Σ ύστημα Α σαφούς λ ο γικ ή ς για την Π ρόβλεψη ΤΗΣ ΜΕΣΗΣ ΗΜΕΡΗΣΙΑΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ Ε ξω τερικο ύ Π εριβάλλοντος
|
|
- Τερψιχόρη Κουντουριώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΣΚΕΧΡΙΟ -TEXm ΙΟΓΙ HfO il. I Σ ύστημα Α σαφούς λ ο γικ ή ς για την Π ρόβλεψη ΤΗΣ ΜΕΣΗΣ ΗΜΕΡΗΣΙΑΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ Ε ξω τερικο ύ Π εριβάλλοντος Δρ. A. I. Ντουνης, Δρ. Δ. I. Ταελές Δ. Μπέλης. Μ. ΔηρθίΤΟΙΤΧν(ΧΧΓ ς, Μηχανικοί Λιποματισμού ΤΕΙ Πειραιά, Τμήμα Αυτοματισμοί' II. Ράλλη & Θηβοιν Αιγάλεω, Τηλ.: Fax: Περίληψη Στην εργασία αυτή παρουσιάζεται η εφαρμογή μας νέας τεχνολογικής μεθόδου σ' ένα παλιό πρόβλημα, της πρόβλεψης της θερμοκρασίας, που έχει μελετηθεί ευρέιος με παραδοσιακές μεθόδους. Συγκεκριμένα το πρόβλημα αυτό προσεγγίζεται μ' ένα σύστημα ασαφούς λογικής για την πρόβλεψη της μέσης ημερήσιας θερμοκρασίας του εξωτερικού ατμοσφαιρικού περιβάλλοντος. Στο άρθρο αυτό η μέση ημερήσια θερμοκρασία αντιμετιοπίζεται ως μία χρονοσειρά θερμοκρασιακιυν δεδομένων. Χρησιμοποιώντας τα πραγματικά αυτά δεδομένα (Εθνικό Αστεροσκοπείο Αθηνιόν) εκπαιδεύσαμε ένα ασαφές σύστημα με αποτέλεσμα τη δημιουργία ενός συστήματος ασαφούς πρόβλεψης (Fuzzy Predictor) της θερμοκρασίας. 1. Εισαγωγή Το άρθρο αυτό παρουσιάζει την εφαρμογή συστημάτων ασαφούς λογικής για την πρόβλεψη της θερμοκρασίας του περιβάλλοντος στοχεύοντας στην ενσωμάτωση αυτού του συστήματος σ ένα γενικό σύστημα πρόγνωσης καιρού. Το πρόβλημα της πρόβλεψης των μετεωρολογικών μεταβλητών είναι αρκετά παλιό. Γενικά οι ημερήσιες κλιματολογικές μεταβλητές όπως είναι η θερμοκρασία, η ηλιακή ακτινοβολία, η ταχύτητα του αέρα, η υγρασία εξαρτώνται από τον τύπο της ατμοσφαιρικής κυκλοφορίας (Atmospheric Circulation) που συμβαίνει στη συγκεκριμένη περιοχή[2]. Ειδικότερα η μέση ημερήσια θερμοκρασία εξαρτάται από την εποχή, την ατμοσφαιρική κυκλοφορία, την υγρασία, καθιός και από τις θερ 286
2 A. I. NTOKHZ A. I. ΤΣΕΙΕΣ. A. M illlh I ΚΑΙ Μ. ΑΑΡΑΤ3ΑΧΑΚΗΣ μοκρασίες των προηγούμενων ημεριυν. Υπάρχουν μοντε'λα που περιγράφουν αυτή π] διαδικασία χρησιμοποιώντας στοχαστικές μεθόδους!31. Η εργασία αυτή επικεντριόνεται στην εξάρτηση της θερμοκρασίας από τις θερμοκρασίες των προηγούμενων ημερών και ως εκ τούτου η μέση ημερήσια θερμοκρασία αντιμετωπίζεται ως μια χρονοσειρά θερμοκρασιιόν. Υπάρχουν αρκετά μαθηματικά μοντέλα για την πρόβλεψη χρονοσειρών. Αιτιοκρατικά μοντέλα μπορούν να βρεθούν, εάν οι παράμετροι είναι επακριβιός γνιυστές. Είναι αδύνατον όμως να επιτευχθούν τέτοια μοντέλα, εάν υπάρχουν αβέβαιοι παράγοντες στο σύστημα. Στις περιπτώσεις αυτές χρησιμοποιούνται στοχαστικά μοντέλα, για να δώσουν την π ι θανότητα μιας μελλοντικής τιμής. Στατικά μοντέλα (ARMA) είναι μια κατηγορία τέτοιων στοχαστικών μοντέλων για την περιγραφή μιας χρονοσειράς. Όμως τα πραγματικά φυσικά συστήματα με αστάθμητους παράγοντες απαιτούν μη-στατικά μοντέλα (ARIMA)!JL Επίσης έχουν χρησιμοποιηθεί Νευρωνικά Δίκτυα (RBF) και Ασαφή Συστήματα για τη μοντελοποίηση χρονοσειριόν. 