Υπολογιστικά Συστήματα Λογική Σχεδίαση Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας
|
|
- Ξενοφών Αλεξόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Υπολογιστικά Συστήματα Λογική Σχεδίαση Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας ΔΠΜΣ «Τεχνο-Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών
2 Ιστοσελίδα Μαθήματος 2 επικοινωνίας: eadam@cn.ntua.gr cdemest@cn.ntua.gr
3 Προτεινόμενη Βιβλιογραφία 3 Γ. Παπακωνσταντίνου, Π. Τσανάκα, Γ. Φραγκάκη, Αρχιτεκτονική Υπολογιστών, εκδ. Συμμετρία
4 Πού μείναμε στο προηγούμενο μάθημα; 4 Οι λογικές συναρτήσεις μπορούν να πραγματοποιηθούν με ηλεκτρονικά λογικά κυκλώματα Ηλεκτρονικά λογικά κυκλώματα που υλοποιούν τις βασικές πράξεις της άλγεβρας Boole:
5 Λογικά Κυκλώματα 5 Γενικά, υπάρχουν 2 κύριες κατηγορίες λογικών κυκλωμάτων Συνδυαστικά κυκλώματα: Η έξοδος z είναι συνάρτηση μόνο της κατάστασης της εισόδου x Ακολουθιακά κυκλώματα: Η έξοδος z δεν είναι συνάρτηση μόνο της κατάστασης της εισόδου x αλλά και της κατάστασης y που βρισκόταν το ίδιο το κύκλωμα πριν την εφαρμογή της εισόδου
6 Λογικά Κυκλώματα 6 Συνδυαστικό Κύκλωμα x 1 x 2 x n Συνδυαστικό... Κύκλωμα... Ακολουθιακό Κύκλωμα z 1 z 2 z m z=f(x) x Συνδυαστικό Κύκλωμα z=f(x, y) Στοιχεία Μνήμης
7 Συνδυαστικά Κυκλώματα Σχεδίαση με στοιχεία SSI 7 Σχεδίαση χρησιμοποιώντας ως βασικά δομικά στοιχεία τις πύλες Κατάλληλη για λίγες σχετικά εισόδους (<10) Διαδικασία: 1. Κατασκευή του πίνακα αληθείας 2. Προσδιορισμός της λογικής συνάρτησης από τον πίνακα αληθείας 3. Απλοποίηση της λογικής συνάρτησης (π.χ. με χρήση χάρτη Karnaugh) 4. Σχεδίαση του λογικού διαγράμματος βάσει της απλοποιημένης λογικής συνάρτησης, με χρήση πυλών AND, OR, NAND κ.λπ. 5. Πραγματοποίηση (κατασκευή) του λογικού διαγράμματος με τη χρήση ολοκληρωμένων κυκλωμάτων
8 Παράδειγμα 1: Δυαδικοί Αθροιστές 8 Ο ημιαθροιστής εκτελεί την πρόσθεση δύο δυαδικών ψηφίων Ημιαθροιστής (Half Adder) A B S C S=A B+AB C=AB ή:
9 Παράδειγμα 1: Δυαδικοί Αθροιστές 9 Ο πλήρης αθροιστής εκτελεί την πρόσθεση δύο δυαδικών ψηφίων και ενός κρατούμενου (ουσιαστικά, τριών δυαδικών ψηφίων) Πλήρης αθροιστής (Full Adder) A B C in S C out S=A B C in +A BC in +AB C in +ABC in C out =A BC in +AB C in +ABC in +ABC in =AB+AC in +BC in
10 Παράδειγμα 1: Δυαδικοί Αθροιστές 10 Ο πλήρης αθροιστής εκτελεί την πρόσθεση δύο δυαδικών ψηφίων και ενός κρατούμενου (ουσιαστικά δηλ. τριών δυαδικών ψηφίων)
