηματισμός
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ορθογωνιότητα Διανυσμάτων και Σημάτων Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ
3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ OURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Στη πράξη πολλές φορές χρειάζεται να προσδιορίσουμε την έξοδο ενός συστήματος, όταν αυτό διεγείρεται από ένα σήμα. Στο προηγούμενο κεφάλαιο,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Σκοπός του µαθήµατος Η Συστηµατική Περιγραφή: των Σηµάτων και των Συστηµάτων Τι είναι Σήµα; Ένα πρότυπο µεταβολών µιας ποσότητας που µπορεί να: επεξεργαστεί αποθηκευθεί
Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες
Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου
ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών
Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»
Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα
x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Εστω το σήµα xt
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z. χρόνου και εξηγήσουµε έννοιες όπως περιοχή σύγκλισης, πόλος και µηδενικό.
7. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε τον µετασχηµατισµό και τον µονόπλευρο µετασχηµατισµό και να περιγράψουµε τις βασικές διαφορές τους. περιγράψουµε
HMY 220: Σήματα και Συστήματα Ι
HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourir µιας συνάρτησης χρίς να καταφεύγουµε στην εξίσση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση συχνότητας
ΑΝΑΠΤΥΓΜΑ ΣΕ ΣΕΙΡΑ FOURIER - ΣΕΙΡΑ FOURIER
ΑΝΑΠΤΥΓΜΑ ΣΕ ΣΕΙΡΑ FOURIER - ΣΕΙΡΑ FOURIER Για το σύνολο των ορθογωνίων αναλογικών εκθετικών περιοδικών σημάτων, για =, ±, ±, ±3, παρατηρούμε ότι m, T m d T,, m m T m Τα εκθετικά σήματα,, =, ±, ±,...,
Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις
Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at
1. Τριγωνοµετρικές ταυτότητες.
. Τριγωνοµετρικές ταυτότητες. co( y co( co( y i( i( y i( y i( co( y co( i( y ± m (. ± ± (. π m (. 3 co ± i( i ± π ± co( (. co( co ( i ( (. 5 i( i( co( (. 6 j j co( + (. 7 j j j i ( (. 8 ( ( y ( y + ( +
Επικοινωνίες στη Ναυτιλία
Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,
2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα
Σειρές Fourier. Σειρές Fourier. Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Μία συνάρτηση f() είναι περιοδική με περίοδο όταν ισχύει f(+)=f(). Η ελάχιστη δυνατή περίοδος λέγεται και θεμελιώδης
. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Παράδειγµα ενός ηλεκτρικού συστήµατος
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός aplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος A R B i( ) i
Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier 2 Αθανάσιος
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει
y[n] ay[n 1] = x[n] + βx[n 1] (6)
Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Περιγραφή Σηµάτων Διακριτού Χρόνου Η Ακολουθία
x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν
x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Ο μετασχηματισμός αντιστοιχεί
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Επαναληπτικά Θέµατα. Βρείτε το
P x = X k 2 (2) = = p = 78% (5)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 08-9 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εξέταση Προόδου - Λύσεις Θέµα - Βαθµός : 5 Ενα πραγµατικό
x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία
Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής . Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος 2 Γραφικός
Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient
Περιεχόµενα διαλέξεων 2ης εβδοµάδας
Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού
DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform
DFT ιακριτός µετ/σµός Fourier Discrete Fourier Transform Νοέµβριος 5 ΨΕΣ Ορισµοί O διακριτός µετασχηµατισµός Fourier DFT, αναφέρεται σε µία πεπερασµένου µήκους ακολουθία σηµείων και ορίζεται ως εξής: X(
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας Συστήματα Επικοινωνιών Ι Τηλεπικοινωνιακά Σήματα και Συστήματα + Περιεχόμενα 2 n Εισαγωγή n Εφαρμογές συστημάτων επικοινωνίας n Μοντέλο τηλεπικοινωνιακού συστήματος n Σήματα
Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I
x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0
e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων
y(t) = x(t) + e x(2 t)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα
Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα
20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier
ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός
2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier
2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή
Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT
Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο µετασχηµατισµός είναι ο αντίστοιχος Laplace για σήµατα διακριτού χρόνου και αποτελεί γενίκευση του µετασχηµατισµού Fourier διακριτού χρόνου. Ο µετασχηµατισµός αντιστοιχεί