2. Ανάπτυξη Συστήματος Ασαφούς Αογικής για την πρόβλεψη της θερμοκρασίας Έστιο χ(κ) (κ= 1,2,3,...) μια χρονοσειρά. Το πρόβλημα της πρόβλεψης χρονοσειρών μπορεί να διατυπωθεί ως εξής: δίνονται τα δεδομένα (χ(κ-η + 1), χ(κη+2),.. χ(κ) με σκοπό να καθοριστεί στο χ(κ + Ι), όπου τα η και I είναι θετικοί αριθμοί και καθορίζονται από τον τρόπο προσέγγισης του προβλήματος. Στην πρόβλεψη της θερμοκρασίας χρησιμοποιήθηκαν η =5 και 1=1. Επομένως τα ζευγάρια εισόδου - εξόδου μπορούν να δοθούν γενικά ως: [χ(κ-η),..., χ(κ-1);χ(κ)] [χ(κ-η-1),..., χ(κ-2);χ(κ-1)] [Χ(1> Χ(η);Χ(η + 1)] Η ανάπτυξη του συστήματος ασαφούς λογικής για την πρόβλεψη της θερμοκρασίας του εξωτερικού περιβάλλοντος βασίζεται στη μέθοδο «Look-up Table»!11με πραγματικά δεδομένα εισόδου - εξόδου του συστήματος. Αυτός ο αλγόριθμος είναι πολύ απλός και αποτελείται από τα ακόλουθα τέσσερα βήματα: Βήμα Α. Διαίρεση τον δειγματικον χώρον των δεδομένων εισόδου και εξόδου σε περιοχές. Υποθέτουμε ότι τα κύρια διαστήματα των δεδομένων χι, Χ2,..., χπκαι yi,... yn είναι [xf, χι+], [χ:',χ2+],..., [xn\ χπ+], και [yr, yi+j,..., [y \ yn+], αντιστοίχως. Διαιρούμε κάθε βασικό διάστημα σε 2Ν + 1 περιοχές (το Ν μπορεί να είναι διαφορετικό για διάφορες μεταβλητές, και τα εύρη αυτόν των περιοχών μπορεί να είναι 287
3 lyslipk) «ΤΕΧΧΟ. 1ΟΠΕΣ ΑΡΧΙΠΕ- ΑΓΟΣ» ίσα ή άνιοα), αριθμούμενες με Ν+1. Σε κάθε περιοχή αντιστοιχούμε μία ασαφή συνάρτηση συμμετοχής. Βήμα Β. Δημιουργία ασαφών κανόνων από ζευγάρια δεδομένων. Αρχικά καθορίζουμε τους βαθμούς των δεδομένων χβ'1, χ:ίι),..., χη(ι1, και νβ, V2( 11 Υηω στις διάφορες περιοχε'ς. Στη συνέχεια καταχωρούμε μία ν-άδα Χΐ(ι). X2(il,... xnfl). ή νβ'\ y20),...yn(l) στην περιοχή που ε'χει το μέγιστο βαθμό συμμετοχής. Μ' αυτή τη μέθοδο δημιουργείται ένας κανόνας από κάθε ζευγιίρι εισόδου - εξόδου. Οι κανόνες που δημιουργούνται με αυτόν τον τρόπο είναι κανόνες «and». Βήμα /. Εκχώρηση ενός βαθμού σε κάθε κανόνα Επειδή κάθε ζεύγος δεδομένων δημιουργεί έναν κανόνα είναι πολύ πιθανό να υπάρξουν κανόνες αλληλοσυγκρουόμενοι. δηλαδή, κανόνες που έχουν το ίδιο IF μέρος αλλά διαφορετικό THEN. Για να αποφευχθεί αυτή η αντίφαση καταχωρούμε ένα βάρος σε κάθε κανόνα και έτσι από ένα σύνολο αντιφατικών κανόνων χρησιμοποιούμε αυτόν τον κανόνα που έχει τη μέγιστη βαρύτητα. Η καταχιυρηση του βαθμού σε κάθε κανόνα γίνεται ως εξής: Για τον κανόνα «IF Χι is A and X2 is B and... xn is N THEN yi is A', y2 is B',... yn is Ν'» ο βαθμός καθορίζεται ως: D(Rule) = μα(χι) μβ(χί)... pw(xn) PA'(yi) μυ (Υ2)... μν'(γη) Βήμα Δ. Καθορισμός της εξόδου του ασαφούς συστήματος δεδομένης της ν-όδας εισόδου Το ασαφές σύστημα εκφράζεται από την παρακάτω συνάρτηση: y Ό που το X δηλώνει την κεντρική τιμή της περιοχής ο1(το κέντρο της ασαφούς περιοχής του κανόνα ι) και Μ είναι ο αριθμός των ασαφιόν κανόνων στην ασαφή βάση κανόνων. Στο ασαφές σύστημα χρησιμοποιούμε τη μέθοδο συμπερασμού Product Inference Engine και μέθοδο αποασαφοποίησης Center Average Defuzzification. Η διαδικασία των τεσσάρων βημάτων πολύ εύκολα μπορεί να επεκταθεί γενικά σε περιπτιυσεις προβλημάτων που απαιτούν πολλαπλές εισόδους - πολλαπλές εξόδους. 288