11 Παράδειγμα 1: Δυαδικοί Αθροιστές 11 Ο πλήρης παράλληλος αθροιστής εκτελεί την πρόσθεση δύο δυαδικών αριθμών (των n bits ο καθένας), χρησιμοποιώντας n πλήρεις αθροιστές (ή: n-1 πλήρεις αθροιστές και 1 ημιαθροιστή) An S=0, τότε το παρακάτω κύκλωμα λειτουργεί ως πλήρης παράλληλος αθροιστής 4 bits, ενώ, αν S=1, τότε λειτουργεί ως πλήρης παράλληλος αφαιρέτης 4 bits
12 Παράδειγμα 2: Αποκωδικοποιητές/Κωδικοποιητές 12 Ο αποκωδικοποιητής δέχεται στην είσοδό του μια δυαδική πληροφορία των n bits και την μετατρέπει σε m 2 n γραμμές εξόδου, εκ των οποίων μόνο μία είναι ενεργοποιημένη Αποκωδικοποιητής 3x8 C B A y 0 y 1 y 2 y 3 y 4 y 5 y 6 y
13 Παράδειγμα 2: Αποκωδικοποιητές/Κωδικοποιητές 13 Αποκωδικοποιητής 3x8
14 Παράδειγμα 2: Αποκωδικοποιητές/Κωδικοποιητές 14 Ο κωδικοποιητής, αντίθετα, δέχεται στην είσοδό του m 2 n γραμμές και δίνει στην έξοδό του τον αντίστοιχο δυαδικό κώδικα (n bits) Σε έναν κωδικοποιητή, ανάλογα με τον τύπο του, μπορεί να είναι ενεργοποιημένες περισσότερες από μία είσοδοί του ή μόνο μία Παράδειγμα: Κωδικοποιητής για 7-segment ψηφιακό ενδείκτη Τα 7 τμήματα του ενδείκτη:
15 Παράδειγμα 2: Αποκωδικοποιητές/Κωδικοποιητές 15 a/ a Κωδικοποιητής για 7-segment ψηφιακό ενδείκτη (Πίνακας αληθείας)
16 Παράδειγμα 3: Πολυπλέκτες/Αποπλέκτες 16 Ο πολυπλέκτης έχει μία έξοδο Ζ, στην οποία μεταφέρεται η κατάσταση μιας από τις γραμμές εισόδου Χ i, ανάλογα με τις τιμές των σημάτων επιλογής S j Πολυπλέκτης (Mux) 4x1 S 1 S 0 X 3 X 2 X 1 X 0 Z 0 0 X X X X X X X X 0 X X X 1 X X 0 X X X 1 X X X X X X X X 1 Z=S 1 S 0 X 0 +S 1 S 0 X 1 +S 1 S 0 X 2 +S 1 S 0 X 3
17 Παράδειγμα 3: Πολυπλέκτες/Αποπλέκτες 17 Ο αποπλέκτης (Demux) επιτελεί την αντίστροφη λειτουργία, δηλ. διαθέτει μία είσοδο πληροφορίας Χ, σήματα επιλογής S j, και πολλαπλές εξόδους Z i, σε μία ακριβώς εκ των οποίων μεταφέρεται η τιμή της εισόδου Χ (όλες οι υπόλοιποι έξοδοι τίθενται στην τιμή «0»), ανάλογα με τις τιμές των σημάτων επιλογής S j Χρησιμοποιείται όταν ένα λογικό κύκλωμα πρέπει να στείλει ένα σήμα σε μία από πολλές συσκευές Διαφορά με τον αποκωδικοποιητή: Ο αποκωδικοποιητής χρησιμοποιείται για να επιλέξει μία από πολλές συσκευές
