Γ. Πειραματισμός Βιομετρία
|
|
- Κύμα Ζάχος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια οι πειραματικές μονάδες κατηγοριοποιούνται κατά επέμβαση αλλά στα περισσότερα ταξινομούνται περαιτέρω σε ομάδες, σειρές, στήλες, κύρια τεμάχια, υποτεμάχια κλπ. Η ΑΝΟVA χρησιμοποιεί τους μέσους όρους αυτών των κατηγοριών, που ονομάζονται «Πηγές Παραλλακτικότητας» για την εκτίμηση Μέσων Τετραγώνων. Υπολογίζεται επίσης ένα Μέσο Τετράγωνο που εκτιμά το Πειραματικό Σφάλμα, δηλαδή τη διακύμανση που οφείλεται σε τυχαία αίτια (διαφορές μεταξύ των πειραματικών μονάδων που έχουν δεχθεί την ίδια επέμβαση) Εάν δεν υπάρχουν πραγματικές διαφορές μεταξύ των μέσων όρων κάποιας κατηγορίας (πχ. επεμβάσεων, ομάδων κλπ), το ΜΤ της κατηγορίας αυτής θα είναι κατά μέσον όρο ίσο με το ΜΤ του σφάλματος. Μεγάλες διαφορές σπάνια θα προκύψουν μόνο από τύχη
2 Γενικά (Συνέχεια) Πειραματικό σχέδιο και ANOVA O έλεγχος για το εάν δύο ανεξάρτητες εκτιμήσεις διακυμάνσεων (ΜΤ) μπορούν να θεωρηθούν ότι αποτελούν εκτιμήσεις της ίδιας διακύμανσης, γίνεται με τη δοκιμασία του F. Έτσι, απαντάται το ερώτημα εάν οι μ.ο. μιας συγκεκριμένης πηγής παραλλακτικότητας πχ. επεμβάσεων είναι ίσοι. Ελέγχεται δηλαδή εάν οι διαφορές που υπολογίσθηκαν από το πείραμα αντανακλούν δειγματοληψία από πραγματικά διαφορετικούς πληθυσμούς ή εάν προέκυψαν από τυχαία δειγματοληψία ενός μόνο πληθυσμού (δηλ. μ 1 μ μ i ). Όταν από τη δοκιμασία του F προκύψει ότι το ΜΤ μιας πηγής παραλλακτικότητας είναι σημαντικά μεγαλύτερα από το ΜΤ του σφάλματος, τότε συμπεραίνουμε ότι υπάρχουν πραγματικές διαφορές μεταξύ των μ.ο. αυτής της συγκεκριμένης πηγής παραλλακτικότητας Η πιθανότητα να κάνουμε λάθος είναι το Σφάλμα τύπου Ι που επιλέγεται από τον ερευνητή (συνήθως 5% - σημαντική διαφορά ή 1% - υψηλά σημαντική διαφορά)
3 Παράδειγμα (κατηγοριοποίηση: επεμβάσεις) Yi... μ, σ F πειράµατος Δείγμα 1 (n 6) Δείγμα.. Δείγμα 1 Εκτίμηση της σ του πληθυσμού Πειραματικό σχέδιο και ANOVA Υ 1 s 1 Σ(Υ i Υ 1 ) /(6 1) Υ.. Υ 1 1. Από τη συνδυασμένη τυχαία διακύμανση (σφάλμα) δηλ. s w (s 1 + s +.+ s 1 ) /1. Από τη διακύμανση των μ.ο. των δειγμάτων s Σ( Υ i. Υ ) /(1 1) Y επομένως 6 s b s F s s Υ b w s Σ(Υ i Υ ) /(6 1) s 1 Σ(Υ i Υ 1 ) /(6 1) με ΒΕ (a-1)/a(n-1) (1-1)/1(6-1) 11/60..