4 A. /. ΝΤΟΥΚΗΣ. Δ. I. ΤΕΕΙΕΣ. Δ. ΜΠΕ\ΗΣ ΚΑΙ Μ ΔλΡΑΠΐΑ\ΑΚΗΣ 3. Αποτελέσματα εξομοίωσης Γκι να αναλύσουμε την απόδοση του ασαφούς συστήματος πρόβλεψης της θερμοκρασίας έχουν πραγματοποιηθεί αρκετές αριθμητικές εξομοιώσεις (διαφορετικό πλήθος εισόδων και συναρτήσεων συμμετοχής και εκπαίδευση με Οερμοκρασιακά δεδομένα για 3, 6 και 9 έτηβ4!. Η υλοποίηση πραγματοποιήθηκε στο περιβάλλον εργασίας του MATLAB με υπολογιστή Pentium (75 MHz). Εφαρμόζοντας τη διαδικασία της απαλοιφής «trial and error», το σύστημά μας τελικά αποτελείται από 5 εισόδους - 1 έξοδο και 25 συναρτήσεις συμμετοχής (Gaussian) για κάθε είσοδο και έξοδο. Το ασαφές σύστημα εκπαιδεύτηκε έχοντας δεδομένα θερμοκρασίας 12 ετών (κ=4383 δεδομένα). Τελικά χρησιμοποιούνται 2801 ασαφείς κανόνες στη βάση γνώσης του μετά την αφαίρεση των αλληλοσυγκρουόμενων κανόνων. Από την πρώτη ομάδα διαγραμμάτων παρατηρούμε ότι το ασαφές σύστημα πρόβλεψης παρακολουθεί ικανοποιητικά τα πραγματικά δεδομένα με μέσο τετραγωνικό σφάλμα MSE (Mean Square Error) =4.13, RMSE (Rood MSE) =2.033 και δείκτη απόδοσης 72%. Από τη δεύτερη ομάδα διαγραμμάτων παρατηρούμε ότι τα προβλεπόμενα δεδομένα τείνουν να συγκλίνουν με τα πραγνατικά και ως εκ τούτου στη διαγώνιο με μια μικρή διασπορά γύρω από αυτήν. Το γεγονός αυτό εκφράζει την αρκετά καλή απόδοση του συστήματος. Επίσης καταγράφεται το σφάλμα (Θ-Θ') της πρόβλεψης (τε συνάρτηση με τις ημέρες του έτους. 4. Συμπεράσματα Σ' αυτό το άρθρο εφαρμόσαμε τη μέθοδο «Look-up Table» για την εκπαίδευση ενός ασαφούς συστήματος με στόχο την πρόβλεψη της ημερήσιας θερμοκρασίας του εξωτερικού περιβάλλοντος. Έ να βασικό πλεονέκτημα της μεθόδου «Look-up Table» είναι η απλότητα με την οποία από δεδομένα εισόδου - εξόδου δημιουργείται η ασαφής βάση κανόνων. Το κόστος αυτής της απλότητας του συστήματος ασαφούς πρόβλεψης (Fuzzy Predictor) έγκειται στον ad hoe τρόπο τοποθέτησης και καθορισμού των συναρτήσεων συμμετοχής στις εισόδους και εξόδους του συστήματος. Η μέθοδος που υλοποιήσαμε είναι μια one-pass διαδικασία και δεν είναι χρονοβόρα όπως η διαδικασία εκπαίδευσης των νευρωνικιόν δικτύων. Μελετάται η ενσωμάτωση στο σύστημα ασαφούς πρόβλεψης και των άλλων δύο παραμέτρων, από τις οποίες εξαρτάται η εξωτερική θερμοκρασία, και τα αποτελέσματα θα ανακοινιυθούν σε μελλοντική εργασία. Μελλοντική ερευνητική κατεύθυνση Οι κλιματολογικές συνθήκες της Ελλάδας και άλλων μεσογειακών χωρών ευ- 289
5 Σ ϊ ΧΕΑΡΙΟ «TEXSO. [ΟΠΕΣ ΛΡΧΙΠί ΑΓΟ)Σ» 12 Χρονιά Εκμάθησης - 25 Συναρτήσεις Συμμετοχής - Ανά μία ήμερα (1995) Διαγράμματα: θ = /(η μ έ ρ ε ς) σε C 290
6 A. / NTOYSHL Δ. I. ΤΣΕ.ΙΕΣ. Δ. Μ ΠίϊΗΣ M l Μ. ΔΑΡΑΠΙΑΥΑΚΙΙΣ 12 Χρόνια Εκμάθησης - 25 Συναρτήσεις Συμμετοχής - Ανά μία ήμερα (1995) ^ Δ ια γ ρ ά μ μ α τ α : Θ = /(η μ έρες) οε C
7 Σ ΛΈΑΡΙΟ «ΤΕΧΚα 1ΟΠΕ ΛΡΧΙΠί 1 \Γ0)Σ» 12 Χρόνια Εκμάθησης - 25 Συναρτήσεις Συμμετοχή: - Ανά μία ήμερα (1995) θ -Θ =/(ημερες) σε C Θ =/( ) σε C 292