18 Παράδειγμα 4: Διάδρομοι 18 Ένας τρόπος για τη διακίνηση πληροφοριών προερχόμενων από πολλές συσκευές σε μια κοινή γραμμή μεταφοράς, δηλ. σε έναν κοινό διάδρομο, είναι η χρησιμοποίηση πολυπλέκτη Ένας άλλος τρόπος είναι η χρησιμοποίηση ειδικού κυκλώματος οδήγησης του διαδρόμου (bus driver) Ένα τέτοιο κύκλωμα ονομάζεται στοιχείο τριών καταστάσεων (tristate element), επειδή η έξοδός του μπορεί να παρουσιάζει και μια τρίτη κατάσταση, πέραν των καθιερωμένων «0» ή «1», αυτήν της υψηλής αντίστασης (ανοιχτό κύκλωμα) Είσοδος (DI) Έξοδος (DΟ) Αν S=1, τότε DO=DI Αν S=0, τότε «ανοιχτό κύκλωμα» Γραμμή Ελέγχου (S) Σημ.: Διάδρομοι μπορούν να κατασκευασθούν χρησιμοποιώντας πολυπλέκτες (mux) αντί στοιχείων τριών καταστάσεων
19 Παράδειγμα 4: Διάδρομοι 19 Παράδειγμα κυκλώματος αμφίδρομης οδήγησης Ψηφίδα 8216 της Intel
20 Συνδυαστικά Κυκλώματα Σχεδίαση με στοιχεία SSI, MSI και LSI 20 Όλα τα συνδυαστικά κυκλώματα που εξετάστηκαν πιο πάνω προσφέρονται (εμπορικά) σε μορφή ολοκληρωμένων κυκλωμάτων μιας ψηφίδας MSI Γενική πρακτική σχεδίασης λογικών κυκλωμάτων: Χρησιμοποίηση όσο το δυνατόν περισσότερων στοιχείων LSI (βλ. παρακάτω π.χ. ROM, PLA) Αν δεν καλύπτονται όλες οι ανάγκες της σχεδίασης, συμπλήρωση με στοιχεία MSI (αθροιστές, κωδικοποιητές, πολυπλέκτες, κ.λπ., σε μορφή ψηφίδων MSI) Αν και πάλι δεν καλύπτονται πλήρως οι ανάγκες, συμπλήρωση και με στοιχεία SSI (π.χ. μεμονωμένες πύλες) Για παράδειγμα, η υλοποίηση μιας οποιασδήποτε λογικής συνάρτησης n μεταβλητών μπορεί να γίνει χωρίς στοιχεία LSI, αλλά με έναν αποκωδικοποιητή nx2 n σε μορφή μιας ψηφίδας MSI και με μία πύλη OR σε μορφή μιας ψηφίδας SSI
21 Συνδυαστικά Κυκλώματα Σχεδίαση με στοιχεία LSI 21 Η σχεδίαση με στοιχεία LSI αναφέρεται και ως σχεδίαση προγραμματιζόμενης λογικής Δύο δημοφιλείς τέτοιες μεθοδολογίες σχεδίασης: Σχεδίαση με ROM (Read Only Memory) Σχεδίαση με προγραμματιζόμενους λογικούς πίνακες (PLA)
22 Σχεδίαση με ROM 22 Η πραγματοποίηση ενός συνδυαστικού κυκλώματος με ROM γίνεται εάν αποθηκευτεί στη ROM ο πίνακας αληθείας του προβλήματος ή η λογική συνάρτησή του εκφρασμένη σε άθροισμα ελαχίστων όρων Για ένα κύκλωμα με n εισόδους και m εξόδους, χρειαζόμαστε μία ROM μεγέθους 2 n xm bits Τυπικές εφαρμογές: μετατροπή ενός κώδικα σε άλλον γεννήτριες χαρακτήρων για την απεικόνισή τους πίνακες απευθείας προσπέλασης (look-up tables) Προγραμματισμός των ROM από την προμηθεύτρια εταιρεία ή από τον ίδιο τον πελάτη (οπότε καλούνται PROM) με τη βοήθεια ειδικών συσκευών x 1 x 2 x n ROM z 1 z 2 z m