4 Πειραματικό σχέδιο και ANOVA Παράδειγμα (κατηγοριοποίηση: επεμβάσεις) Εάν επαναληφθεί η διαδικασία δειγματοληψίας και ληφθούν όλα τα πιθανά δείγματα (n 6) από τον αρχικό πληθυσμό, θα παραχθεί ένας πληθυσμός τιμών F με κατανομή συχνοτήτων: Η κατανομή F για 11/60 ΒΕ Επειδή οι δύο διακυμάνσεις στον λόγο του F αποτελούν εκτιμήσεις της ίδιας διακύμανσης, ο λόγος αυτός θα είναι κοντά στο 1 εκτός εάν έχει ληφθεί ένα ασύνηθες σετ δειγμάτων 5%
5 Πρότυπα επιδράσεων Πειραματικό σχέδιο και ANOVA Όταν οι επεμβάσεις που μελετώνται σε ένα πείραμα είναι μόνο αυτές για τις οποίες θα εξαχθούν συμπεράσματα, τότε ισχύει το Πρότυπο των καθορισμένων επιδράσεων ή Πρότυπο Ι Όταν οι επεμβάσεις έχουν προκύψει από τυχαία δειγματοληψία ενός μεγάλου πληθυσμού επεμβάσεων, τότε μπορούν να εξαχθούν συμπεράσματα για όλες τις πιθανές επεμβάσεις. Στην περίπτωση αυτή ισχύει το Πρότυπο τυχαίων επιδράσεων ή Πρότυπο ΙΙ Εάν οι επεμβάσεις του πειράματος αποτελούν τυχαίο δείγμα από ένα περιορισμένο αριθμό επεμβάσεων, τότε ισχύει το Πρότυπο ΙΙΙ Το Πρότυπο που ισχύει για κάθε πείραμα καθορίζει τον τρόπο στατιστικής αξιολόγησης των αποτελεσμάτων και το εύρος του πεδίου εφαρμογής τους
6 Περιγραφή του σχεδίου Το απλούστερο πειραματικό σχέδιο Μπορεί να χρησιμοποιηθεί όταν οι πειραματικές μονάδες χαρακτηρίζονται από ομοιογένεια Η προϋπόθεση της ομοιογένειας καθιστά το σχέδιο δυσεφάρμοστο σε πειράματα αγρού, πλην των περιπτώσεων περιορισμένων επεμβάσεων
7 Διαδικασία τυχαιοποίησης Παράδειγμα τυχαιοποίησης Οι επεμβάσεις μοιράζονται στις πειραματικές μονάδες με εντελώς τυχαίο τρόπο Κάθε π.μ. έχει την ίδια πιθανότητα να δεχθεί κάθε επέμβαση Η τυχαιοποίηση γίνεται με τη χρήση πινάκων τυχαίων αριθμών, προγραμμάτων Η/Υ κλπ Τέσσερις επεμβάσεις (A, Β, C και D) και πέντε επαναλήψεις D C 1 11 D B 1 B A 3 13 C B 4 14 D C 5 15 C B 6 16 A C 7 17 A D 8 18 B A 9 19 D A 10 0
8 Πλεονεκτήματα του ΕΤΣ 1. Ιδιαίτερα εύχρηστο σχέδιο (ο αριθμός των επεμβάσεων και των επαναλήψεων εξαρτάται από τον διαθέσιμο αριθμό πειραματικών μονάδων (τεμαχίων). Η στατιστική ανάλυση είναι απλή συγκρινόμενη με άλλα σχέδια 3. Η απώλεια πληροφορίας όταν λείπουν κάποια δεδομένα είναι μικρή σε σχέση με άλλα σχέδια λόγω του μεγάλου αριθμού ΒΕ του υπολοίπου (σφάλματος) Μειονεκτήματα του ΕΤΣ 1. Εάν υφίσταται ανομοιογένεια πειραματικών μονάδων, η ακρίβεια του πειράματος είναι μικρότερη. Είναι το λιγότερο αποτελεσματικό σχέδιο, εκτός εάν οι μονάδες είναι ομοιογενείς 3. Δεν είναι κατάλληλο για μεγάλο αριθμό επεμβάσεων