8 A. I. NTOYSHI, Δ. I. T1L\EL A. ΜΠΕ.ΙΗΣ M l M. AAPATIUSAKHI νοούν σημαντικά τη χρησιμοποίηση τον ήπιον μορφοόν ενέργειας (Ηλιακή. Α ιολική, Γεοθερμία κ.ά.). Έτσι συνεχώς οι ερευνητικές προσπάθειες επικεντριόνονται όλο και περισσότερο στην εφαρμογή τέτοιιυν συστημάτον που θα συμβάλλουν στην επίτευξη της ενεργειακής αυτοτέλειας το ν νησιιόν. Η πρόβλεψη της θερμοκρασίας ενός τόπου και ιδιαίτερα τον νησιιόν της Ελλάδας είναι αρκετά σημαντική, διότι αποσκοπεί στην έγκαιρη πρόληψη δυσμενιόν συνεπειιόν για τους κατοίκους και τις δράστηριότητές τους. Βασική προϋπόθεση για τη λειτουργία του Fuzzy Predictor είναι η εγκατάσταση και λειτουργία τοπικόν μετεορολογικόν σταθμιόν στα νησιά καθιός και η ύπαρξη θερμοκρασιακόν όεδομένον προηγοϋμενον ετιόν. Εάν δεν υπάρχει αρκετό ιστορικό όεδομένον. τότε η ενσομάτοση στο ασαφές σύστημα πρόβλεψης (Fuzzy Predictor) αλγορίθμον εκπαίδευσης, βασισμένον σε ομαδοποίηση όεδομένον, καθιστά το σύστημα πρόβλεψης επίσης αξιόπιστο. Η επεξεργασία τον όεδομένον και οι προγνιόσεις μπορούν να γίνονται σ ένα τοπικό σταθμό του νησιού ή σ' ένα κεντρικό και να μεταδίδονται με δίκτυο σ όλα τα νησιά. Το προτεινόμενο σύστημα μπορεί να εφαρμοστεί για την πρόβλεψη και άλλον χρήσιμον μετεορολογικιόν όεδομένον, όπος του ύψους της βροχόπτοσης. της ηλιακής ακτινοβολίας της ταχύτητας του αέρα και της υγρασίας. Επίσης μπορεί να χρησιμοποιηθεί για την πρόβλεψη της κατανάλοσης νερού στα νησιά, επειδή αρκετά από αυτά αντιμετοπίζουν πρόβλημα νερού. Είναι πολύ σημαντική η πρόβλεψη της κατανάλοσης του νερού για τη λειτουργία αποθηκευτικιόν όεδομένον στα νησιά. Ανατρορές 1. Li-Xin W ang, «.Adaptive Fuzzy Systems and Control Design and Stability Analysis». P T R Prentice H all A. Bardossy, L. D uckstein. «Fuzzy Rule-Based Modeling with Applications to G eo physical. Biological and Engineering Systems». C R C D. T. Pham. L. Xing, «Neural Networks for Identification Prediction and Control». Springer Μ πέλης. Δ αρατσιανάκης, «Σύστημα Α σ α φ ούς Λ ογικής για την Πρόβλεψη Χαοτικώ ν Χ ρονοσειρώ ν και της Θ ερμοκρασίας τον Ε ξω τερικού Π εριβάλλοντος». Τ Ε Ι Π ε ι ραιά
Σύστημα Ασαφούς Λογικής για την Πρόβλεψη της Μέσης Ημερήσιας Ηλιακής Ακτινοβολίας
194 2 Συνέδριο Τεχνολογίας και Αυτοματισμού Σύστημα Ασαφούς Λογικής για την Πρόβλεψη της Μέσης Ημερήσιας Ηλιακής Ακτινοβολίας Δρ. A. I. Ντούνης, Σπ. Δάβαρη 18, 19400 Κορωπί, Τηλ./Fax: 6624541 Β. Μπράχος,
Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων Γεώργιος Θεοδωρόπουλος Επιβλέπων
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #13: Εξαγωγή Γνώσης από Δεδομένα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #13: Εξαγωγή Γνώσης από Δεδομένα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j
Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών
Ασαφής Λογική (Fuzzy Logic)
Ασαφής Λογική (Fuzzy Logic) Ασάφεια: έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. Π.χ. "Ο Νίκος είναι ψηλός": δεν προσδιορίζεται με
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
1.2 Απλός Κινητός Μέσος (Simple -equally-weighted- Moving Average)