23 Σχεδίαση με PLA 23 Η μέθοδος σχεδίασης με τη χρήση προγραμματιζόμενου λογικού πίνακα (PLA) δίνει μεγαλύτερη ευελιξία και έχει μικρότερο κόστος από ό,τι η σχεδίαση με ROM Η σχεδίαση με ROM μειονεκτεί στο ότι απαιτεί την αποθήκευση όλων των ελαχίστων όρων μιας συνάρτησης, ακόμα και των αδιάφορων Μια PLA αποτελείται από δύο επίπεδα (planes): Επίπεδο AND, που παράγει τα λογικά γινόμενα της συνάρτησης Επίπεδο OR, που παράγει τα λογικά αθροίσματα ορισμένων ή όλων των λογικών γινομένων του πρώτου επιπέδου Προγραμματισμός των PLA από την προμηθεύτρια εταιρεία ή από τον ίδιο τον πελάτη (οπότε καλούνται FPGA ή πιο σπάνια FPLA) με τη βοήθεια ειδικών συσκευών
24 Σχεδίαση με PLA 24 Παράδειγμα σχεδίασης με PLA x 2 x 1 x 0 z 1 z
25 Πρόσφατες Εφαρμογές των FPGA 25 Επιτάχυνση μέσω υλικού (H/W acceleration) υπολογισμών που μπορούν να γίνουν παράλληλα Πρόσφατα παραδείγματα χρήσης FPGA Computer rigs for crypto-currency mining Data analysis performed by Wall Street firms Big-data web companies (Microsoft, Google, ) in Data Centers for accelerating web searches
26 Άσκηση (1/3) 26 Η εταιρεία σας καλείται να κατασκευάσει ένα λογικό κύκλωμα αυτοματισμού που να ικανοποιεί το διπλανό πίνακα αληθείας. Ερ.: Προσδιορίστε τη λογική συνάρτηση που αντιστοιχεί σε αυτόν τον πίνακα αληθείας (χωρίς απλοποίηση). Α Β C D Z
27 Άσκηση (2/3) 27 Η εταιρεία σας μπορεί να προμηθευτεί ψηφίδες ολοκληρωμένων κυκλωμάτων (IC) μόνο των ακόλουθων τύπων: IC AND που ενσωματώνει 4 πύλες AND (με 2 εισόδους η καθεμιά) και έχει κόστος 0.5 /ψηφίδα IC OR που ενσωματώνει 4 πύλες OR (με 2 εισόδους η καθεμιά) και έχει κόστος 1 /ψηφίδα IC NOT που ενσωματώνει 6 πύλες NOT και έχει κόστος 1 /ψηφίδα Το αρχικό εφάπαξ κόστος για την κατασκευή ενός λογικού κυκλώματος είναι 2 ανά λογικό κύκλωμα. Επίσης, το κόστος από την προσθήκη κάθε ψηφίδας αυξάνει κατά 0.5 /ψηφίδα λόγω αύξησης της συνολικής επιφάνειας του λογικού κυκλώματος. Ο μηχανικός που έχετε υπό την επίβλεψή σας έχει υπολογίσει το κόστος υλικών για την κατασκευή κάθε λογικού κυκλώματος ως εξής: Αρχικό κόστος: 2 Κόστος λόγω IC AND : 8ψηφίδες * 0.5 /ψηφίδα = 4 Κόστος λόγω IC OR : 3ψηφίδες * 1 /ψηφίδα = 3 Κόστος λόγω IC NOT : 1ψηφίδα * 1 /ψηφίδα = 1 Κόστος λόγω αύξησης επιφάνειας: 12 * 0.5 = 6 Συνολικό κόστος ανά λογικό κύκλωμα: 16 Ερ.: Είναι σωστός ο συλλογισμός του υφισταμένου σας; Υπάρχει πιο αποδοτικός/οικονομικός τρόπος υλοποίησης και, αν ναι, ποιος είναι αυτός; Ερ.: Αν το κριτήριό σας ήταν μόνο το οικονομικό κόστος, θα επιλέγατε να υλοποιηθεί το λογικό κύκλωμα με FPGA; Σημειώνεται ότι το φθηνότερο FPGA που μπορείτε να προμηθευτείτε έχει κόστος 15.