9 Το Γραμμικό Πρότυπο Γραμμικό πρότυπο για το Εντελώς Τυχαιοποιημένο Σχέδιο είναι : Y µ + τι + ε όπου Y µ τ ι ε j-στή παρατήρηση της i-στής επέμβασης ο μ.ο. του πληθυσμού η επίδραση της i-στής επέμβασης τυχαίο σφάλμα ε Ν (0, σ e ) τ i 0 Μπορούμε να εκτιμήσουμε την σ από τους μ.ο. υπολογίζοντας το Μέσο Τετράγωνο (ή διακύμανση) των Επεμβάσεων (ΜΤε) Μπορούμε να εκτιμήσουμε την σ από τις ατομικές παρατηρήσεις υπολογίζοντας το Μέσο Τετράγωνο (ή διακύμανση) του Σφάλματος (ΜΤυ)
10 Προϋποθέσεις της ANOVA 1. Τα πειραματικά σφάλματα είναι τυχαία, ανεξάρτητα και ακολουθούν την κανονική κατανομή με μέσο όρο μηδέν και κοινή διακύμανση (δηλ. οι διακυμάνσεις μέσα σε κάθε επέμβαση είναι ομοιογενείς) ε Ν (0, σ e ). Οι πληθυσμοί (a) από τους οποίους προήλθε κάθε επέμβαση ακολουθούν την κανονική κατανομή 3. Οι διακυμάνσεις των πληθυσμών αυτών είναι ίσες ή ομοιογενείς. Η ιδιότητα αυτή λέγεται ομοσκεδαστικότητα 4. Οι παρατηρήσεις (an) είναι ανεξάρτητες μεταξύ τους Τόσο το επίπεδο σημαντικότητας όσο και η ευαισθησία της δοκιμασίας του F επηρεάζονται εάν δεν ισχύουν οι παραπάνω προϋποθέσεις, με αποτέλεσμα αύξηση των Σφαλμάτων τύπου Ι Και στην περίπτωση αυτή όμως, για τα περισσότερα βιολογικά δεδομένα, η ANOVA δίνει αξιόπιστα αποτελέσματα
11 Γραφική παράσταση των αποκλίσεων
12 Το Γραμμικό Πρότυπο (Συνέχεια) Χρησιμοποιώντας το πρότυπο μπορούμε να εκτιμήσουμε το ή το ε εάν ι γνωρίζουμε το και το μ Y τ Παράδειγμα Y µ + τ + i ε Επέμβαση 1 Επέμβαση Επέμβαση Y Y 7 i. Y Y 8 i. Y. i Y -3 1
13 Το Γραμμικό Πρότυπο (Συνέχεια) Το Γραμμικό πρότυπο για κάθε παρατήρηση (Υ ) μπορεί να γραφεί ως εξής: α) Εισάγεται ο μ για κάθε παρατήρηση Επέμβαση 1 Επέμβαση Επέμβαση Y Y 7 i. Y Y 8 i. Y. i Y -3 1 β) Για κάθε παρατήρηση εισάγεται το αντίστοιχο τ i, όπου τ ι Y i. Y Επέμβαση 1 Επέμβαση Επέμβαση Y Y 7 i. Y Y 8 i. Y. i Y -3 1
14 Το Γραμμικό Πρότυπο(Συνέχεια) γ) Εισάγεται το ε για κάθε παρατήρηση Επέμβαση 1 Επέμβαση Επέμβαση Y Y 7 i. Y Y 8 i. Y. i Y -3 1 Σημείωση Για κάθε επέμβαση : τ i 0 ΑΤε n τ i ε 0
15 Κατάτμηση Αθροίσματος Τετραγώνων Τα συστατικά του προτύπου µ ως Y τ ως Y i. Y ι ε ως Y Y i. oπότε: a n i 1 j 1 Y Y ( Y. Y ) + ( Y Y.) Y i i a n a n ( Y Y ) ( Y. Y ) + ( Y Yi. ) Y µ + τι + i 1 j 1 i ε ( Y. Y ) + ( Y Y.) Y + i i μπορούν να ξαναγραφούν ως εξής: i 1 j 1 ή απλούστερα: ( Y Y ) n ( Y ) i. Y + ( Y Y i )
