Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών"

Transcript

1 Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών τιμών μιας παρατηρούμενης χρονοσειράς είναι σημαντικό πρόβλημα για πολλές εφαρμογές Ενδεικτικά αναφέρονται δύο παραδείγματα: Δείκτης κι όγκος συναλλαγών Χρηματιστηρίου Αξιών Αθηνών (ΧΑΑ) Για ευνόητους λόγους η πρόβλεψη χρηματιστηριακών δεικτών, όπως ο δείκτης κι ο όγκος συναλλαγών ΧΑΑ, έχει μεγάλο ενδιαφέρον 7 ASE idex, period ASE idex, period close idex years close idex mohs 5 x 6 ASE volume, period 985 x 5 ASE volume, period 8 volume 5 volume years mohs Ηλιακές κηλίδες Ο αριθμός των ηλιακών κηλίδων επηρεάζει το κλίμα της γης γι αυτό κι έχει μεγάλη σημασία η πρόβλεψη του αριθμού των ηλιακών κηλίδων για τα επόμενα έτη Aual suspos, period 7 Aual suspos, period 96 umber of suspos 5 5 umber of suspos years years

2 Για να κάνουμε την πρόβλεψη χρησιμοποιούμε τις παρατηρήσεις μέχρι τη παρούσα χρονική στιγμή Θεωρώντας την παρατηρούμενη χρονοσειρά { x, x, x } από μια στοχαστική διαδικασία { X }, το πρόβλημα που μελετάμε είναι η πρόβλεψη της χρονοσειράς για χρονικά βήματα μπροστά από τη χρονική στιγμή, που συμβολίζεται x (), ενώ η πραγματική αλλά άγνωστη σε εμάς τιμή στη χρονική στιγμή + είναι x + Το σφάλμα πρόβλεψης (predicio error) είναι e( ) = x+ x( ) () Με αναφορά στη στοχαστική διαδικασία { X }, η πρόβλεψη X () είναι η εκτίμηση του στοιχείου X + της { X } με βάση τα προηγούμενα στοιχεία της { X }, δηλαδή η βέλτιστη πρόβλεψη είναι X ( ) = E( X + X, X, ) Επιθυμητές ιδιότητες καλής εκτίμησης, δηλαδή καλής πρόβλεψης εδώ, είναι: η αμεροληψία (ubiasedess) ( X ( ) ) = X + E, η αποτελεσματικότητα (efficiecy), δηλαδή η μικρή διασπορά λάθους Var ε ( ) Var X X ( ) = + πρόβλεψης ( ) ( ) Συνδυάζοντας τις δύο παραπάνω ιδιότητες, ενδιαφερόμαστε για την πρόβλεψη εκείνη που ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα πρόβλεψης E( X X ( ) ) ) + για κάθε βήμα πρόβλεψης [Ποια είναι η σχέση των τριών ιδιοτήτων;] Για να αξιολογήσουμε την απόδοση ενός μοντέλου πρόβλεψης σε μια χρονοσειρά για χρονικά βήματα μπροστά υπολογίζουμε κάποιο μέτρο που συγκεντρώνει τα σφάλματα πρόβλεψης για έναν ικανοποιητικό αριθμό χρονικών στιγμών Κάνουμε λοιπόν προβλέψεις για χρονικά βήματα μπροστά σε έναν αριθμό γνωστών παρατηρήσεων για χρόνους +,+,+l, δηλαδή υπολογίζουμε τα x ( ), x ( ), x ( ) Έχοντας τις αντίστοιχες πραγματικές τιμές + + l x, x, x υπολογίζουμε τα σφάλματα πρόβλεψης για χρονικά βήματα l μπροστά e( ), e+ ( ), e+ l ( ) Υπάρχουν διάφορα στατιστικά μέτρα που συγκεντρώνουν τα σφάλματα πρόβλεψης, όπως η εκτίμηση του μέσου τετραγωνικού σφάλματος (mea square error, mse) [Πως;] l mse( ) = e ( ) = x x ( ) l + l l ( ) j j+ j Συχνά χρησιμοποιείται η ρίζα του μέσου τετραγωνικού σφάλματος (roo mea square error, rmse) l rmse( ) = e ( ) = x x ( ) l + l l ( ) j j+ j () Ένα χρήσιμο μέτρο σφάλματος πρόβλεψης όταν θέλουμε να συγκρίνουμε μοντέλα πρόβλεψης σε διαφορετικές χρονοσειρές είναι η κανονοικοποίηση του rmse (ormalied roo mea square error, rmse) διαιρώντας το rmse με τη δειγματική τυπική απόκλιση των παρατηρήσεων της χρονοσειράς (ή πιο σωστά των παρατηρήσεων που χρησιμοποιούνται στο σχηματισμό των σφαλμάτων)

