Γ. Πειραματισμός Βιομετρία
|
|
- Θάνος Μητσοτάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Περιγραφή του σχεδίου Με το μπορούμε να επιλέξουμε την παραλλακτικότητα σε δύο κατευθύνσεις Οι επεμβάσεις τοποθετούνται σε σειρές και στήλες Κάθε σειρά περιλαμβάνει όλες τις επεμβάσεις Κάθε στήλη περιέχει όλες τις επεμβάσεις Τα πιο κοινά σχέδια είναι τα 5 5 και 8 8
2 Περιγραφή του σχεδίου (Συνέχεια) Παράδειγμα τοποθέτησης τεσσάρων επεμβάσεων σε πειραματικό αγρό που αλλάζει όσον αφορά στην υγρασία και στη γονιμότητα κατά γνωστό τρόπο Πολλή υγρασία λίγη υγρασία γόνιμο Α Β Γ Δ Β Γ Δ Α Γ Δ Α Β λιγότερο γόνιμο Δ Α Β Γ
3 Περιγραφή του σχεδίου (Συνέχεια) Η τοποθέτηση των τεμαχίων στο το ένα δίπλα στο άλλο Σειρές Στήλες ΑΒΓΔ ΒΓΔΑ ΓΔΑΒ ΔΑΒΓ
4 Περιγραφή του σχεδίου (Συνέχεια) Η τοποθέτηση τριών Λατινικών Τετραγώνων σε τρεις τοποθεσίες Ι ΙΙ ΙΙΙ Α Γ Β Γ Β Α Β Α Γ Γ Α Β Β Γ Α Α Β Γ Α Β Γ Β Γ Α Γ Β Β
5 Διαδικασία τυχαιοποίησης Εξαρτάται από τον τύπο του ΛΤ Παράδειγμα τυχαιοποίησης 3 3 ΛΤ Α Β C B C A C A B Τυπικό Τετράγωνο Τυχαιοποίηση στηλών C A B Α B C B C A Τυχαιοποίηση όλων πλην της 1 ης σειράς C A B B C A Α B C 4 4 ΛΤ : διαδικασία όμοια με αυτήν του 3 3 ΛΤ 5 5 ΛΤ : τυχαιοποίηση όλων των στηλών και σειρών
6 Πλεονεκτήματα του ΛΤ Μπορούμε να ελέγξουμε την παραλλακτικότητα σε δύο κατευθύνσεις Ενδεχομένως αυξάνεται η ακρίβεια σε σχέση με το σχέδιο ΤΠΟ Μειονεκτήματα του ΛΤ Εάν ο αριθμός των επεμβάσεων είναι μεγάλος τότε το πείραμα γίνεται αναγκαστικά μέγιστο με πιθανή αύξηση του πειραματικού σφάλματος Η ανάλυση είναι περίπλοκη όταν λείπουν παρατηρήσεις Όταν οι επεμβάσεις είναι λίγες υπάρχουν πολύ λίγοι ΒΕ για το πειραματικό σφάλμα Η επίδραση του μεγέθους του ΛΤ στους ΒΕ του Σφάλματος Πηγή Παραλ/τητας ΒΕ x 3x3 4x4 5x5 8x8 Σειρές Στήλες Επεμβάσεις Σφάλμα (-1)(-) Σύνολο
7 Επαναλήψεις Λατινικών Τετραγώνων Ένας τρόπος να αυξηθούν οι ΒΕ του Σφάλματος για τα μικρά ΛΤ είναι η χρησιμοποίηση περισσότερων του ενός τετραγώνου σε ένα πείραμα Παράδειγμα : Δύο 4 4 ΛΤ * Αθροιστικά στα τετράγωνα Πηγή ΒΕ Παραλλακτικότητας Τετράγωνα sq 1 = 1 * Σειρές (Τετράγωνα) sq ( 1) = 6 * Στήλες (Τετράγωνα) sq ( 1) = 6 Επέμβαση 1= 3 Σφάλμα sq ( 1)( ) = 1 Σύνολο sq 1 = 1 Όπου sq = αριθμός των τετραγώνων