Μέθοδοι Εξομάλυνσης Οι διαδικασίες της εξομάλυνσης (smoohig και της παρεμβολής (ierpolaio αποτελούν ένα περίπλοκο πεδίο έρευνας και γνώσης και έχουν άμεση πρακτική εφαρμογή στις οικονομικές επιστήμες..
Χρονοσειρές Μάθημα 6
Χρονοσειρές Μάθημα 6 Πρόβλεψη Χρονικών Σειρών Μοντέλα για χρονικές σειρές AR, MA, ARMA, ARIMA, SARIMA πρόβλεψη Πολλές εφαρμογές Δείκτης και όγκος συναλλαγών Χρηματιστηρίου Αξιών Αθηνών ΧΑΑ Θα μπορούσαμε
Ranking the importance of real-time traffic and weather variables when examining crash injury severity
16ο Ειδικό Συνέδριο της Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών και τη 12η Συνάντηση Πολυκριτήριας Ανάλυσης Αποφάσεων. Εμπορικό και Βιομηχανικό Επιμελητήριο Πειραιά 15-17 Φεβρουαρίου 2018 Ranking the
Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων
Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System)
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF ENGINEERING Department of Civil Engineering Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού
Διασπορά ατμοσφαιρικών ρύπων
Διασπορά ατμοσφαιρικών ρύπων Καθηγητής Δημοσθένης A. Σαρηγιάννης Εργαστήριο Περιβαλλοντικής Μηχανικής Τμήμα Χημικών Μηχανικών Πολυτεχνική Σχολή Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Βασικές ατμοσφαιρικές
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Β «Πειραματική Μελέτη Ηλιακών Θερμικών Συστημάτων»
Εργαστήριο ΑΠΕ I Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Β «Πειραματική Μελέτη Ηλιακών Θερμικών Συστημάτων» Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Συστήματα Ηλιακών Θερμικών Συλλεκτών
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Μαρία Σαμαράκου Καθηγήτρια, Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας Διονύσης Κανδρής Επίκουρος Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών
'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη'
'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη' ΟΝΟΜΑ ΦΟΙΤΗΤΗ: ΣΕΛΛΗΣ ΗΛΙΑΣ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: 2004010054 ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ
Συμπίεση Πληροφορίας Πλαισίου με Ανάλυση Κύριων Συνιστωσών
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Συμπίεση Πληροφορίας Πλαισίου με Ανάλυση Κύριων Συνιστωσών Διπλωματική Εργασία Παναγιώτης Γεώργας (Μ1040) Επιβλέπωντες: Επικ. Καθηγητής
Ιωάννα Ανυφαντή, Μηχανικός Περιβάλλοντος Επιβλέπων: Α. Ευστρατιάδης, ΕΔΙΠ ΕΜΠ. Αθήνα, Ιούλιος 2018
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Δ.Π.Μ.Σ. «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» ΥΔΡΟΛΟΓΙΑ & ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Ιωάννα Ανυφαντή, Μηχανικός Περιβάλλοντος
ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ
Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Κλιματική αλλαγή
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Καινοτόμο σύστημα ενεργειακής διαχείρισης πανεπιστημιουπόλεων Δ. Κολοκοτσά Επικ. Καθηγήτρια Σχολής Μηχ. Περιβάλλοντος Κ. Βασιλακοπούλου MSc
Καινοτόμο σύστημα ενεργειακής διαχείρισης πανεπιστημιουπόλεων Δ. Κολοκοτσά Επικ. Καθηγήτρια Σχολής Μηχ. Περιβάλλοντος Κ. Βασιλακοπούλου MSc Αρχιτέκτων www.campit.gr ΕΙΣΑΓΩΓΗ Πανεπιστημιουπόλεις: Μικρές