3 rmse( ) = l + l + + ( x j+ xj( ) ) l l + ( xj+ x) όπου x είναι η δειγματική μέση τιμή των x+, x++, x+ l Τιμές του rmse κοντά στο δηλώνουν πολύ καλή πρόβλεψη ενώ τιμές του rmse κοντά γύτω από το δηλώνουν ότι η πρόβλεψη είναι τόσο καλή όσο αν προβλέπαμε με τη μέση τιμή [Γιατί;] Στη συνέχεια, θα κάνουμε μια σύντομη ανασκόπηση κάποιων απλών τεχνικών πρόβλεψης και θα μελετήσουμε την πρόβλεψη με ARIMA μοντέλα (συμπεριλαμβάνοντας φυσικά τα μοντέλα AR, MA και ARMA) Για ευκολία, θα χρησιμοποιήσουμε καταχρηστικά συμβολισμούς που αναφέρονται στο δείγμα, όπως x, για να συμβολίσουμε επίσης τις μεταβλητές, πχ X, όταν θέλουμε να δώσουμε γενικές σχέσεις για τις προβλέψεις και τα σφάλματα πρόβλεψης Απλές τεχνικές πρόβλεψης Αιτιοκρατική τάση (deermiisic red) Ξεκινώντας με την πιο απλή περίπτωση, υποθέτουμε πως η πληροφορία στη χρονοσειρά δίνεται μόνο από χρονικές τάσεις (reds), που είτε τις γνωρίζουμε ή τις εκτιμούμε, δηλαδή x = μ +, (3) όπου μ είναι μια αιτιοκρατική συνάρτηση του χρόνου (τάση) και είναι ο λευκός θόρυβος Η πρόβλεψη γίνεται με την επέκταση (exrapolaio) του αιτιοκρατικού όρου σε μελλοντικούς χρόνους, δηλαδή η πρόβλεψη του x + είναι x ( ) = E μ + x, x, x = μ [Γιατί;] (4) Το σφάλμα πρόβλεψης είναι διασπορά σ ( ) e ) = + ( [Γιατί;] Άρα e () είναι λευκός θόρυβος με Επέκταση καθολικών τάσεων (exrapolaio of global reds) Μια εύκολη προσαρμογή της συνάρτησης αιτιοκρατικής τάσης καθολικά (σε όλη τη χρονοσειρά) μπορεί να γίνει με πολυώνυμο κάποιας τάξης m, m p () = c + c+ + c (5) m Πολλών ειδών καμπύλες μπορεί να προσαρμόζουν καλά στα δεδομένα, όπως οι πολυωνυμικές καμπύλες όταν το m είναι μεγάλο, αλλά δίνουν πολύ διαφορετικές προβλέψεις όταν επεκτείνονται σε μελλοντικά χρονικά βήματα Στην πράξη, τέτοιες προβλέψεις είναι γενικά φτωχές Ειδικά, τα πολυώνυμα υψηλής τάξης, ξεφεύγουν γρήγορα προς το συν ή πλην άπειρο όταν επεκτείνονται έξω από το διάστημα παρατήρησης για το οποίο έγινε η εκτίμηση των παραμέτρων τους Επέκταση τοπικών τάσεων (exrapolaio of local reds) Ένας τρόπος για να βελτιώσουμε την απόδοση της επέκτασης τάσης είναι να κάνουμε την προσαρμογή του μοντέλου, όπως αυτό της (3), χρησιμοποιώντας μόνο m 3