16 Ανάλυση της παραλλακτικότητας (ANOVA) Ανάλυση της παραλλακτικότητας για το ΕΤΣ με ίσο αριθμό επαναλήψεων για κάθε επέμβαση Πηγή Π Παραλλακτικότητας Μεταξύ Βαθμοί Ελευθερίας (ΒΕ) Άθροισμα Τετραγώνων (ΑΤ) των Επεμβάσεων a-1 ΑΤε n ( Y ) i. Y Μέσο Τετράγωνο (ΜΤ) ATε MTε (a( a-1 a 1) Τιμή του F ΜΤε ΜΤυ ΘΣΜΤ σ e +nσ e Εντός των Επεμβάσεων Υπόλοιπο ή Σφάλμα) (Υ a(n-1) ΑΤυ ( Y Yi. ) Σύνολο an-1 ΑΤσ ( Y Y ) ΜΤ υ ATυ a(n -1) σ e
17 Η δοκιμασία του F Όταν διενεργείται μια δοκιμασία του F (πηλίκο δύο διακυμάνσεων), ουσιαστικά ελέγχεται η μηδενική υπόθεση H 0 : μ 1 μ. μ i σ βασισμένη σε διακύμανση μέσων όρων σ ε + nσ ε F σ βασισμένη σε διακύμανση ατομικών ττιμών σ ε Η εκτίμηση της σ από την σ ε (τυχαία διακύμανση - πειραματικό σφάλμα ), είναι αμερόληπτη, αφού δεν εξαρτάται από την ύπαρξη διαφορών των μ.ο. Η εκτίμηση όμως της σ από τους μέσους όρους των επεμβάσεων, επηρεάζεται από τις διαφορές μεταξύ των μ.ο. καθώς και από τις τυχαίες διαφορές. Η εκτίμηση αυτή προσεγγίζει την αμερόληπτη εκτίμηση μόνο όταν δεν διαφέρουν πραγματικά οι μ.ο., διότι τότε η επίδραση των επεμβάσεων ( nσ ε ) στο θεωρητικό ΜΤ για τις " Επεμβάσεις" ( + ) πλησιάζει το μηδέν. Επομένως αναμένεται μικρό F σ ε nσ ε και δεν απορρίπτεται η H 0 Αντίθετα, όταν διαφέρουν πραγματικά οι μ.ο., το nσ ε είναι σημαντικό, το F αναμένεται μεγάλο και έτσι απορρίπτεται η Η 0
18 Παράδειγμα 1. ANOVA για ίσο αριθμό επαναλήψεων Επέμβαση Επανάληψη Α B C Y i Y 444 Y 3,875 5,805 7,48 1. Διαμόρφωση της υπόθεσης: H 0 : μ 1 μ μ 3 H 1 : μ 1 μ μ 3 ή μ 1 μ μ 3 H 0 : οι μ.ο. δεν διαφέρουν H 1 : τουλάχιστον ένας μ.ο. διαφέρει από τους υπόλοιπους ή μ 1 μ μ 3
19 Παράδειγμα 1. ANOVA για ίσο αριθμό επαναλήψεων Επέμβαση Επανάληψη Α B C Y i Y 444 Y 3,875 5,805 7,48 Y 444. ΔΟ 1648 na 4*3 3. ATσ Y ΔΟ ( ) ΔΟ Y i. 13 ATε ΔΟ n
20 Παράδειγμα 1. ANOVA για ίσο αριθμό επαναλήψεων Επέμβαση Επανάληψη Α B C Y i Y 444 Y 3,875 5,805 7,48 5. ΑΤυ ΑΤσ ΑΤε ,5 379,5 6. Πηγή ΒΕ ΑΤ ΜΤ F Παραλλακτικότητας Επεμβάσεις α Σφάλμα- Υπόλοιπο α(n-1) Σύνολο an F α; ΒΕ επεμβάσεων, ΒΕ υπολοίπου F 0.05 ; F 0.01 ;.9 8.0
21 Παράδειγμα 1. ANOVA για ίσο αριθμό επαναλήψεων 8. Εξαγωγή συμπερασμάτων Επειδή το F < 4.6 δεν απορρίπτεται η H 0 : μ 1 μ μ 3 σε α Επειδή το F < 8.0 δεν απορρίπτεται η H 0 : μ 1 μ μ 3 σε α % ΣΠ s * 100 Y % 4,167 ΣΠ * 100 6,494 * * 3 17,6%
22 Παράδειγμα. ANOVA για άνισο αριθμό επαναλήψεων Επεμβάση Επανάληψη Α B C D 1,0 1,7,0,1, 1,9,4, 3 1,8 1,5,7, 4,3,5 1,9 5 1,7,4 10 5,1 1 8,4 Y Y 0,6 8,7 9,06 17,7 1. Διαμόρφωση της υπόθεσης: H 0 : μ 1 μ μ 3 μ 4 H 1 : τουλάχιστον ένας μ.ο. διαφέρει από τους υπόλοιπους Y ΔΟ n i 17