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών
Χρονοσειρές - Μάθημα 7 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(p,q) μοντέλο x x px p z z z q q Πλεονεκτήματα:. Απλά 2. Κανονική διαδικασία, ανεπτυγμένη
Προχωρημένα Θέματα Συστημάτων Ελέγχου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού Τ.Ε. ΔΙΙΔΡΥΜΑΤΙΚΟ Π.Μ.Σ. «Νέες Τεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρημένα Θέματα
Το πρόγραμμα SOLEA. Εκτίμηση δυναμικού ηλιακής ενέργειας σε πραγματικό χρόνο. Εθνικό Αστεροσκοπείο Αθηνών 2. World Radiation Centre, Switzerland
Το πρόγραμμα SOLEA Εκτίμηση δυναμικού ηλιακής ενέργειας σε πραγματικό χρόνο 1Παναγιώτης Κοσμόπουλος 1Michael Taylor 2Στέλιος Καζαντζής 1 Εθνικό Αστεροσκοπείο Αθηνών 2 World Radiation Centre, Switzerland
Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
! #! # # % & % # # # # %!! ( &) & #& % %!! # # # # +,! % # )! #! ) # # # ( # % # # + ) # + # ( ( & ) # &! #!. % #! /! # ) & #! & # # ) ) # + # % # ( # ) & #!! # + & % # / # + # & #! ) 0. & ( %.1! 2 2 #
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 2ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Ασαφή Συστήματα 2 Η ασαφής λογική προτάθηκε το 1965 από τον Prof. Lotfi Zadeh
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων
Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Χ. Τζιβανίδης, Λέκτορας Ε.Μ.Π. Φ. Γιώτη, Μηχανολόγος Μηχανικός, υπ. Διδάκτωρ Ε.Μ.Π. Κ.Α. Αντωνόπουλος, Καθηγητής
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(
Εμπειρίες από την λειτουργία του Αυτόματου Τηλεμετρικού Μετεωρολογικού Σταθμού στο Εθνικό Μετσόβιο Πολυτεχνείο
Εμπειρίες από την λειτουργία του Αυτόματου Τηλεμετρικού Μετεωρολογικού Σταθμού στο Εθνικό Μετσόβιο Πολυτεχνείο Παρουσίαση στο 8ο Πανελλήνιο Συνέδριο της Ελληνικής Υδροτεχνικής Ένωσης Αθήνα, 19-21 Απριλίου
Εμπειρίες από την λειτουργία του Αυτόματου Τηλεμετρικού Μετεωρολογικού Σταθμού στο Εθνικό Μετσόβιο Πολυτεχνείο
Εμπειρίες από την λειτουργία του Αυτόματου Τηλεμετρικού Μετεωρολογικού Σταθμού στο Εθνικό Μετσόβιο Πολυτεχνείο Παρουσίαση στο 8ο Πανελλήνιο Συνέδριο της Ελληνικής Υδροτεχνικής Ένωσης Αθήνα, 19-21 Απριλίου
Το Ευρωπαϊκό Πρόγραμμα. Motor Challenge
ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ Γενική Διεύθυνση Ενέργειας και Μεταφορών Προώθηση των Ανανεώσιμων Πηγών Ενέργειας & Διαχείριση Ζήτησης Το Ευρωπαϊκό Πρόγραμμα Motor Challenge Ενότητα Συστημάτων Συμπιεσμένου Αέρα 1.
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & StrategyUnit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
Σημερινές και μελλοντικές υδατικές ανάγκες των καλλιεργειών της δελταϊκής πεδιάδας του Πηνειού
Σημερινές και μελλοντικές υδατικές ανάγκες των καλλιεργειών της δελταϊκής πεδιάδας του Πηνειού Σπυρίδων Κωτσόπουλος Καθηγητής, Διαχείριση Υδατικών Πόρων Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΤΕΙ Θεσσαλίας AGROCLIMA
ΠΕ3 : ΕΚΤΙΜΗΣΗ ΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΣΥΝΕΚΤΙΜΩΝΤΑΣ ΤΗΝ ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ.