8 Το Γραμμικό Πρότυπο Υ ijk = μ + t i + β j + γ k + ε ijk i, j, k = 1,, όπου µ = ο γενικός μ.ο. των επεμβάσεων, δηλ ο μ.ο. των παρατηρήσεων t i β j γ k = η επίδραση της i-στής σειράς = η επίδραση της j-στής στήλης = η επίδραση της k-στής επέμβασης ε ij Ν (0, σ e ) Σ t i = Σ β j = Σ γ k = 0 Μπορούμε να εκτιμήσουμε την σ από τους μ.ο. υπολογίζοντας το Μέσο Τετράγωνο (ή διακύμανση) των Επεμβάσεων (ΜΤε) Μπορούμε να εκτιμήσουμε την σ από τις ατομικές παρατηρήσεις υπολογίζοντας το Μέσο Τετράγωνο (ή διακύμανση) του Σφάλματος (ΜΤυ)
9 Προϋποθέσεις της ANOVA 1. Τα πειραματικά σφάλματα είναι τυχαία, ανεξάρτητα και ακολουθούν την κανονική κατανομή με μέσο όρο μηδέν και κοινή διακύμανση (δηλ. οι διακυμάνσεις μέσα σε κάθε επέμβαση είναι ομοιογενείς) ε ij Ν (0, σ e ). Οι πληθυσμοί από τους οποίους προήλθε κάθε επέμβαση ακολουθούν την κανονική κατανομή (γιατί σε κάθε συνδυασμό σειράς και στήλης έχουμε μόνο μία επέμβαση και όχι όλες τις επεμβάσεις). 3. Οι διακυμάνσεις των πληθυσμών αυτών είναι ίσες ή ομοιογενείς. Η ιδιότητα αυτή λέγεται ομοσκεδαστικότητα 4. Δεν υπάρχει αλληλεπίδραση μεταξύ στηλών, σειρών και επεμβάσεων Τόσο το επίπεδο σημαντικότητας όσο και η ευαισθησία της δοκιμασίας του F επηρεάζονται εάν δεν ισχύουν οι παραπάνω προϋποθέσεις, με αποτέλεσμα αύξηση των Σφαλμάτων τύπου Ι Και στην περίπτωση αυτή όμως, για τα περισσότερα βιολογικά δεδομένα, η ANOVA δίνει αξιόπιστα αποτελέσματα
10 Κατάτμηση Αθροίσματος Τετραγώνων Τα συστατικά του προτύπου να ξαναγραφούν ως εξής: µ ως Y... t i ως Y i.. Y γ k ως Υ.. κ Υ... Υ ijk = μ + t i + β j + γ k + ε ijk β j ως Υ. j. Y ε ως Y _ ijk Y i.. Υ. j. Y.. k + Y ij μπορούν Άρα: ( Yijκ Y... ) = ( Yi Y... ) + ( Y. j. Y... ) + ( Y.. κ Y... ) + ( ) + (.. ) ( κ Y... ) Y... Y κ Y... + Y κ Y.. i Y. j. Y.. Οπότε τελικά: i= 1 j= 1 κ = 1 ( Y Y... ) = ( Y i.. Y... ) + ( Y. j. Y... ) + ( Y Y... ) + ijκ +.. Yijκ ij + i= 1 i= 1 j= 1 κ = 1 j= 1 κ = 1 ( ) Y Y i.. Y. j. Y.. κ + Y... ijκ.. κ
11 Ανάλυση της παραλλακτικότητας (ANOVA) Πηγή Παραλλακτικότητας ΒΕ Άθροισμα Τετραγώνων Μέσο Τετράγωνο Θεωρητική σύσταση ΜΤ F Σειρές -1 Στήλες -1 Επεμβάσεις -1 Υπόλοιπο (-1)(-) Σύνολο -1
12 Παράδειγμα Απόδοση 4 ποικιλιών αραβοσίτου (χλγ/στρ) Στήλες Άθροισμα Σειρές Σειρών (Y i..) 1 1,640 (Β) 1,10 (D) 1,45 (C) 1,345 (Α) 5,60 1,475 (C) 1,185 (Α) 1,400 (D) 1,90 (Β) 5, ,670 (Α) 0,710 (C) 1,665 (Β) 1,180 (D) 5,5 4 1,565 (D) 1,90 (Β) 1,665 (Α) 0,660 (C) 5,170 Άθροισμα Στηλών (Y. j.) 6,350 4,395 6,145 4,475 1, Διαμόρφωση της υπόθεσης: H 0 : μ 1 = μ = μ 3 = μ 4 H 1 : τουλάχιστον ένας μ.ο. διαφέρει από τους υπόλοιπους. Υπολογισμός Αθροισμάτων Επεμβάσεων (Υ.. k ) Ποικιλία Α = 5,855 Ποικιλία Β = 5,885 Ποικιλία C = 4,70 Ποικιλία D = 5,355 Y = = = ΔΟ