23 Παράδειγμα. ANOVA για άνισο αριθμό επαναλήψεων Επεμβάση Επανάληψη Α B C D 1,0 1,7,0,1, 1,9,4, 3 1,8 1,5,7, 4,3,5 1,9 5 1,7,4 10 5,1 1 8,4 Y Y 0,6 8,7 9,06 17,7 3. ATσ Y ΔΟ (,0 +, + 1, ,9 ) ΔΟ 75,77 74,3 1, AT Yi. ΔΟ n 10 5, ε ,13 75,110 74,13 0, i 5. ΑΤυ ΑΤσ ΑΤε 1,638 0,978 0, 660
24 Παράδειγμα. ANOVA για άνισο αριθμό επαναλήψεων 6. Πηγή ΒΕ ΑΤ ΜΤ F Παραλλακτικότητας Επέμβαση α-13 0,978 0,36 6,39** Σφάλμα Με αφαίρεση 13 0,660 0,051 Σύνολο Ολικός αριθμός παρατηρήσεων , F α; ΒΕ επεμβάσεων, ΒΕ υπολοίπου F 0.05 ; F 0.01 ;
25 Παράδειγμα. ANOVA για άνισο αριθμό επαναλήψεων 8. Εξαγωγή συμπερασμάτων Επειδή το F 6.39 > 3.41απορρίπτεται η H 0 : μ 1 μ μ 3 σε α Επειδή το F 6.39 > 5.74 απορρίπτεται η H 0 : μ 1 μ μ 3 σε α 0.01 s 9. % ΣΠ * 100 Y %ΣΠ * 100 ( 0.59 ) * %.088
Γ. Πειραματισμός Βιομετρία
Περιγραφή του σχεδίου Είναι πιθανώς το ευρύτερα χρησιμοποιούμενο και πλέον χρήσιμο πειραματικό σχέδιο Εκμεταλλεύεται την συγκέντρωση των επεμβάσεων σε ομάδες. Κάθε ομάδα (που ονομάζεται και επανάληψη)
Γ. Πειραματισμός Βιομετρία
Περιγραφή του σχεδίου Με το μπορούμε να επιλέξουμε την παραλλακτικότητα σε δύο κατευθύνσεις Οι επεμβάσεις τοποθετούνται σε σειρές και στήλες Κάθε σειρά περιλαμβάνει όλες τις επεμβάσεις Κάθε στήλη περιέχει
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Γ. Πειραματισμός Βιομετρία
ANOVA με δειγματοληψία Το Γραμμικό Πρότυπο = µ τ ε i ij δ όπου = το k-στό δείγμα της j-στής παρατήρησης της i-στής επέμβασης µ = ο μέσος όρος του πληθυσμού τ i = η επίδραση της i-στής επέμβασης ε ij =
Γ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Εισαγωγή - Πειραματικοί Σχεδιασμοί. Κατσιλέρος Αναστάσιος
Εισαγωγή - Πειραματικοί Σχεδιασμοί Κατσιλέρος Αναστάσιος 2017 Παραλλακτικότητα To φαινόμενο εμφάνισης διαφορών μεταξύ ατόμων ή αντικειμένων ή παρατηρήσεων-μετρήσεων, που ανήκουν στην ίδια ομάδα-κατηγορία,
Γ. Πειραματισμός Βιομετρία
Γενικά Σκοπός των παραγοντικών πειραμάτων είναι η ταυτόχρονη μελέτη των επιδράσεων ενός αριθμού παραγόντων ώστε να προκύψει πληροφόρηση όχι μόνο για την αντίδραση του πειραματικού υλικού σε μεμονωμένους
Γεωργικός Πειραματισμός 1o Εργαστήριο «Διαδικασία της Τυχαιοποίησης»
Γεωργικός Πειραματισμός o Εργαστήριο «Διαδικασία της Τυχαιοποίησης» Επαναληπτικοί Ορισμοί: Πείραμα: Μία σχεδιασμένη έρευνα που γίνεται είτε για να εξαχθούν νέα συμπεράσματα είτε για να ελεχθούν παλαιότερα.