ΠΕ3 : ΕΚΤΙΜΗΣΗ ΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΣΥΝΕΚΤΙΜΩΝΤΑΣ ΤΗΝ ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ. CCSEWAVS : Επίδραση της κλιματικής αλλαγής στη στάθμη και το κυματικό κλίμα των ελληνικών θαλασσών, στην τρωτότητα
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ
Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Με δεδομένο ότι η Ένταση της Ηλιακής ακτινοβολίας εκτός της ατμόσφαιρας
ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΠΡΟΓΝΩΣΗΣ ΚΑΙΡΟΥ. Κ. Λαγουβάρδος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΠΡΟΓΝΩΣΗΣ ΚΑΙΡΟΥ Κ. Λαγουβάρδος Ινστιτούτο Ερευνών Περιβάλλοντος Εθνικό Αστεροσκοπείο Αθηνών ΤΙ ΕΙΝΑΙ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΓΝΩΣΗ ΚΑΙΡΟΥ Επίλυση των εξισώσεων
Εθνικό Αστεροσκοπείο Αθηνών, Ινστιτούτο Περιβάλλοντος και Βιώσιμης Ανάπτυξης
ΔΙΚΤΥΟ ΑΥΤΟΜΑΤΩΝ ΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΣΤΑΘΜΩΝ ΤΟΥ ΕΘΝΙΚΟΥ ΑΣΤΕΡΟΣΚΟΠΕΙΟΥ ΑΘΗΝΩΝ: ΠΑΡΟΥΣΑ ΚΑΤΑΣΤΑΣΗ ΚΑΙ ΠΡΟΟΠΤΙΚΕΣ Κ. ΛΑΓΟΥΒΑΡΔΟΣ, Β. ΚΟΤΡΩΝΗ, Σ. ΒΟΥΓΙΟΥΚΑΣ, Δ. ΚΑΤΣΑΝΟΣ, Ι. ΚΩΛΕΤΣΗΣ, Σ. ΛΥΚΟΥΔΗΣ ΚΑΙ Ν. ΜΑΖΑΡΑΚΗΣ
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική
ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
ΗΓενίκευση στη Χαρτογραφία. Λύσανδρος Τσούλος 1
ΗΓενίκευση στη Χαρτογραφία Λύσανδρος Τσούλος 1 Τοποθέτηση του προβλήματος [I] Οι χάρτες αποτελούν το μέσο γραφικής απόδοσης - σε σμίκρυνση - κάποιου τμήματος της γήϊνης επιφάνειας. Θα ήταν δύσκολο - αν
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Εξαγωγή κανόνων από αριθµητικά δεδοµένα
Εξαγωγή κανόνων από αριθµητικά δεδοµένα Συχνά το σύστηµα που θέλουµε να µοντελοποιήσουµε η να ελέγξουµε αντιµετωπίζεται ως µαύρο κουτί και η πληροφορία για τη λειτουργία του διατίθεται υπό µορφή ζευγών
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή
ΠΑΝΑΓΙΩΤΑ ΜΙΧΑΛΑΚΑΚΟΥ
ΠΑΝΑΓΙΩΤΑ ΜΙΧΑΛΑΚΑΚΟΥ Ερευνητικοί Τοµείς Οι ερευνητικές µου δραστηριότητες ανήκουν στον χώρο της Φυσικής Περιβάλλοντος και της Ενέργειας. Συγκεκριµένα, εντοπίζονται στους ακόλουθους τέσσερις τοµείς : 1.
Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών
Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #6: Συστήματα Ασαφούς Λογικής Ασαφοποιητές - Αποασαφοποιητές Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού
Μελέτη και κατανόηση των διαφόρων φάσεων του υδρολογικού κύκλου.
Ζαΐμης Γεώργιος Κλάδος της Υδρολογίας. Μελέτη και κατανόηση των διαφόρων φάσεων του υδρολογικού κύκλου. Η απόκτηση βασικών γνώσεων της ατμόσφαιρας και των μετεωρολογικών παραμέτρων που διαμορφώνουν το
Τμήμα Μηχανικών Παραγωγής και Διοίκησης. Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο
Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Καταγάς Μιχαήλ Α.Μ.:2006010074 Επιβλέπων καθηγητής: Σταυρουλάκης Γεώργιος Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο Χανιά, Οκτώβριος
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν
ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική
Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr
Γραµµικοί Ταξινοµητές
ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls
Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης
ΜΕΡΟΣ Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης Εισαγωγή Περιγραφή μεθόδων πρόβλεψης Οι μέθοδοι προβλέψεων χωρίζονται σε 3 μεγάλες κατηγορίες Α. Με βάση τον ορίζοντα προγραμματισμού. βραχυπρόθεσμες.