13 Παράδειγμα (Συνέχεια) Απόδοση 4 ποικιλιών αραβοσίτου (χλγ/στρ) Στήλες Άθροισμα Σειρές Σειρών (Y i..) 1 1,640 (Β) 1,10 (D) 1,45 (C) 1,345 (Α) 5,60 1,475 (C) 1,185 (Α) 1,400 (D) 1,90 (Β) 5, ,670 (Α) 0,710 (C) 1,665 (Β) 1,180 (D) 5,5 4 1,565 (D) 1,90 (Β) 1,665 (Α) 0,660 (C) 5,170 Άθροισμα Στηλών (Y. j.) 6,350 4,395 6,145 4,475 1, AT o σ (Συνολικό) ( 1,64 + 1,10 + 1, ,66 ) = 1, 4139 = Yij ΔΟ = ΔΟ AT = 5. a (Σειρών) ( ) ΔΟ = Yi.. ΔΟ = 4 AT 6. b (Στηλών) ( 6,35 + 4, , ,475 ) = Y.j. = ΔΟ = ΔΟ 4
14 Παράδειγμα (Συνέχεια) Αθροίσματα Επεμβάσεων Ποικιλία Α = 5,855 Ποικιλία Β = 5,885 Ποικιλία C = 4,70 Ποικιλία D = 5, ΑΤ γ (Επεμβάσεων) Y.. k ( ) = = ΔΟ = ΔΟ 4 8. ΑΤ υ = ΑΤ ο ΑΤ a ΑΤ b ΑΤ γ = 0,196 (Υπολοίπου)
15 Παράδειγμα (Συνέχεια) 9. Πηγή Παραλλακτικότητας ΒΕ ΑΤ ΜΤ ΘΣΜΤ F Σειρές 1 = σ e +4σ α Στήλες 1 = σ e +4σ b Επεμβάσεις 1 = σ e +4σ γ 6.60* Σφάλμα ( 1) ( ) = σ e Σύνολο 1 = F α; ΒΕ επεμβάσεων, ΒΕ υπολοίπου F 0.05 ; 3,6 = 4, Εξαγωγή συμπερασμάτων Επειδή το F = 6,60 > F πιν. απορρίπτεται η H 0 σε α = 0.05 Άρα συμπεραίνουμε ότι μία τουλάχιστον διαφέρει 4,76 6,60
16 Παράδειγμα (Συνέχεια) Πηγή Παραλλακτικότητας ΒΕ ΑΤ ΜΤ ΘΣΜΤ F Σειρές 1 = σ e +4σ α Στήλες 1 = σ e +4σ b Επεμβάσεις 1 = σ e +4σ γ 6.60* Σφάλμα ( 1) ( ) = σ e Σύνολο 1 = s Y 1. * 100 %ΣΠ = = *100 = 0.15 *100 1,34 = 11% ΕΣΔ t ΜΤ ( ) 4 υ 13. = = Επεμβάσεων. a =
17 H ανάλυση ενός πειράματος με τα τρία βασικά σχέδια ΟΛΙΚΟ ΑΤ an-1 ΕΤΣ ΑΤ Επεμβάσεων a-1 ΑΤ Υπόλοιπο a(n-1) ΤΠΟ ΑΤ Επεμβάσεων a-1 ΑΤ Ομάδων b-1 ΑΤ Υπόλοιπο (a-1)(b-1) ΛΤ ΑΤ Επεμβάσεων -1 AT Σειρές -1 AT Στήλες -1 ΑΤ Υπόλοιπο (-1)(-)
18 Σχετική αποτελεσματικότητα και ακρίβεια Με δεδομένο αριθμό επεμβάσεων και επαναλήψεων, το πειραματικό σχέδιο επηρεάζει την ακρίβεια ενός πειράματος μέσω των ΒΕ του Σφάλματος. Παράδειγμα: 5 επεμβάσεις 5 επαναλήψεις Πειραματικό Σχέδιο και ΒΕ ΕΤΣ ΤΠΟ ΛΤ Πηγή Παραλ/τητας ΒΕ Πηγή Παραλ/τητας ΒΕ Πηγή Παραλ/τητας ΒΕ Eπεμβάσεις 4 Επεμβάσεις 4 Επεμβάσεις 4 Σφάλμα 0 Ομάδες 4 Σειρές 4 Σφάλμα 16 Στήλες 4 Σφάλμα 1 Σύνολο 4 Σύνολο 4 Σύνολο 4 Τα πλέον σύνθετα σχέδια έχουν λιγότερους ΒΕ Σφάλματος Είναι γενικά δύσκολο να εντοπισθούν διαφορές μεταξύ των επεμβάσεων όταν ΒΕ του σφάλματος είναι λιγότεροι από 0