4 τις σχετικά πρόσφατες παρατηρήσεις Με αυτόν τον τρόπο αποφεύγουμε την επίδραση των παλαιών παρατηρήσεων στην εκτίμηση του μοντέλου πρόβλεψης Αυτό βελτιώνει τα μοντέλα πρόβλεψης που δίνονται ως συναρτήσεις του χρόνου Για χρονικές σειρές με αιτιοκρατικό εποχικό όρο, x = s +, ή με αιτιοκρατικό εποχικό όρο και αιτιοκρατική τάση, x = μ + s +, η πρόβλεψη γίνεται κατά τον ίδιο τρόπο, δηλαδή επεκτείνοντας σε μελλοντικούς χρόνους τους αιτιοκρατικούς όρους που εκτιμούμε με κάποια συνάρτηση του χρόνου Εκθετική ομαλοποίηση Ένας άλλος απλός τρόπος πρόβλεψης είναι να εκτιμήσουμε το x + από το σταθμισμένο άθροισμα των προηγούμενων παρατηρήσεων της χρονοσειράς x ( ) = c x + c x + + c x = c x, (6) j j όπου οι συντελεστές c j είναι τα βάρη με c = j Είναι φυσικό να θέλουμε να δώσουμε περισσότερο βάρος στις πρόσφατες παρατηρήσεις και να διαλέξουμε να φθίνουν τα βάρη πηγαίνοντας πίσω στο χρόνο, c c c Μια τέτοια επιλογή των βαρών είναι j c = α( α), j =,,, < α <, (7) j όπου δε χρειάζεται να ορίσουμε το κάθε c j ξεχωριστά παρά μόνο το α Τα βάρη αυτά φθίνουν εκθετικά κι η επιλογή του α ορίζει πόσο γρήγορα φθίνουν (αν α ουσιαστικά μόνο οι πολύ πρόσφατες παρατηρήσεις χρησιμοποιούνται για την πρόβλεψη) Για να ενημερώσουμε την πρόβλεψη χρονικών βημάτων κάθε φορά που μια νέα παρατήρηση είναι διαθέσιμη μπορούμε να χρησιμοποιήσουμε την αναδρομική σχέση x ( ) = α x + ( α) x ( ) [Πως προκύπτει;] (8) + + Πρόβλεψη στάσιμων χρονικών σειρών με γραμμικά μοντέλα Πρώτα θα θεωρήσουμε ότι η χρονοσειρά για την οποία θέλουμε να κάνουμε προβλέψεις είναι στάσιμη, ή την έχουμε κάνει στάσιμη με κάποια από τις μεθόδους που μελετήσαμε σε προηγούμενο κεφάλαιο Τα γραμμικά μοντέλα που στάσιμων χρονικών σειρών που μελετήσαμε είναι τα μοντέλα AR, MA και ARMA Θα χρησιμοποιήσουμε αυτά τα μοντέλα για να κάνουμε προβλέψεις Παρακάτω θα θεωρήσουμε επίσης πως η χρονοσειρά έχει μέση τιμή (ώστε να αποφύγουμε την ύπαρξη σταθερού όρου στα μοντέλα πρόβλεψης) Πρακτικά αυτό γίνεται αφαιρώντας τη δειγματική μέση τιμή των παρατηρήσεων της χρονοσειράς από την κάθε παρατήρηση Για να σχηματίσουμε την πραγματική πρόβλεψη που αφορά την παρατηρούμενη μεταβλητή, προσθέτουμε τη δειγματική μέση τιμή στην προβλεπόμενη τιμή από το μοντέλο Πρόβλεψη με αυτοπαλινδρομούμενα μοντέλα (AR) AR() μοντέλο Ας αρχίσουμε με το πιο απλό γραμμικό αυτοπαλινδρομούμενο μοντέλο, το AR() x = φ x + (9) 4

5 Για την πρόβλεψη της επόμενης χρονικής στιγμής όταν γνωρίζουμε τη χρονοσειρά ως τη χρονική στιγμή, έχουμε από την υπόθεση του AR() μοντέλου x = φ x + () + + Η βέλτιστη πρόβλεψη ενός χρονικού βήματος όταν δίνεται { x, x, x είναι x () = φ x [Γιατί;] () Για δύο χρονικά βήματα εμπρός έχουμε x+ = φ x+ + + Αντικαθιστώντας το x + με την πρόβλεψη x () και χρησιμοποιώντας την () παίρνουμε x ( ) = φ x () = φ x Επαναλαμβάνοντας αυτή τη διαδικασία βρίσκουμε ότι η πρόβλεψη για χρονικά βήματα είναι x ( ) = φ x () Το σφάλμα πρόβλεψης για ένα χρονικό βήμα είναι e ( ) = +, δηλαδή το e () είναι λευκός θόρυβος με μηδενική μέση τιμή και διασπορά σ Για χρονικά βήματα η διασπορά του σφάλματος γίνεται φ Var ( e( ) ) = σ [Γιατί;] (3) φ AR(p) μοντέλο Υποθέτουμε πως η παρατηρούμενη χρονοσειρά { x, x, είναι η πραγματοποίηση μιας διαδικασίας AR(p), ή πιο ρεαλιστικά, πιστεύουμε πως το μοντέλο AR(p) εξηγεί ικανοποιητικά τη χρονοσειρά Το μοντέλο AR(p) για το x + είναι + p p+ + x = φ x + + φ x + (4) Η βέλτιστη πρόβλεψη ενός χρονικού βήματος, x (), με βάση τη σειρά { x, x, είναι x x() = φx + + φpx p+ (5) και το αντίστοιχο σφάλμα πρόβλεψης είναι e ( ) = + [Γιατί;] Παρατηρούμε ότι η πρόβλεψη του x + είναι το αιτιοκρατικό μέρος του AR μοντέλου Γενικά για χρονικά βήματα η πρόβλεψη είναι x ( ) = φ x ( ) + + φ x ( p), (6) p όπου κάθε τιμή x ( j) είναι γνωστή είτε από προηγούμενη πρόβλεψη ή απευθείας από τη χρονοσειρά, δηλαδή για j > το x ( j) είναι μια από τις προβλέψεις x ( ), x (), x ( ) που έχουν προηγηθεί και για j είναι x j) = x + { x, x, x } Η πρόβλεψη συνίσταται και πάλι στο αιτιοκρατικό ( j μέρος του AR μοντέλου για το x +, όπου οι άγνωστες παρατηρήσεις (ή θεωρητικά μεταβλητές) x +, x+, x+ έχουν αντικατασταθεί από τις αντίστοιχες προβλέψεις Το σφάλμα πρόβλεψης για χρονικά βήματα δίνεται ως γραμμικός συνδυασμός των στοιχείων του λευκού θορύβου στους χρόνους +, + e ( ) = b, (7) j + j x 5