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων
Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ
min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με
= φ + φ + + φ + Προσδιορισμός τάξης AR μοντέλου Προσαρμογή AR μοντέλου - μερική αυτοσυσχέτιση για υστέρηση τ: = φ + w, = φ + φ + w,, = φ + φ + φ + w,3,3 3,3 3 ˆ φ, kk, τάξη, εκτίμηση παραμέτρων συσχέτιση
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
Χρονοσειρές - Μάθημα 5
Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR() X X X X Z Z ~ WN(, Z) στοχαστική διαδικασία MA(q) X Z Z Z Z q q στοχαστική διαδικασία ARMA(,q) X X X X Z Z Z Z q q Εκτίμηση διαδικασίας
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις
Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις Πρόβλεψη Χρονοσειρών Μοντέλα για χρονικές σειρές AR,
Βασικές Έννοιες Ασαφών Συνόλων
Ασάφεια (Fuzziness) Έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. "Ο Νίκος είναι ψηλός Το πρόβλημα οφείλεται στην αντίληψη που έχει
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Προειδοποιήσεις πλημμυρών από μετεωρολογικές παρατηρήσεις και προγνώσεις
Προειδοποιήσεις πλημμυρών από μετεωρολογικές παρατηρήσεις και προγνώσεις Β. Κοτρώνη Κ. Λαγουβάρδος Ινστιτούτο Ερευνών Περιβάλλοντος Εθνικού Αστεροσκοπείου Αθηνών ΙΕΠΒΑ/ΕΑΑ "Υπηρεσίες και προϊόντα υποστήριξης
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών
Ποσοστό απόδοσης. Ποιοτικός παράγοντας για την φωτοβολταϊκή εγκατάσταση
Ποσοστό απόδοσης Ποιοτικός παράγοντας για την φωτοβολταϊκή εγκατάσταση Περιεχόμενα Το ποσοστό απόδοσης είναι ένα από τα σημαντικότερα μεγέθη για την αξιολόγηση της αποδοτικότητας μίας φωτοβολταϊκής εγκατάστασης.
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ
ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΜΑΜΜΑΣ ΚΩΝ/ΝΟΣ ΑΜ:331/2003032 ΝΟΕΜΒΡΙΟΣ 2010 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν να δημιουργήσω την παρούσα
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@auth.gr 30 Ιανουαρίου 2018 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας
ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική
Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr
ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x
ΚΕΦΑΛΑΙΟ 1 Ασαφή Συστήματα Η τεχνολογική πρόοδος των τελευταίων ετών επέβαλλε τη δημιουργία συστημάτων ικανών να εκτελέσουν προσεγγιστικούς συλλογισμούς, παρόμοιους με αυτούς του ανθρώπινου εγκέφαλου.
ΣΥΝΘΕΤΑ ΜΟΝΤΕΛΑ. Αριθμητικός Μέσος Εξομάλυνση Μοντελοποίηση. Συνδυασμός κάποιου μοντέλου και εξομάλυνσης. Διαχείριση Πληροφοριών 10.
ΣΥΝΘΕΤΑ ΜΟΝΤΕΛΑ Αριθμητικός Μέσος Εξομάλυνση Μοντελοποίηση Συνδυασμός κάποιου μοντέλου και εξομάλυνσης 10.1 ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ Βασική έννοια στη Στατιστική Σημαντική για την κατανόηση προβλέψεων που βασίζονται
Μάθημα: ΥΔΡΟΓΕΩΠΛΗΡΟΦΟΡΙΚΗ
Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Υδραυλικών Έργων Μάθημα: ΥΔΡΟΓΕΩΠΛΗΡΟΦΟΡΙΚΗ 6 η Διάλεξη : Μοντελοποίηση της Εξατμισοδιαπνοής Φώτιος Π. Μάρης, Αναπλ. Καθηγητής Δ.Π.Θ.
ΣΥΣΤΗΜΑ ΜΕΤΡΗΣΗΣ ΥΔΡΟΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΤΟ ΛΕΚΑΝΟΠΕΔΙΟ ΑΤΤΙΚΗΣ (METEONET)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τομέας Υδατικών Πόρων και Περιβάλλοντος Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΣΤΗΜΑ ΜΕΤΡΗΣΗΣ ΥΔΡΟΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΤΟ ΛΕΚΑΝΟΠΕΔΙΟ