19 Σχετική αποτελεσματικότητα και ακρίβεια (Συνέχεια) Σχετική αποτελεσματικότητα δύο σχεδίων : Α = ( n 1 ( n + 1)( n + 1)( n 1 + 3) s + 3) s 1 *100% Όπου s 1 και n 1 = ΜΤ και BE Σφάλματος του απλούστερου σχεδίου, αντίστοιχα s και n = ΜΤ και BE Σφάλματος του πλέον σύνθετου σχεδίου, αντίστοιχα s Εάν ΒΕ > 0 τότε: Α = *100% s 1 To πλέον σύνθετο σχέδιο θεωρείται πιο αποτελεσματικό εάν Α > 100% Η αύξηση της αποτελεσματικότητας θα πρέπει να συνεκτιμάται με την αύξηση της δαπάνης για το πλέον σύνθετο σχέδιο
Γ. Πειραματισμός Βιομετρία
Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Περιγραφή του σχεδίου Είναι πιθανώς το ευρύτερα χρησιμοποιούμενο και πλέον χρήσιμο πειραματικό σχέδιο Εκμεταλλεύεται την συγκέντρωση των επεμβάσεων σε ομάδες. Κάθε ομάδα (που ονομάζεται και επανάληψη)
Διαβάστε περισσότεραΓ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Γενικά Σκοπός των παραγοντικών πειραμάτων είναι η ταυτόχρονη μελέτη των επιδράσεων ενός αριθμού παραγόντων ώστε να προκύψει πληροφόρηση όχι μόνο για την αντίδραση του πειραματικού υλικού σε μεμονωμένους
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
ANOVA με δειγματοληψία Το Γραμμικό Πρότυπο = µ τ ε i ij δ όπου = το k-στό δείγμα της j-στής παρατήρησης της i-στής επέμβασης µ = ο μέσος όρος του πληθυσμού τ i = η επίδραση της i-στής επέμβασης ε ij =
Διαβάστε περισσότεραΖήτηµα 2. Κατεύθυνση µεταβολής γονιµότητας. Πειραµατικός Αγρός. Επεµβάσεις: Α1Β1:1, Α1Β2:2, Α1Β3:3, Α2Β1:4, Α2Β2:5 και Α2Β3:6
Ζήτηµα. ίνεται το παρακάτω φύλλο δεδοµένων (πείραµα 2 2 πλήρως τυχαιοποιηµένο-crd, 3 επαναλήψεις ανά επέµβαση). Να υπολογιστούν οι µέσοι όροι για τον Παράγοντα Α (δύο επίπεδα Α και Α2), για τον Παράγοντα
Διαβάστε περισσότεραΕισαγωγή - Πειραματικοί Σχεδιασμοί. Κατσιλέρος Αναστάσιος
Εισαγωγή - Πειραματικοί Σχεδιασμοί Κατσιλέρος Αναστάσιος 2017 Παραλλακτικότητα To φαινόμενο εμφάνισης διαφορών μεταξύ ατόμων ή αντικειμένων ή παρατηρήσεων-μετρήσεων, που ανήκουν στην ίδια ομάδα-κατηγορία,
Διαβάστε περισσότεραΕξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
Διαβάστε περισσότεραΤεχνική Πειραματισμού. Κλιμάκωση των πειραμάτων στο χρόνο Δικτύωση των πειραμάτων στο χώρο Εδαφική ανομοιογένεια