28 Άσκηση (3/3) 28 Z=A+B D Χρειάζεται 1 ψηφίδα από κάθε τύπο, άρα συνολικό κόστος: 2 (αρχικό) (ψηφίδες) (λόγω αύξησης επιφάνειας) = 6 CD ΑΒ
29 Ακολουθιακά Κυκλώματα 29 Διακρίνονται σε δύο κυρίως κατηγορίες σύγχρονα, στα οποία η εκτέλεση των διαφόρων λειτουργιών γίνεται σε καθορισμένες χρονικές στιγμές με τη βοήθεια ενός ρολογιού (clock) n η εφαρμογή τετραγωνικού παλμού (σταθερής συχνότητας) σε κατάλληλη είσοδο του σύγχρονου κυκλώματος διεγείρει το κύκλωμα αυτό (ή με το θετικό ή με το αρνητικό μέτωπό του), δηλ. αλλάζει την κατάστασή του ασύγχρονα, στα οποία οι διάφορες αλλαγές κατάστασης δε γίνονται σε καθορισμένες χρονικές στιγμές (δεν υπάρχει ρολόι) Το θετικό και το αρνητικό μέτωπο ενός τετραγωνικού παλμού. Αν t 1 =t 2, ο παλμός καλείται συμμετρικός. Η συχνότητα του παλμού είναι: 1 (t 1 +t 2 ) και μετριέται σε Hertz (Σύμβολο Hz. Ισχύει: Hz=sec -1 ) f= Θετικό μέτωπο Αρνητικό μέτωπο
30 Ακολουθιακά Κυκλώματα Flip-Flops 30 Τα flip-flops (F/F) είναι δικατάστατα στοιχεία μνήμης Υπάρχουν διαφόρων τύπων F/F Κάθε F/F έχει δύο εξόδους, την Q και το συμπλήρωμά της Q n είναι η τρέχουσα κατάσταση του F/F και Q n+1 η επόμενη, δηλ. μετά την εφαρμογή του επόμενου ωρολογιακού παλμού CP Για το J/K F/F έχουμε: Αν J=K=0, τότε Q n+1 =Q n Αν J=K=1, τότε Q n+1 =Q n Αν J K, τότε Q n+1 =J Γενικά: Q n+1 =JQ n +K Q n
31 Ακολουθιακά Κυκλώματα Flip-Flops 31 Η πραγματοποίηση των F/F μπορεί να γίνει με κατάλληλη σύνδεση πυλών Παρατηρούμε από τον πίνακα αληθείας ότι για το J-K F/F ισχύει: Αν J K, τότε Q n+1 =J Αν J=K=1, τότε Q n+1 =Q n Αν J=K=0, τότε Q n+1 =Q n Γενικά: Q n+1 =JQ n +K Q n
32 Ακολουθιακά Κυκλώματα Καταχωρητές 32 Ο καταχωρητής χρησιμοποιείται για την προσωρινή αποθήκευση δυαδικής πληροφορίας Καταχωρητές μεγέθους n bits μπορούν να υλοποιηθούν χρησιμοποιώντας n flip-flops Στο επόμενο παράδειγμα, όταν εφαρμοστεί λογικό «1» στη γραμμή ελέγχου Κ, καταχωρείται η πληροφορία των n bits
33 Ακολουθιακά Κυκλώματα Μετρητές 33 Ο μετρητής ή απαριθμητής (counter) αποτελείται από ένα μεγάλο αριθμό κατάλληλα συνδεδεμένων flip-flops, τα οποία μεταβάλλουν το περιεχόμενό τους (συνήθως κατά ένα), κάθε φορά που εφαρμόζεται στην είσοδο του μετρητή ένα νέο σήμα (π.χ. ωρολογιακός παλμός)
34 Ακολουθιακά Κυκλώματα Συσσωρευτές 34 Ο συσσωρευτής (accumulator) είναι βασικό κύκλωμα κάθε Η/Υ Είναι σύνθετο ακολουθιακό κύκλωμα που επιτελεί πολλές λειτουργίες, όπως καταχώρηση, απαρίθμηση, ολίσθηση, συμπλήρωση κ.λπ. Επίσης, χρησιμοποιείται για να καταχωρεί (συσσωρεύει) τα ενδιάμεσα αποτελέσματα διαφόρων πράξεων που εκτελούνται στην ΚΜΕ του Η/Υ
35 35 Ευχαριστώ για την προσοχή σας! K Kilo 2 10 M Mega 2 20 G Giga 2 30 T Tera 2 40 m milli 10-3 μ micro 10-6 n nano 10-9
36 36 Παράρτημα Α2
37 Παραδείγματα ολοκληρωμένων κυκλωμάτων του εμπορίου 37 Texas Instruments (TI) 7400 series digital logic integrated circuits 7408: Quad 2-input AND gate 7432: Quad 2-input OR gate 7404: Hex inverter (6 gates)
38 Ακολουθιακά Κυκλώματα Καταχωρητές Ολίσθησης 38 Στην περίπτωση που το περιεχόμενο ενός καταχωρητή μπορεί να ολισθαίνει δεξιά ή αριστερά, τότε αυτός ονομάζεται καταχωρητής ολίσθησης ή ολισθητής (shift register) Υπάρχουν διαφόρων ειδών καταχωρητές ολίσθησης, ανάλογα με τον τρόπο που καταχωρούνται τα δεδομένα εισόδου και εξάγονται τα δεδομένα εξόδου (παράλληλα ή σειριακά)