6 όπου κάθε b j ορίζεται από τις παραμέτρους του μοντέλου (b =) [Πως;] Έτσι λοιπόν το e () έχει μηδενική μέση τιμή [Γιατί;] και διασπορά σ bj ( e ) Var ( ) = (8) Από την παραπάνω διασπορά πρόβλεψης μπορούν να σχηματιστούν όρια πρόβλεψης (predicio bouds, olerace iervals) για δεδομένο επίπεδο σημαντικότητας α x ( ) ± c Var e ( ), (9) α / ( ) όπου c α / είναι κατάλληλη κρίσιμη τιμή Για παράδειγμα, αν ~ Ν (, σ ) τότε το c α / είναι η κρίσιμη τιμή της τυπικής κανονικής κατανομής, δηλαδή για το 95% διάστημα πρόβλεψης θα χρησιμοποιήσουμε το c5 = 975 = 96 Πρόβλεψη με μοντέλα μέσου όρου (MA) ΜΑ() μοντέλο Το μοντέλο MA() για χρόνο + είναι + + x = + θ () Για να βρούμε την πρόβλεψη για ένα ή περισσότερα χρονικά βήματα χρησιμοποιούμε ότι η τυχαία μεταβλητή είναι ανεξάρτητη του x για χρόνους μικρότερους του και έτσι έχουμε αν j E ( j x, x, > + ) = + j αν j () και η πρόβλεψη είναι θ για = x ( ) = για > [Γιατί;] () Το σφάλμα πρόβλεψης είναι + για = e ( ) = x+ για > (3) Παρατηρούμε πως όλες οι προβλέψεις για χρόνους μεγαλύτερους του είναι Γενικά οι προβλέψεις για χρόνους μεγαλύτερους από την τάξη του ΜΑ μοντέλου είναι, όπως δίνεται παρακάτω ΜΑ(q) μοντέλο Θεωρώντας το MA(q) μοντέλο για τη χρονοσειρά { x, x, παρατήρηση δίνεται ως + + q q+ x, η επόμενη x = + θ + + θ (4) Η βέλτιστη πρόβλεψη ενός βήματος x ( ) είναι x() = θ + + θq q+ (5) και το αντίστοιχο σφάλμα πρόβλεψης είναι e ( ) = + [Γιατί;] Γενικά για χρονικά βήματα η πρόβλεψη είναι 6

7 θ + θ+ + + θq q+ αν q x( ) = (6) αν > q Το σφάλμα της πρόβλεψης των βημάτων είναι όπως και για το AR μοντέλο για p αν αντικαταστήσουμε τα b j με τα θ j (δες (7) και (8)) Τα σφάλματα,,, μπορούν να υπολογιστούν από τις παρατηρήσεις x, x, x όπου οι αρχικές τιμές,,, q είναι Ειδικότερα για να βρούμε τα q+, q+,, λύνουμε την εξίσωση του MA(q) για =q ως προς q+ (δηλαδή εδώ είναι q+ = xq+ [Γιατί;] ) και συνεχίζουμε με τον ίδιο τρόπο για χρόνους = q+, 3 Πρόβλεψη με αυτοπαλινδρομούμενα μοντέλα μέσου όρου (ARMA) Θεωρώντας το ARMA(p,q) μοντέλο για τη χρονοσειρά { x, x, παρατήρηση δίνεται ως + p p+ + q q+ x, η επόμενη x = φ x + + φ x + + θ + + θ (7) Η βέλτιστη πρόβλεψη για ένα χρονικό βήμα όταν δίνονται τα { x, x, είναι x () = φ x + + φ x + θ + + θ (8) p p+ q q+ και το σφάλμα της πρόβλεψης είναι e ( ) = + Γενικά για χρονικά βήματα η βέλτιστη πρόβλεψη είναι φ x( ) + + φpx( p) + θ + + θq q+ αν q x( ) = (9) φ x( ) + + φpx( p) αν > q Η πρόβλεψη με ARMA μοντέλο είναι η σύνθεση των προβλέψεων με το AR μέρος και το MA μέρος (δες (6) και (6)) 3 Πρόβλεψη μη-στάσιμων χρονικών σειρών με γραμμικά μοντέλα Οι προβλέψεις στη χρονοσειρά που κάναμε στάσιμη από μια μη-στάσιμη χρονοσειρά θα πρέπει να μετασχηματιστούν κατάλληλα για να αναφέρονται στην αρχική χρονοσειρά Όταν λοιπόν η χρονοσειρά δεν είναι στάσιμη για να εφαρμόσουμε την πρόβλεψη με τα μοντέλα της προηγούμενης παραγράφου πρέπει να κάνουμε τα εξής βήματα: να μετασχηματίσουμε τη χρονοσειρά σε στάσιμη : μη-στάσιμη x } { y } στάσιμη, { να κάνουμε την πρόβλεψη του y + με κάποιο μοντέλο, πχ AR, έστω y (), 3 να μετασχηματίσουμε την πρόβλεψη y () για την στάσιμη χρονοσειρά στην πρόβλεψη x () για την αρχική μη-στάσιμη χρονοσειρά Στη συνέχεια θα δούμε πως εφαρμόζονται τα παραπάνω βήματα Υποθέτουμε πως x, x, x δεν είναι στάσιμη Το κλασικό μοντέλο για το x είναι x = μ + s + y, (3) η χρονοσειρά { } x 7