Πειραματισμός 1 Τεχνική Πειραματισμού Κλιμάκωση των πειραμάτων στο χρόνο ικτύωση των πειραμάτων στο χώρο δαφική ανομοιογένεια 2 δαφική ανομοιογένεια 3 Τεχνική Πειραματισμού Κλιμάκωση των πειραμάτων στο
Διαβάστε περισσότεραΓΕΩΡΓΙΚΟΣ ΠΕΙΡΑΜΑΤΙΣΜΟΣ 1ο Εργαστήριο «ΣΧΕΔΙΑΣΗ ΠΕΙΡΑΜΑΤΙΚΟΥ ΑΓΡΟΥ»
ΓΕΩΡΓΙΚΟΣ ΠΕΙΡΑΜΑΤΙΣΜΟΣ 1ο Εργαστήριο «ΣΧΕΔΙΑΣΗ ΠΕΙΡΑΜΑΤΙΚΟΥ ΑΓΡΟΥ» Α. ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Ηλιοφάνεια Γονιμότητα εδάφους Γενετικό υλικό Απόδοση ποικιλίας Εντομολογικές και φυτοπαθολογικές
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Πολλαπλές Συγκρίσεις Μέσων Γενικά Η ANOVA αποκαλύπτει εάν υπάρχουν διαφορές μεταξύ των επεμβάσεων, αλλά ποιες ακριβώς είναι αυτές? Κατηγορίες συγκρίσεων A posteriori συγκρίσεις (αφού δούμε τα δεδομένα)
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017
Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Διαβάστε περισσότεραΕργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Οσκοπόςενόςπειράματος Συνήθως θέλουμε να απαντήσουμε συγκεκριμένες ερωτήσεις που τίθενται από τους στόχους του πειράματος Πείραμα άρδευσης (2 x 2 παραγοντικό ) 1 cm/ha πρώιμη εφαρμογή (m 1 ) 1 cm/ha όψιμη
Διαβάστε περισσότεραΑναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Διαβάστε περισσότεραΓεωργικός Πειραματισμός 1o Εργαστήριο «Διαδικασία της Τυχαιοποίησης»
Γεωργικός Πειραματισμός o Εργαστήριο «Διαδικασία της Τυχαιοποίησης» Επαναληπτικοί Ορισμοί: Πείραμα: Μία σχεδιασμένη έρευνα που γίνεται είτε για να εξαχθούν νέα συμπεράσματα είτε για να ελεχθούν παλαιότερα.
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραΑναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Διαβάστε περισσότεραΈλεγχος υποθέσεων ΙI ANOVA
Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση
Διαβάστε περισσότεραΓραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011
Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017
Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2
Διαβάστε περισσότεραΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 5. Η ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΣΤΑ ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 5. Η ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΣΤΑ ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ 1 ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ Συνολική φαινοτυπική παραλλακτικότητα (s 2 ): s 2 = s 2 G + s 2 E + s 2 GxE 1. s 2 G : Γενετική παραλλακτικότητα 2.