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
Τεχνική Πειραματισμού. Κλιμάκωση των πειραμάτων στο χρόνο Δικτύωση των πειραμάτων στο χώρο Εδαφική ανομοιογένεια
Πειραματισμός 1 Τεχνική Πειραματισμού Κλιμάκωση των πειραμάτων στο χρόνο ικτύωση των πειραμάτων στο χώρο δαφική ανομοιογένεια 2 δαφική ανομοιογένεια 3 Τεχνική Πειραματισμού Κλιμάκωση των πειραμάτων στο
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Ζήτηµα 2. Κατεύθυνση µεταβολής γονιµότητας. Πειραµατικός Αγρός. Επεµβάσεις: Α1Β1:1, Α1Β2:2, Α1Β3:3, Α2Β1:4, Α2Β2:5 και Α2Β3:6
Ζήτηµα. ίνεται το παρακάτω φύλλο δεδοµένων (πείραµα 2 2 πλήρως τυχαιοποιηµένο-crd, 3 επαναλήψεις ανά επέµβαση). Να υπολογιστούν οι µέσοι όροι για τον Παράγοντα Α (δύο επίπεδα Α και Α2), για τον Παράγοντα
Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017
Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες
Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017
Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2
Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test
1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset
Γ. Πειραματισμός Βιομετρία
Πολλαπλές Συγκρίσεις Μέσων Γενικά Η ANOVA αποκαλύπτει εάν υπάρχουν διαφορές μεταξύ των επεμβάσεων, αλλά ποιες ακριβώς είναι αυτές? Κατηγορίες συγκρίσεων A posteriori συγκρίσεις (αφού δούμε τα δεδομένα)
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011
Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
Η δειγματοληψία Ι. (Από Saunders, Lewis & Thornhill 2009)
Η δειγματοληψία Ι (Από Saunders, Lewis & Thornhill 2009) Η δειγματοληψία ΙΙ Η δειγματοληψία ΙΙΙ (Από Saunders, Lewis & Thornhill 2009) Ο πειραματισμός Εισαγωγή - Θέματα κατάλληλα για πειράματα Τα πειράματα
Kruskal-Wallis H... 176
Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Σφάλματα Είδη σφαλμάτων
Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών
Στατιστικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος : t - Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύμανση Έλεγχος 4: t-έλεγχος για την
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το
Δειγματοληψία στην Ερευνα. Ετος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου Σχηματική παρουσίαση της ερευνητικής διαδικασίας ΣΚΟΠΟΣ-ΣΤΟΧΟΣ ΘΕΩΡΙΑ ΥΠΟΘΕΣΕΙΣ ΕΡΓΑΣΙΑΣ Ερευνητικά
ΓΕΩΡΓΙΚΟΣ ΠΕΙΡΑΜΑΤΙΣΜΟΣ 1ο Εργαστήριο «ΣΧΕΔΙΑΣΗ ΠΕΙΡΑΜΑΤΙΚΟΥ ΑΓΡΟΥ»
ΓΕΩΡΓΙΚΟΣ ΠΕΙΡΑΜΑΤΙΣΜΟΣ 1ο Εργαστήριο «ΣΧΕΔΙΑΣΗ ΠΕΙΡΑΜΑΤΙΚΟΥ ΑΓΡΟΥ» Α. ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Ηλιοφάνεια Γονιμότητα εδάφους Γενετικό υλικό Απόδοση ποικιλίας Εντομολογικές και φυτοπαθολογικές
Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης
Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις
Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή
Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη
F x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση
5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. 3 η ΠΑΡΟΥΣΙΑΣΗ. Ι. Δημόπουλος Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών. ΤΕΙ Πελοποννήσου
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ 3 η ΠΑΡΟΥΣΙΑΣΗ Ι. Δημόπουλος Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών. ΤΕΙ Πελοποννήσου Συλλογή δεδομένων Πρωτογενή δεδομένα Εργαστηριακές μετρήσεις Παρατήρηση Παρατήρηση με συμμετοχή,
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική
Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική
Έλεγχος υποθέσεων Ι z-test & t-test
Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας
Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 7. Κοινωνικά πειράματα 7-1
Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 7 Κοινωνικά πειράματα 7-1 Σύνοψη κεφαλαίου Θέματα κατάλληλα για πειράματα Το κλασικό πείραμα Επιλέγοντας υποκείμενα Παραλλαγές πειραματικών σχεδιασμών
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Εισαγωγή στην Ανάλυση Παραλλακτικότητας
Εισαγωγή στην Ανάλυση Παραλλακτικότητας Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Παραλλακτικότητα Που Οφείλεται; Παραλλακτικότητα
Δοκιμές προτίμησης και αποδοχής
Δοκιμές προτίμησης και αποδοχής Χρησιμοποιείται συνήθως για: Επιλογή άριστου δείγματος ή άριστης επεξεργασίας Συγκριτική αξιολόγηση ποιοτικών χαρακτηριστικών Συγκριτική προτίμηση ομοειδών τροφίμων (διερεύνηση
Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)
Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο
Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.