8 όπου μ είναι η συνάρτηση τάσης, s είναι η περιοδική ή εποχική συνάρτηση και y είναι μια στάσιμη χρονοσειρά απαλλαγμένη από τάσεις και περιοδικότητες Τυπικά μοντέλα για τη χρονοσειρά { y, y, y } είναι τα μοντέλα AR, MA και ARMA Σκοπός μας είναι, δοθέντων των { x, x,, να βρούμε την πρόβλεψη για ένα χρονικό βήμα ή γενικά για χρονικά βήματα μπροστά, δηλαδή να προβλέψουμε το x + που ορίζεται ως x x = μ + s + y (3) Αν διαλέξουμε να εκτιμήσουμε τα μ και s ως συναρτήσεις του χρόνου (πχ να προσαρμόσουμε στο μ ένα πολυώνυμο, δες (5)), τότε μπορούμε να επεκτείνουμε τις εκτιμήσεις στο χρόνο + για να βρούμε τα μ + και s + Σ αυτήν την περίπτωση, αφαιρούμε από τις τιμές x, x, x, τις εκτιμήσεις της τάσης και περιοδικότητας και προκύπτουν οι τιμές των y, y, y (πρώτο βήμα) Στη συνέχεια προβλέπουμε το y + με χρήση κάποιου μοντέλου τύπου AR, MA ή ARMA (δεύτερο βήμα) Η πρόβλεψη x () προκύπτει απευθείας από την πρόβλεψη y () και τις επεκτάσεις τάσης και περιοδικότητας μ + και s + (τρίτο βήμα) ως x ( ) = + s + y ( ) (3) μ + + Αν διαλέξουμε να απαλείψουμε τα μ και s χρησιμοποιώντας διαφορές τότε στην ουσία αυτή η πρόβλεψη με τα παραπάνω τρία βήματα είναι η πρόβλεψη με μοντέλα ARIMA ή SARIMA Οι γενικοί τύποι για τις προβλέψεις με αυτά τα μοντέλα είναι πολύπλοκοι αλλά κάποιος μπορεί να καταλάβει πως γίνεται η πρόβλεψη με ARIMA μοντέλο θεωρώντας το ARIMA(p,,q) Παίρνοντας τις πρώτες διαφορές με υστέρηση ένα, από την αρχική χρονοσειρά { x, x, x } προκύπτει η χρονοσειρά { y, y, 3 y }, όπου y = x x, σχηματίζοντας έτσι το πρώτο βήμα της διαδικασίας πρόβλεψης μη-στάσιμων χρονοσειρών Εφαρμόζοντας το μοντέλο ARMA(p,q) στην { y, y, 3 y } βρίσκουμε την πρόβλεψη για ένα χρονικό βήμα y () (δεύτερο βήμα) και η πρόβλεψη για την αρχική χρονοσειρά (τρίτο βήμα) είναι x () = x + y () [Γιατί;] (33) Το σφάλμα πρόβλεψης του x +, e (), είναι το ίδιο με το σφάλμα πρόβλεψης του y + [Γιατί;] Γενικά η πρόβλεψη για χρονικά βήματα είναι x ( ) = x ( ) + y ( ), (34) όπου y () είναι η πρόβλεψη του y + με το μοντέλο ARMA(p,q) και το x ( ) είναι γνωστό από την πρόβλεψη του x +- Για ARIMA(p,d,q) ή SARIMA(p,d,q)(P,D,Q) s η διαδικασία της πρόβλεψης του x + είναι παρόμοια, δηλαδή βρίσκουμε την πρόβλεψη y ( ) με μοντέλο τύπου ARMA και την προσθέτουμε στην κατάλληλη έκφραση των τελευταίων παρατηρήσεων x, x,, σύμφωνα με τις τιμές των d και D Η πρόβλεψη για χρονικά βήματα μπορεί να υπολογισθεί αναδρομικά 8

9 Ασκήσεις Υπολογίστε την πρόβλεψη και τα όρια πρόβλεψης χρονοσειράς με το μοντέλο του τυχαίου περιπάτου Για μια χρονοσειρά με μέση τιμή μ = 8 εκτιμήθηκε μοντέλο AR() με παράμετρο φ = 5 και διασπορά λευκού κανονικού θορύβου σ = Έστω ότι είναι γνωστό ότι x = (α) Υπολογίστε την πρόβλεψη και τα 95% όρια πρόβλεψης για χρόνους +, +, +3 (β) Σχηματίστε το κατάλληλο διάγραμμα με τις προβλέψεις στο (α) Σχολιάστε πως περιμένετε να συνεχιστούν οι προβλέψεις και τα όρια πρόβλεψης για βήματα >+3 3 Για τα ίδια δεδομένα της άσκησης ( μ = 8, σ =, x = ), θεωρούμε το μοντέλο ΜΑ() με θ = 5 και = (α) Υπολογίστε την πρόβλεψη και τα 95% όρια πρόβλεψης για χρόνους +, +, +3 (β) Σχηματίστε το κατάλληλο διάγραμμα με τις προβλέψεις στο (α) Συγκρίνετε τις προβλέψεις με αυτές του AR() στην άσκηση 4 Για το δείκτη Dow-Joes (Αύγ 8 Δεκ 8, 97) εκτιμήθηκε το μοντέλο ARIMA(,,): ( 447B )( B) x = + 739, ~ WN(,455) για =,, 78 Οι τιμές του δείκτη Dow-Joes είναι για 57, x = 3469 και για 87, x = 5 Υπολογίστε την πρόβλεψη και τα 95% όρια πρόβλεψης του δείκτη για μια και δύο χρονικές στιγμές μπροστά 5 Υποθέτουμε το μοντέλο AR() με σταθερό όρο μ = 5, συντελεστές φ = 8 και φ = 8 και διασπορά λευκού κανονικού θορύβου σ = Υποθέτουμε επίσης ότι είναι γνωστές οι παρατηρήσεις x 99 = 74, x = 66 (α) Γράψτε το γενικό τύπο της πρόβλεψης βημάτων με αυτό το μοντέλο (β) Υπολογίστε την πρόβλεψη και τα 95% όρια πρόβλεψης των x, x και x 3 (β) Σχηματίστε το κατάλληλο διάγραμμα με τις προβλέψεις στο (α) Σχολιάστε πως περιμένετε να συνεχιστούν οι προβλέψεις και τα όρια πρόβλεψης των x 4, x 5 κτλ 6 Έστω το μοντέλο ARMA(,): x = + φ( x μ) + + θ μ, ~ WN(, σ ) (α) Υπολογίστε την πρόβλεψη και τα 95% όρια πρόβλεψης για χρονικές στιγμές μπροστά 9

10 (β) Για το παραπάνω μοντέλο εκτιμήθηκαν οι παράμετροι ως εξής: σ = 5, μ = 5, φ = και θ = 5 Αν x = 3 προβλέψτε το x +, το x + καθώς και το x + για πολύ μεγάλο 7 Θεωρούμε το μοντέλο ARIMA(,,) ( B ) x = ( + θb) (α) Γράψε τον τύπο που δίνει την πρόβλεψη για βήματα (β) Υπολόγισε τα 95% όρια πρόβλεψης για βήματα που δίνει αυτό το μοντέλο (γ) Για =, διερευνείστε τη σχέση του μοντέλου με το μοντέλο της εκθετικής ομαλοποίησης (δ) Το μοντέλο αυτό χρησιμοποιήθηκε για τη μοντελοποίηση της χρονοσειράς της συγκέντρωσης μιας ουσίας σε μια χημική διεργασία Η παράμετρος του ΜΑ μέρους εκτιμήθηκε ως θ = 7 και η διασπορά του θορύβου ως σ = Δίνονται οι παρατηρήσεις στις χρονικές στιγμές ως ως: 7, 66, 63, 6, 7, 69, 68, 74, 7, 7 Προβλέψτε τις επόμενες 5 προβλέψεις με τα αντίστοιχα 95% όρια πρόβλεψης, ξεκινώντας από τη χρονική στιγμή 8 (δηλαδή x8(), x8(),, x 8(5) ) και τη χρονική στιγμή (δηλαδή x(), x (),, x (5) ) Τι παρατηρείτε; (ε) Με βάση τις παραπάνω προβλέψεις, ποια είναι η διαφορά της πρόβλεψης με μοντέλο ARIMA(,,) από την πρόβλεψη με μοντέλο MA(); 8 Δίνονται οι παρατηρήσεις Θεωρούμε ότι οι παρατηρήσεις προέρχονται από μια AR διαδικασία με μέση τιμή και ο λευκός θόρυβος έχει κανονική κατανομή Προσαρμόστηκαν τα μοντέλα AR() και AR() στην παραπάνω χρονοσειρά και εκτιμήθηκαν οι παράμετροι τους: ˆ φ = 7 για το AR() και ˆ φ = 4, ˆ φ = 8 για το AR() (α) Επιλέξτε ένα από τα δύο μοντέλα χρησιμοποιώντας το κριτήριο AIC βοήθεια: κριτήριο AIC: AIC( p) = log( ˆ σ ) + p (β) Κάνετε προβλέψεις για τις χρονικές στιγμές 9 και με το καταλληλότερο μοντέλο (σημειακή εκτίμηση και 95% όρια πρόβλεψης) 9 Θεωρείστε το παρακάτω μοντέλο ( φb)( Bx ) =( + θ ), ~ Ν (, σ ) και είναι IID (α) Θεωρώντας ως αφετηρία πρόβλεψης τη χρονική στιγμή, βρείτε τη σημειακή πρόβλεψη βημάτων μπροστά x ( ) του x + (β) Βρείτε τη διασπορά του σφάλματος πρόβλεψης για ένα και δύο βήματα μπροστά