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Παραλλακτικότητας
Εισαγωγή στην Ανάλυση Παραλλακτικότητας Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Παραλλακτικότητα Που Οφείλεται; Παραλλακτικότητα
Διαβάστε περισσότεραΈλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Διαβάστε περισσότεραΓια το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Διαβάστε περισσότεραΓεωργικός Πειραµατικός Σχεδιασµός: Πρακτικές Συµβουλές
Γεωργικός Πειραµατικός Σχεδιασµός: Πρακτικές Συµβουλές Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Η Γεωργία Εισαγωγή
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση
Διαβάστε περισσότεραΑν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας
Διαβάστε περισσότεραΑνάλυση Διασποράς Προβλήματα και Ασκήσεις
Ανάλυση Διασποράς Προβλήματα και Ασκήσεις 1. Ένας ερευνητής προκειμένου να συγκρίνει τρία σιτηρέσια εκτροφής κοτόπουλων (Σ1, Σ2 και Σ3, αντίστοιχα), σχεδίασε και εκτέλεσε το εξής πείραμα. Επέλεξε 15 νεογέννητα
Διαβάστε περισσότεραΔιάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
Διαβάστε περισσότεραΠροσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος
Διαβάστε περισσότεραΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ
ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Analysis Of Variance (ANOVA) ANOVA Ή ΣΤΙΣ
Διαβάστε περισσότερασυντελεστής κληρονομικότητας (coefficient of heritability) Η 2 h 2
συντελεστής κληρονομικότητας (coeffcent of hertablty) Η h Η, h : συντελεστής κληρονομικότητας σε μία ιδιότητα (χαρακτηριστικό) το ποσοστό της φαινοτυπικής διακύμανσης σε έναν πληθυσμό που οφείλεται στη
Διαβάστε περισσότερα1. Πειραματικά Σφάλματα
. Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός
Διαβάστε περισσότεραΔειγματοληψία στην Ερευνα. Ετος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)
Διαβάστε περισσότεραΔοκιμές προτίμησης και αποδοχής
Δοκιμές προτίμησης και αποδοχής Χρησιμοποιείται συνήθως για: Επιλογή άριστου δείγματος ή άριστης επεξεργασίας Συγκριτική αξιολόγηση ποιοτικών χαρακτηριστικών Συγκριτική προτίμηση ομοειδών τροφίμων (διερεύνηση
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΧημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
Διαβάστε περισσότεραΣτατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/017 Στατιστικός έλεγχος υποθέσεων σε επίπεδο σημαντικότητας α για τη διακύμανση σ ενός κανονικού πληθυσμού με ένα τυχαίο δείγμα μεγέθους n Η 0 : σ = σ 0
Διαβάστε περισσότεραΓραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική
Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται
Διαβάστε περισσότεραΑνάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραΒιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Διαβάστε περισσότεραΠροσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή
Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη
Διαβάστε περισσότεραΜονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Διαβάστε περισσότερα7. Ανάλυση Διασποράς-ANOVA
7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4
Διαβάστε περισσότεραΗ δειγματοληψία Ι. (Από Saunders, Lewis & Thornhill 2009)
Η δειγματοληψία Ι (Από Saunders, Lewis & Thornhill 2009) Η δειγματοληψία ΙΙ Η δειγματοληψία ΙΙΙ (Από Saunders, Lewis & Thornhill 2009) Ο πειραματισμός Εισαγωγή - Θέματα κατάλληλα για πειράματα Τα πειράματα
Διαβάστε περισσότεραΣτατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...
ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα
Διαβάστε περισσότεραΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΔΡΑΣΕΩΣ ΜΕΘΟΔΩΝ ΕΡΓΑΣΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑ ΕΛΛΗΝΙΚΗΣ ΒΙΟΤΕΧΝΙΑΣ ΠΑΡΑΓΩΓΗΣ ΠΑΙΔΙΚΩΝ ΕΝΔΥΜΑΤΩΝ
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΔΡΑΣΕΩΣ ΜΕΘΟΔΩΝ ΕΡΓΑΣΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑ ΕΛΛΗΝΙΚΗΣ ΒΙΟΤΕΧΝΙΑΣ ΠΑΡΑΓΩΓΗΣ ΠΑΙΔΙΚΩΝ ΕΝΔΥΜΑΤΩΝ Του ΒΑΣΙΛΕΙΟΥ Κ. ΜΠΕΝΟΥ Ανωτάτη Βιομηχανική Σχολή Πειραιώς ΓΕΝΙΚΑ Πολλά πειράματα που λαμβάνουν
Διαβάστε περισσότεραΒιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Διαβάστε περισσότεραΑνάλυση Διακύμανσης. Ι. Κ. Δημητρίου
Ανάλυση Διακύμανσης Ι. Κ. Δημητρίου Να κάνετε πολλά παραδείγματα και για να κατανοήσετε την Ανάλυση Διακύμανσης (ΑΝΑΔΙΑ) ή Analysis of Variance (ANOVA). Ακόμη, να κοιτάξετε περιπτώσεις εφαρμογής. 3 Εισαγωγή
Διαβάστε περισσότεραΣφάλματα Είδη σφαλμάτων
Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την