39 39 Ακολουθιακά Κυκλώματα Μετρητές Κύκλωμα Ασύγχρονου Μετρητή Κύκλωμα ασύγχρονου μετρητή: Στην πραγματικότητα, οι μεταβάσεις στον ασύγχρονο μετρητή δεν είναι ταυτόχρονες αλλά υπάρχει μια μικρή καθυστέρηση
40 40 Ακολουθιακά Κυκλώματα Μετρητές Κύκλωμα Σύγχρονου Μετρητή Κύκλωμα σύγχρονου μετρητή:
Υπολογιστικά Συστήματα Λογική Σχεδίαση Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας
Υπολογιστικά Συστήματα Λογική Σχεδίαση Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας ΔΠΜΣ «Τεχνο- Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών Ιστοσελίδα Μαθήματος 2 http://people.cn.ntua.gr/jenny/index.php/courses
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Διαβάστε περισσότεραΥπολογιστικά Συστήματα Λογική Σχεδίαση Αρχιτεκτονική Η/Υ Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας
Υπολογιστικά Συστήματα Λογική Σχεδίαση Αρχιτεκτονική Η/Υ Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας ΔΠΜΣ «Τεχνο- Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών Ιστοσελίδα
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα
Διαβάστε περισσότεραΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Διαβάστε περισσότερα100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων
Διαβάστε περισσότερα9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)
Διαβάστε περισσότεραΠεριεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες
Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία
Διαβάστε περισσότεραΨηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Διαβάστε περισσότεραΗλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραe-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού
Διαβάστε περισσότεραΕισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Μονάδες Μνήμης και Διατάξεις Προγραμματιζόμενης Λογικής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Μονάδες Μνήμης και Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Μονάδες Μνήμης - Προγραμματιζόμενη Λογική Μια μονάδα μνήμης είναι ένα
Διαβάστε περισσότεραΨηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
Διαβάστε περισσότερα6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.
6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή
Διαβάστε περισσότεραΓ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
Διαβάστε περισσότεραΨηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες
Διαβάστε περισσότεραΑ. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ
ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου
Διαβάστε περισσότεραi Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
Διαβάστε περισσότεραΆσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
Διαβάστε περισσότεραΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,
Διαβάστε περισσότεραPLD. Εισαγωγή. 5 η Θεµατική Ενότητα : Συνδυαστικά. PLAs. PLDs FPGAs
5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI και Εισαγωγή Οι προγραµµατιζόµενες διατάξεις είναι ολοκληρωµένα µε εσωτερικές πύλες οι οποίες µπορούν να υλοποιήσουν οποιαδήποτε συνάρτηση αν υποστούν
Διαβάστε περισσότεραΛογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.