Χρονοσειρές Μάθημα 6

Χρονοσειρές Μάθημα 6 Χρονοσειρές Μάθημα 6 Πρόβλεψη Χρονικών Σειρών Μοντέλα για χρονικές σειρές AR, MA, ARMA, ARIMA, SARIMA πρόβλεψη Πολλές εφαρμογές Δείκτης και όγκος συναλλαγών Χρηματιστηρίου Αξιών Αθηνών ΧΑΑ Θα μπορούσαμε

Διαβάστε περισσότερα

Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις

Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις Πρόβλεψη Χρονοσειρών Μοντέλα για χρονικές σειρές AR,

Διαβάστε περισσότερα

min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με

min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με = φ + φ + + φ + Προσδιορισμός τάξης AR μοντέλου Προσαρμογή AR μοντέλου - μερική αυτοσυσχέτιση για υστέρηση τ: = φ + w, = φ + φ + w,, = φ + φ + φ + w,3,3 3,3 3 ˆ φ, kk, τάξη, εκτίμηση παραμέτρων συσχέτιση

Διαβάστε περισσότερα

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (redco, forecasg) Η πρόβλεψη των μελλοντικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0 Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 1

Χρονοσειρές Μάθημα 1 Χρονοσειρές Μάθημα Περιεχόμενα - Στασιμότητα, αυτοσυσχέτιση, μερική αυτοσυσχέτιση, απομάκρυνση στοιχείων μη-στατικότητας, έλεγχος ανεξαρτησίας για χρονικές σειρές - Γραμμικές στοχαστικές διαδικασίες: αυτοπαλινδρομούμενη

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 5

Χρονοσειρές - Μάθημα 5 Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR(p) p p ~ WN(, ) στοχαστική διαδικασία MA(q) q q στοχαστική διαδικασία ARMA(p,q) p p q q Εκτίμηση διαδικασίας (μοντέλο) AR, MA ή ARMA?

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 5

Χρονοσειρές - Μάθημα 5 Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR() X X X X Z Z ~ WN(, Z) στοχαστική διαδικασία MA(q) X Z Z Z Z q q στοχαστική διαδικασία ARMA(,q) X X X X Z Z Z Z q q Εκτίμηση διαδικασίας

Διαβάστε περισσότερα

Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας

Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 1

Χρονοσειρές Μάθημα 1 Χρονοσειρές Μάθημα Μάθημα του προπτυχιακού προγράμματος σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ (ΤΗΜΜΥ) ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA

Διαβάστε περισσότερα

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα

Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα - Ανακατασκευή του χώρου καταστάσεων παρατήρηση της πολυπλοκότητας / στοχαστικότητας / δομής του συστήματος - Εκτίμηση χαρακτηριστικών

Διαβάστε περισσότερα

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική

Διαβάστε περισσότερα

Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση

Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση «Ποσοτικε ς Με θοδοι στα Οικονομικα : Ανα λυση οικονομικω ν χρονοσειρω ν με γραμμικε ς μεθο δους» - Με ρος Α, Διδάσκων: Κουγιουμτζής Δημήτρης Quaiaive Topics i Ecoomics: Time Series Aalysis wih Liear Mehods

Διαβάστε περισσότερα

1.2 Απλός Κινητός Μέσος (Simple -equally-weighted- Moving Average)

1.2 Απλός Κινητός Μέσος (Simple -equally-weighted- Moving Average) Μέθοδοι Εξομάλυνσης Οι διαδικασίες της εξομάλυνσης (smoohig και της παρεμβολής (ierpolaio αποτελούν ένα περίπλοκο πεδίο έρευνας και γνώσης και έχουν άμεση πρακτική εφαρμογή στις οικονομικές επιστήμες..

Διαβάστε περισσότερα

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Εκτίμηση μη-γραμμικών χαρακτηριστικών

Εκτίμηση μη-γραμμικών χαρακτηριστικών Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lypunov (μεγαλύτερος,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS

ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS 5. Η γενική μορφή στάσιμης γραμμικής στοχαστικής διαδικασίας διακριτού χρόνου 5. Υποδείγματα ARIMA

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση? AE index General Index of Comsumer Prices Χρονοσειρές Μάθημα General Index of Comsumer Prices, period Jan - Aug 5 5 Μη-στασιμότητα 5 Τάση? Εποχικότητα / περιοδικότητα? 5 4 5 6 4 Auroral Elecroje Index

Διαβάστε περισσότερα

Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις

Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Κουγιουμτζής Δημήτρης

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Κουγιουμτζής Δημήτρης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Μάθημα του μεταπτυχιακού προγράμματος ειδίκευσης Στατιστική και Μοντελοποίηση του Τμήματος Μαθηματικών ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής

Διαβάστε περισσότερα

Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA

Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης

Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης ΜΕΡΟΣ Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης Εισαγωγή Περιγραφή μεθόδων πρόβλεψης Οι μέθοδοι προβλέψεων χωρίζονται σε 3 μεγάλες κατηγορίες Α. Με βάση τον ορίζοντα προγραμματισμού. βραχυπρόθεσμες.

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ... ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών Χρονοσειρές - Μάθημα 8 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(,q) μοντέλο x x x z z z q q Πλεονεκτήματα:. Απλά. Κανονική διαδικασία, ανεπτυγμένη

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ (ΝΠΣ) & ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ (ΠΠΣ) (6o Εξάμηνο Μαθηματικών) Ιανουάριος 2008

ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ (ΝΠΣ) & ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ (ΠΠΣ) (6o Εξάμηνο Μαθηματικών) Ιανουάριος 2008 ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ (ΝΠΣ) & ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ (ΠΠΣ) (6o Εξάμηνο Μαθηματικών) Ιανουάριος 008 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Θέμα Θέμα Θέμα 3 Θέμα 4 Βαθμός ΝΠΣ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού

Διαβάστε περισσότερα

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής

Διαβάστε περισσότερα

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III 0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης

Διαβάστε περισσότερα

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών

Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών Χρονοσειρές - Μάθημα 7 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(p,q) μοντέλο x x px p z z z q q Πλεονεκτήματα:. Απλά 2. Κανονική διαδικασία, ανεπτυγμένη

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

2 Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων

2 Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων Η ανάλυση χρονοσειρών στο πεδίο των συχνοτήτων είναι συμπληρωματική της ανάλυσης στο πεδίο του χρόνου, αλλά μπορεί να διερευνήσει χαρακτηριστικά που δεν εντοπίζονται

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Πραγματικές χρονοσειρές

Πραγματικές χρονοσειρές 3. 4.. 5... Γενικά για χρονοσειρές (πειραματικά δεδομένα και θόρυβος). Ανακατασκευή χώρου φάσεων 3. Υπολογισμός διάστασης χαοτικών ελκυστών 4. Υπολογισμός εκθετών Lyapunov 5. Μέθοδοι πρόβλεψης φυσιολογία

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

Διάστημα εμπιστοσύνης της μέσης τιμής

Διάστημα εμπιστοσύνης της μέσης τιμής Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ ΚΕΦΑΛΑΙΟ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ Στο κεφάλαιο αυτό θα μελετήσουμε κάποια βασικά χαρακτηριστικά των χρονοσειρών μέσα από πραγματικά παραδείγματα. Συγκεκριμένα θα μελετήσουμε στοιχεία μη-στασιμότητας,

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης

Διαστήματα Εμπιστοσύνης Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z

Διαβάστε περισσότερα

ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ

ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ ΚΕΦΑΛΑΙΟ 4ο ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 4.1 ΕΙΣΑΓΩΓΗ 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 4.3 ΥΠΟΔΕΙΓΜΑΤΑ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Αστάθεια (volatility)

Αστάθεια (volatility) Αστάθεια volly N Χρονοσειρά πρώτων διαφορών ή σχετικών μεταβολών { } Μεταβλητότητα ή αστάθεια σε κάθε χρονική στιγμή σ ή σ y y y y y Ηαστάθειαs δίνεται με αναφορά σε κάποια περίοδο T vol : - στιγμιαία

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Stochastic Signals Class Estimation Theory. Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory

Stochastic Signals Class Estimation Theory. Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory Stochastic Signals Class Estimation Theory Andreas Polydoros University of Athens Dept. of Physics Electronics Laboratory 1 Τι ειναι «Εκτιμηση» (Estimation)? Γενικο Πλαισιο: Θεωρια και Πραξη Συμπερασματων

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Ανάλυση και Πρόβλεψη Χρονοσειρών

Ανάλυση και Πρόβλεψη Χρονοσειρών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Ανάλυση και Πρόβλεψη Χρονοσειρών Διπλωματική εργασία της Γεωργίας Μαργιά

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications)

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications) ΚΕΦΑΛΑΙΟ 5 ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Idetificatios) Στο κεφάλαιο αυτό γίνεται παρουσίαση μεθοδολογίας για την ανεύρεση ενός αξιόπιστου μοντέλου πριν ή κατά την λειτουργία της

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα

Διαβάστε περισσότερα

x y max(x))

x y max(x)) ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα

Διαβάστε περισσότερα