Διαβάστε περισσότεραΜέθοδος μέγιστης πιθανοφάνειας
Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις 26/5/2017
Επαναληπτικές Ασκήσεις 2 Άσκηση 1 η (1) Ένας ερευνητής μέτρησε τη συγκέντρωση γλυκόζης (σε mg/dl) στο αριστερό και το δεξί μάτι 35 τυχαία επιλεγμένων υγιών σκύλων συγκεκριμένης ράτσας Έστω ότι με Χ και
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Διαβάστε περισσότεραΣτατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Ανάλυση διακύμανσης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΣτατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών
Στατιστικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος : t - Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύμανση Έλεγχος 4: t-έλεγχος για την
Διαβάστε περισσότεραΣχεδιασμός και Διεξαγωγή Πειραμάτων
Σχεδιασμός και Διεξαγωγή Πειραμάτων Πρώτο στάδιο: λειτουργικοί ορισμοί της ανεξάρτητης και της εξαρτημένης μεταβλητής Επιλογή της ανεξάρτητης μεταβλητής Επιλέγουμε μια ανεξάρτητη μεταβλητή (ΑΜ), την οποία
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΈλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Διαβάστε περισσότεραΣτατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
Διαβάστε περισσότεραΚεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
Διαβάστε περισσότεραΑνάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)
Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
Διαβάστε περισσότεραΕισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 7. Κοινωνικά πειράματα 7-1
Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 7 Κοινωνικά πειράματα 7-1 Σύνοψη κεφαλαίου Θέματα κατάλληλα για πειράματα Το κλασικό πείραμα Επιλέγοντας υποκείμενα Παραλλαγές πειραματικών σχεδιασμών
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΔισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).
Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Κοινωνικά Πειράματα. Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Κοινωνικά Πειράματα Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς ΕΙΣΑΓΩΓΗ Τα πειράματα αφορούν: Την ανάληψη δράσης Την παρατήρηση των συνεπειών αυτής της δράσης 7-3 ΘΕΜΑΤΑ
Διαβάστε περισσότεραΕξαρτημένα δείγματα (εξαρτημένες μετρήσεις)
Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)
Διαβάστε περισσότεραΒελτίωση Φυτών. Συνθετικές Ποικιλίες. Βελτίωση Σταυρογονιμοποιούμενων φυτών
Προκύπτουν από όλες τις δυνατές διασταυρώσεις μεταξύ ενός αριθμού σειρών (ομόμεικτων, κλώνων ή πληθυσμών) που έχουν επιλεγεί για την καλή τους συνδυαστική ικανότητα Ο έλεγχος αυτός της συνδυαστικής ικανότητας
Διαβάστε περισσότερα8. Ανάλυση Διασποράς ως προς. δύο παράγοντες
8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Παραγοντική Ανάλυση διασποράς-factorial Analsis of Variance Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότερα5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
Διαβάστε περισσότεραΕρμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Διαβάστε περισσότερακαι τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)
Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα
Διαβάστε περισσότερα8. Ανάλυση Διασποράς ως προς. δύο παράγοντες
8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α λ: στάθμες (επίπεδα) του παράγοντα Β κ λ : πειραματικές συνθήκες
Διαβάστε περισσότεραΒιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές
Διαβάστε περισσότεραKruskal-Wallis H... 176
Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................
Διαβάστε περισσότεραΕνότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Διαβάστε περισσότεραΦύλλο Εργασίας 1. Μετρήσεις μήκους- Η μέση τιμή
Φύλλο Εργασίας 1 Μετρήσεις μήκους- Η μέση τιμή β. Συζητώ, Αναρωτιέμαι, Υποθέτω Νομίζεις ότι μπορείς να κάνεις μετρήσεις μήκους με ακρίβεια; Πώς μπορείς να αποφύγεις λάθη κατά τη μέτρηση; Ίσως η παρατήρηση
Διαβάστε περισσότεραΈλεγχος υποθέσεων Ι z-test & t-test
Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας
Διαβάστε περισσότεραΓεωργικός Πειραματισμός ΙΙ ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ
ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ Συχνά ςυμβαίνει ςτα πρϊτα ςτάδια ενόσ βελτιωτικοφ προγράμματοσ να μθν υπάρχει επαρκι ποςότθτα γενετικοφ υλικοφ των νζων ςειρϊν, γεγονόσ που δυςχεράνει τθν πραγματοποίθςθ πειραμάτων αξιολόγθςθσ
Διαβάστε περισσότεραΣτατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Διαβάστε περισσότερα