Διαβάστε περισσότερα9. ΚΑΤΑΧΩΡΗΤΕΣ (REGISTERS)
9. ΚΑΤΑΧΩΡΗΤΕΣ (REGISTERS) 9.. ΕΙΣΑΓΩΓΗ Όπως έχουμε ήδη αναφέρει για την αποθήκευση μιας πληροφορίας ενός ψηφίου ( bit) απαιτείται ένα στοιχείο μνήμης δηλαδή ένα FF. Επομένως για περισσότερα του ενός ψηφία
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία
Διαβάστε περισσότεραΘέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
Διαβάστε περισσότεραf(x, y, z) = y z + xz
Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,
Διαβάστε περισσότεραC D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
Διαβάστε περισσότερα6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:
Διαβάστε περισσότεραΣυνδυαστικά Κυκλώματα
3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Διαβάστε περισσότεραΗ κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
Διαβάστε περισσότεραΗλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,
Διαβάστε περισσότεραΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Διαβάστε περισσότεραΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ
ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό
Διαβάστε περισσότεραΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ)
ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2009 205 ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ) ΑΠΟ ΘΕΜΑ Α Ερωτήσεις. Γιατί στους ασύγχρονους απαριθμητές τα flip-flops δεν αλλάζουν ταυτόχρονα κατάσταση; 2. Να
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)
ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις
Διαβάστε περισσότεραΠεριεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21
Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση
Διαβάστε περισσότεραΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
Διαβάστε περισσότεραΚυκλωμάτων» Χειμερινό εξάμηνο
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Εισαγωγή στα Συστήματα Ολοκληρωμένων Κυκλωμάτων Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής http://diceslab.cied.teiwest.gr E-mail: pkitsos@teimes.gr
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4
Διαβάστε περισσότερα8.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ψηφιακών Συστημάτων Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ Θεωρητικό Μέρος Οι σειριακές λειτουργίες είναι πιο
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία ΙΙ, Πρακτικής
Διαβάστε περισσότεραw x y Υλοποίηση της F(w,x,y,z) με πολυπλέκτη 8-σε-1
Άσκηση 1 Οι λύσεις απαντήσεις που προτείνονται είναι ενδεικτικές και θα πρέπει να προσθέσετε Α) Αρχικά σχεδιάζουμε τον πίνακα αληθείας της λογικής έκφρασης: w x y z x G1 =x y G2 =z w F = G1 G2 Είσοδοι
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Διαβάστε περισσότεραΠίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ
Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα
Διαβάστε περισσότεραΠερίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 121 ΕΡΓΑΣΤΗΡΙΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΝΗΜΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΗ ΛΟΓΙΚΗ ΥΠΕΥΘΥΝΟΣ ΕΡΓΑΣΤΗΡΙΩΝ: ΧΡΥΣΟΣΤΟΜΟΣ ΧΡΥΣΟΣΤΟΜΟΥ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2001 ΕΠΛ 121 ΕΡΓΑΣΤΗΡΙΑ ΨΗΦΙΑΚΩΝ
Διαβάστε περισσότερα"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,
Διαβάστε περισσότεραΥπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).
Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων
Διαβάστε περισσότεραΨηφιακά Συστήματα. 8. Καταχωρητές
Ψηφιακά Συστήματα 8. Καταχωρητές Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
Διαβάστε περισσότερα7.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)
Διαβάστε περισσότερα«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 1 η :
Διαβάστε περισσότερα7. Ψηφιακά Ηλεκτρονικά
1 7. Ψηφιακά Ηλεκτρονικά 7.1 Εισαγωγή Στα προηγούμενα μελετήσαμε τη λειτουργία του τρανζίστορ στην ενεργό περιοχή, χαρακτηριστικό της οποίας είναι ότι τα σήματα εισόδου και εξόδου μπορούν να λάβουν συνεχείς
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραΠρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων. Διδάσκοντες
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας Διδάσκοντες 1. Γ. Πάτσης, Επικ. Καθηγητής,
Διαβάστε περισσότεραΕργαστήριο Ψηφιακής Σχεδίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις
Διαβάστε περισσότεραΓενικά Στοιχεία Ηλεκτρονικού Υπολογιστή
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραK24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο
Διαβάστε περισσότεραΨηφιακή Σχεδίαση Ενότητα 11:
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 11: Μνήμη και Προγραμματίσιμη Λογική Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
Διαβάστε περισσότεραΑθροιστές. Ημιαθροιστής
Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που
Διαβάστε περισσότεραΚεφάλαιο 6. Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα
Κεφάλαιο 6 Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα 6.1 Εισαγωγή Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δημιουργία κυκλωμάτων που μπορούν να αποθηκεύουν πληροφορίες, στα ενδιάμεσα στάδια των
Διαβάστε περισσότεραΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 7ο ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Γενικό διάγραμμα υπολογιστικού συστήματος Γενικό διάγραμμα υπολογιστικού συστήματος - Κεντρική Μονάδα Επεξεργασίας ονομάζουμε
Διαβάστε περισσότεραΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση
Διαβάστε περισσότεραK24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων
K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους
Διαβάστε περισσότεραΕνότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ
Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Ανάλυση Συνδυαστικής Λογικής Σύνθεση Συνδυαστικής Λογικής Λογικές Συναρτήσεις Πολλών Επιπέδων Συνδυαστικά
Διαβάστε περισσότεραΑρχιτεκτονική Υπολογιστών
Αρχιτεκτονική Υπολογιστών Οργάνωση Βασικές Πηγές: Αρχιτεκτονική Υπολογιστών: μια Δομημένη Προσέγγιση, Α. Tanenbaum, Vrije Universiteit, Amsterdam. Περιβάλλον Προσομοίωσης Hades, University of Hamburg http://tams-www.informatik.uni-hamburg.de/applets/hades/
Διαβάστε περισσότεραΚυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης
5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει
Διαβάστε περισσότερασύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών
Διαβάστε περισσότεραΚεφάλαιο 8. Αριθμητική Λογική μονάδα
Κεφάλαιο 8 Αριθμητική Λογική μονάδα 8.1 Εισαγωγή Στη μηχανική υπολογιστών η αριθμητική/λογική μονάδα (ALU) είναι ένα ψηφιακό κύκλωμα το οποίο εκτελεί αριθμητικούς και λογικούς υπολογισμούς. Η ALU είναι
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
Διαβάστε περισσότερα7. ΣΧΕΔΙΑΣΗ ΣΥΝΔΥΑΣΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
. ΣΧΕΔΙΑΣΗ ΣΥΝΔΥΑΣΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Εισαγωγή Ένα συνδυαστικό κύκλωμα παριστάνεται με ένα απλό block διάγραμμα όπου με "m" σημειώνουμε το πλήθος εισόδων και με "n" το πλήθος των εξόδων του, όπου κάθε μια
Διαβάστε περισσότερα7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ. Τι είναι ένας καταχωρητής; O καταχωρητής είναι μια ομάδα από flip-flop που μπορεί να αποθηκεύσει προσωρινά ψηφιακή πληροφορία. Μπορεί να διατηρήσει τα δεδομένα του αμετάβλητα
Διαβάστε περισσότεραΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Τμήματα Υπολογιστή) ΕΚΠΑΙΔΕΥΤΗΣ:ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Κάθε ηλεκτρονικός υπολογιστής αποτελείται
Διαβάστε περισσότεραΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
Διαβάστε περισσότεραFlip-Flop: D Control Systems Laboratory
Flip-Flop: Control Systems Laboratory Είναι ένας τύπος συγχρονιζόμενου flip- flop, δηλαδή ενός flip- flop όπου οι έξοδοί του δεν αλλάζουν μόνο με αλλαγή των εισόδων R, S αλλά χρειάζεται ένας ωρολογιακός
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
Διαβάστε περισσότερα