Ερευνητική υπόθεση Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Στα πειραματικά ερευνητικά σχέδια, η ερευνητική υπόθεση αναφέρεται
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
Γ. Πειραματισμός Βιομετρία
Οσκοπόςενόςπειράματος Συνήθως θέλουμε να απαντήσουμε συγκεκριμένες ερωτήσεις που τίθενται από τους στόχους του πειράματος Πείραμα άρδευσης (2 x 2 παραγοντικό ) 1 cm/ha πρώιμη εφαρμογή (m 1 ) 1 cm/ha όψιμη
Περιεχόμενα. Πρόλογος... 15
Περιεχόμενα Πρόλογος... 15 Κεφάλαιο 1 ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΦΙΛΟΣΟΦΙΚΑ ΟΝΤΟΛΟΓΙΚΑ ΚΑΙ ΕΠΙΣΤΗΜΟΛΟΓΙΚΑ ΖΗΤΗΜΑΤΑ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΚΟΣΜΟΥ... 17 Το θεμελιώδες πρόβλημα των κοινωνικών επιστημών...
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V Διδάσκουσα: Κοντογιάννη Αριστούλα Έλεγχος υποθέσεων για τους μέσους εξαρτημένων δειγμάτων Επίδραση παρέμβασης:
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την
Ανάλυση Διασποράς Προβλήματα και Ασκήσεις
Ανάλυση Διασποράς Προβλήματα και Ασκήσεις 1. Ένας ερευνητής προκειμένου να συγκρίνει τρία σιτηρέσια εκτροφής κοτόπουλων (Σ1, Σ2 και Σ3, αντίστοιχα), σχεδίασε και εκτέλεσε το εξής πείραμα. Επέλεξε 15 νεογέννητα
Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017
Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017 2 Έλεγχοι Χ 2 Οι έλεγχοι που μπορούν να πραγματοποιηθούν είναι οι εξής: 1. Έλεγχος Χ 2 καλής προσαρμογής 2. Έλεγχος Χ 2 ανεξαρτησίας 3. Έλεγχος Χ 2 ομογένειας Αυτό που
Επανάληψη ελέγχων υποθέσεων
Επανάληψη ελέγχων υποθέσεων Ποιό το πρόβλημα; Περιγραφή ενός πληθυσμού Σύγκριση δύο πληθυσμών Είδος δεδομένων; Είδος δεδομένων Ποσοτικά Ποιοτικά Ποσοτικά Ποιοτικά Ποιά παράμετρος; Z tet & δ.ε. του p Ποιά
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C
Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/017 Στατιστικός έλεγχος υποθέσεων σε επίπεδο σημαντικότητας α για τη διακύμανση σ ενός κανονικού πληθυσμού με ένα τυχαίο δείγμα μεγέθους n Η 0 : σ = σ 0
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
Στατιστικός έλεγχος υποθέσεων (Μέρος 2 ο ) 3/3/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος ο ) 3/3/017 Στατιστικός έλεγχος υποθέσεων σε επίπεδο σημαντικότητας α για τη διακύμανση σ ενός κανονικού πληθυσμού με ένα τυχαίο δείγμα μεγέθους n Η 0 : σ = σ 0 Περιοχή
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας
ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ
ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας