Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017
|
|
- Κλειώ Αγγελίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017
2 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2 Η διαφορά από τη σύγκριση κατά ζεύγη έγκειται μόνο στο ότι αντί να δημιουργούμε έναν αριθμό, έστω b, ζευγών πειραματικών μονάδων επί των οποίων κάνουμε δύο επεμβάσεις, δημιουργούμε έναν αριθμό b ομάδων αποτελούμενων από k > 2 πειραματικές μονάδες (αντί για δύο) γιατί κάνουμε περισσότερες από δύο επεμβάσεις (ή αλλιώς, γιατί ο παράγοντας του οποίου ελέγχουμε την επίδραση στη μεταβλητή απόκρισης, έχει περισσότερες από δύο στάθμες)
3 3 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (2) Το επιλέγουμε όταν θεωρούμε/υποθέτουμε ότι οι πειραματικές μονάδες προσθέτουν μεταβλητότητα στις τιμές της μεταβλητής απόκρισης, με την έννοια ότι αυτή επηρεάζεται και από κάποιον άλλο, «εξωγενή/ενοχλητικό» παράγοντα, πέραν του παράγοντα του οποίου ελέγχουμε την επίδραση Οι ομάδες δημιουργούνται με κριτήριο να αποτελούνται από πειραματικές μονάδες που έχουν παρόμοια/ομοιογενή συμπεριφορά ως προς αυτόν τον «εξωγενή» παράγοντα Έτσι, επιτυγχάνουμε ο έλεγχος της επίδρασης του παράγοντα που μας ενδιαφέρει να γίνεται εντός κάθε ομάδας σε παρόμοιες συνθήκες και να απομονωθεί η μεταβλητότητα που οφείλεται στον «εξωγενή» παράγοντα
4 4 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (3) Αφού δημιουργήσουμε τις b ομάδες (με k πειραματικές μονάδες στην καθεμιά), αντιστοιχίζουμε, με μια τυχαία διαδικασία, μία προς μία τις k επεμβάσεις στις k πειραματικές μονάδες κάθε ομάδας Έτσι, συνολικά έχουμε n = b k παρατηρήσεις
5 5 Υποθέσεις / παραδοχές στο σχέδιο των τυχαιοποιημένων πλήρων ομάδων (1) Οι b παρατηρήσεις, για κάθε μία από τις k επεμβάσεις, συγκεντρώνονται από τις b ομάδες (μία παρατήρηση από κάθε ομάδα) Επομένως, οι k παρατηρήσεις κάθε ομάδας είναι προφανώς εξαρτημένες (γιατί σε κάθε μία αντανακλώνται οι συνθήκες που ενυπάρχουν στη συγκεκριμένη ομάδα) Δηλαδή, η ανεξαρτησία των παρατηρήσεων, στο σχέδιο των τυχαιοποιημένων πλήρων ομάδων, δεν υφίσταται για όλες τις παρατηρήσεις Γι αυτό, στο σχέδιο αυτό, παίζει πολύ σημαντικό ρόλο η τυχαία αντιστοίχιση των επεμβάσεων στις πειραματικές μονάδες κάθε ομάδας
6 6 Υποθέσεις / παραδοχές στο σχέδιο των τυχαιοποιημένων πλήρων ομάδων (2) Οι υποθέσεις που ισχύουν είναι οι εξής: 1. Καθένα από τα δείγματα προέρχεται από κανονικό πληθυσμό 2. Οι kb πληθυσμοί έχουν κοινή διακύμανση σ 2 (ομοσκεδαστικότητα) 3. Οι επεμβάσεις και οι ομάδες επιδρούν στη μεταβλητή απόκρισης προσθετικά ανεξάρτητα
7 7 Υποθέσεις / παραδοχές στο σχέδιο των τυχαιοποιημένων πλήρων ομάδων (3) Οι υποθέσεις 1 και 2 είναι ισοδύναμες με τις υποθέσεις ότι τα σφάλματα (θεωρητικά υπόλοιπα) ακολουθούν κανονικές κατανομές με μέση τιμή 0 και κοινή διακύμανση σ 2, δηλαδή ότι ε ij ~N 0, σ 2 Τα ε ij εκφράζουν το πειραματικό σφάλμα, δηλαδή τη μεταβλητότητα που δεν εξηγείται από τις επεμβάσεις Οι υποθέσεις 1 και 2 ελέγχονται όπως στο εντελώς τυχαιοποιημένο σχέδιο
8 8 Έλεγχος ανάλυσης διακύμανσης στο σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Η 0 : μ 1 = μ 2 = = μ k ή ο παράγοντας δεν επιδρά Η 1 : μ i μ j για ένα τουλάχιστον ζεύγος (i, j) ή ο παράγοντας επιδρά Η 0 : μ 1 = μ 2 = = μ b ή οι ομάδες δεν επιδρούν Η 1 : μ i μ j για ένα τουλάχιστον ζεύγος (i, j) ή οι ομάδες επιδρούν
9 9 Έλεγχος ανάλυσης διακύμανσης στο σχέδιο τυχαιοποιημένων πλήρων ομάδων (2) Πηγή μεταβλητότητας Β.Ε. Άθροισμα τετραγώνων SS Μέσο άθροισμα τετραγώνων MS Κριτήριο F Περιοχή απόρριψης Επεμβάσεις ή Παράγοντας ή Μεταξύ των δειγμάτων k-1 SST r = k Tj 2 j=1 b G2 n MST r = SST r k 1 F Tr = MST r MSE F T r F k 1;(b 1)(k 1);a Ομάδες b-1 SSB = Σφάλμα ή Εντός των δειγμάτων b Bi 2 i=1 k G2 n (b-1)(k-1) SSE = SST ot SST r SSB MSE = Ολική kb-1 SST ot = SST r + SSB + SSE MSB = SSB b 1 SSE b 1 k 1 F B = MSB MSE F B F b 1;(b 1)(k 1);a όπου k το πλήθος των επεμβάσεων και b το πλήθος των ομάδων G = σ ij y ij, το άθροισμα όλων των παρατηρήσεων Τ j, j = 1, 2, k το άθροισμα όλων των παρατηρήσεων από την j επέμβαση Β i, i = 1, 2, b το άθροισμα όλων των παρατηρήσεων στην i ομάδα
10 10 Έλεγχοι πολλαπλών συγκρίσεων Όπως και στην περίπτωση του εντελώς τυχαιοποιημένου σχεδίου, όταν η μηδενική υπόθεση Η 0 : μ 1 = μ 2 = = μ k απορριφθεί, δηλαδή όταν τα πειραματικά δεδομένα υποστηρίζουν ότι οι μέσοι μ 1, μ 2,,μ k των k επεμβάσεων διαφέρουν στατιστικά σημαντικά, μπορούμε να κάνουμε ελέγχους πολλαπλών συγκρίσεων για να διερευνήσουμε ποιοι από τους k μέσους διαφέρουν στατιστικά σημαντικά
11 11 Παράδειγμα 1 (1) Μια ομάδα ερευνητών προκειμένου να συγκρίνει την επίδραση τριών μεθόδων προετοιμασίας του εδάφους στην ανάπτυξη ενός είδους πεύκης κατά το πρώτο έτος από τη φύτευση, σχεδίασε το εξής πείραμα Επέλεξε τέσσερις εκτάσεις (ίδιου εμβαδού) σε τέσσερις διαφορετικές δασικές περιοχές και κάθε μια τη διαίρεσε σε τρία πειραματικά τεμάχια ίδιου εμβαδού Σε καθένα από τα τρία πειραματικά τεμάχια κάθε έκτασης αντιστοίχησε, με μια τυχαία διαδικασία, μια από τις τρεις μεθόδους προετοιμασίας του εδάφους Στη συνέχεια, σε κάθε πειραματικό τεμάχιο, αφού προετοίμασε το έδαφος με την αντίστοιχη μέθοδο, φύτεψε ένα δενδρύλλιο πεύκης
12 12 Παράδειγμα 1 (2) Στον Πίνακα που ακολουθεί, δίνονται (σε cm) οι μετρήσεις που πήραν οι ερευνητές ένα έτος μετά τη φύτευση Μέθοδος προετοιμασίας εδάφους Περιοχή φύτευσης Ε1 Ε2 Ε3 Ε4 Μ Μ Μ
13 13 Παράδειγμα 1 (3) Οι ερευνητές θέλησαν να απομονώσουν τη μεταβλητότητα στις τιμές της μεταβλητής απόκρισης (ανάπτυξη δενδρυλλίων πεύκης κατά το πρώτο έτος από τη φύτευση) που οφείλεται στην περιοχή φύτευσης Γι αυτό δημιούργησαν 4 ομάδες (καθόρισαν 4 διαφορετικές περιοχές) και σε κάθε μια από αυτές έκαναν και τις 3 επεμβάσεις (μέθοδοι προετοιμασίας του εδάφους) Αυτό γιατί θεώρησαν ότι η ανάπτυξη των δενδρυλλίων πεύκης, επηρεάζεται εκτός από τον παράγοντα μέθοδος προετοιμασίας του εδάφους (που τους ενδιαφέρει να μελετήσουν την επίδρασή του), και από την περιοχή της φύτευσης
14 14 Παράδειγμα 1 (4) Ελέγξτε αν η επίδραση του παράγοντα μέθοδος προετοιμασίας του εδάφους είναι, σε επίπεδο σημαντικότητας 5%, στατιστικά σημαντική
15 15 Παράδειγμα 2 (1) Ένας φοιτητής, στο πλαίσιο της πτυχιακής του εργασίας, προκειμένου να συγκρίνει τέσσερα είδη (Α1, Α2, Α3, και Α4) πρόσθετης ύλης ζωοτροφών που χρησιμοποιείται για αύξηση του βάρους νεογέννητων χοίρων, σχεδίασε και εκτέλεσε το εξής πείραμα Από πέντε διαφορετικές γέννες επέλεξε τυχαία 4 χοίρους από την κάθε μία Δημιούργησε έτσι, 5 τετράδες χοίρων (Γ1, Γ2, Γ3, Γ4 και Γ5) όπου οι χοίροι της ίδιας τετράδας προέρχονται από την ίδια γέννα, και στους χοίρους κάθε τετράδας αντιστοίχησε, με μια τυχαία διαδικασία, από μια πρόσθετη ύλη ζωοτροφών Αφού χορήγησε για τρεις μήνες στους χοίρους κάθε ομάδας τροφή με την αντίστοιχη πρόσθετη ύλη, κατέγραψε την αύξηση σε βάρος κάθε χοίρου
16 16 Παράδειγμα 2 (2) Σε επίπεδο σημαντικότητας 5%, υποστηρίζουν αυτά τα πειραματικά δεδομένα ότι υπάρχουν στατιστικά σημαντικές διαφορές στη μέση αύξηση του βάρους των νεογέννητων χοίρων που να οφείλονται στα τέσσερα είδη πρόσθετης ύλης ζωοτροφών; Ομάδα (γέννα) Παράγοντας/Επεμβάσεις (πρόσθετη ύλη) Α1 Α2 Α3 Α4 Γ Γ Γ Γ Γ
Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017
Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Ανάλυση Διασποράς Προβλήματα και Ασκήσεις
Ανάλυση Διασποράς Προβλήματα και Ασκήσεις 1. Ένας ερευνητής προκειμένου να συγκρίνει τρία σιτηρέσια εκτροφής κοτόπουλων (Σ1, Σ2 και Σ3, αντίστοιχα), σχεδίασε και εκτέλεσε το εξής πείραμα. Επέλεξε 15 νεογέννητα
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας
Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.
Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Παπαδόπουλος 3. Ανάλυση Διακύμανσης Σύντομη ανασκόπηση βασικών εννοιών, προτάσεων
7. Ανάλυση Διασποράς-ANOVA
7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4
8. Ανάλυση Διασποράς ως προς. δύο παράγοντες
8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Παραγοντική Ανάλυση διασποράς-factorial Analsis of Variance Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α
8. Ανάλυση Διασποράς ως προς. δύο παράγοντες
8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α λ: στάθμες (επίπεδα) του παράγοντα Β κ λ : πειραματικές συνθήκες
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011
Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Ανάλυση διακύμανσης (Μονοδιάστατη) One-Way ANOVA
Ανάλυση διακύμανσης (Μονοδιάστατη) One-Way ANOVA Ανάλυση διακύμανσης Η μονοδιάστατη ανάλυση διακύμανσης εξετάζει εάν δύο ή περισσότεροι ανεξάρτητοι πληθυσμοί έχουν τον ίδιο ή διαφορετικό μέσο όρο. Στην
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/017 Στατιστικός έλεγχος υποθέσεων σε επίπεδο σημαντικότητας α για τη διακύμανση σ ενός κανονικού πληθυσμού με ένα τυχαίο δείγμα μεγέθους n Η 0 : σ = σ 0
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Επαναληπτικές Ασκήσεις 26/5/2017
Επαναληπτικές Ασκήσεις 2 Άσκηση 1 η (1) Ένας ερευνητής μέτρησε τη συγκέντρωση γλυκόζης (σε mg/dl) στο αριστερό και το δεξί μάτι 35 τυχαία επιλεγμένων υγιών σκύλων συγκεκριμένης ράτσας Έστω ότι με Χ και
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση
συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;
Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται
την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ
Ανάλυση Διασποράς Ανάλυση Διασποράς (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη ενότητα αναφερθήκαμε
Γ. Πειραματισμός Βιομετρία
Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
13. Ανάλυση Διακύμανσης
. Ανάλυση Διακύμανσης Ανάλυση Διακύμανσης Ανάλυση Διακύμανσης (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη
και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)
Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 3: One-Way ANOVA
Γεωργικός Πειραματισμός (Κωδ. 3515) Βασικές Στατιστικές Μέθοδοι και Εργαλεία Ανάλυσης Δεδομένων 2. Ανάλυση Διακύμανσης
Γεωργικός Πειραματισμός (Κωδ. 355) Βασικές Στατιστικές Μέθοδοι και Εργαλεία Ανάλυσης Δεδομένων. Ανάλυση Διακύμανσης Σύντομη ανασκόπηση βασικών εννοιών, προτάσεων και τύπων Πιθανότητα σφάλματος τύπου Ι
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Ανάλυση διακύμανσης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ζήτηµα 2. Κατεύθυνση µεταβολής γονιµότητας. Πειραµατικός Αγρός. Επεµβάσεις: Α1Β1:1, Α1Β2:2, Α1Β3:3, Α2Β1:4, Α2Β2:5 και Α2Β3:6
Ζήτηµα. ίνεται το παρακάτω φύλλο δεδοµένων (πείραµα 2 2 πλήρως τυχαιοποιηµένο-crd, 3 επαναλήψεις ανά επέµβαση). Να υπολογιστούν οι µέσοι όροι για τον Παράγοντα Α (δύο επίπεδα Α και Α2), για τον Παράγοντα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων
Γ. Πειραματισμός Βιομετρία
Περιγραφή του σχεδίου Είναι πιθανώς το ευρύτερα χρησιμοποιούμενο και πλέον χρήσιμο πειραματικό σχέδιο Εκμεταλλεύεται την συγκέντρωση των επεμβάσεων σε ομάδες. Κάθε ομάδα (που ονομάζεται και επανάληψη)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική
Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται
Επίπεδο Τιμές 12
Άσκηση 1 (τοποθετήθηκε 26/10/2012) Οι παρακάτω μετρήσεις είναι χωρισμένες σε διαφορετικά επίπεδα ενός παράγοντα, προέρχονται από κανονική κατανομή με ίδια διακύμανση και είναι ανεξάρτητες μεταξύ τους.
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική
Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************
Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης
Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και
Εισαγωγή - Πειραματικοί Σχεδιασμοί. Κατσιλέρος Αναστάσιος
Εισαγωγή - Πειραματικοί Σχεδιασμοί Κατσιλέρος Αναστάσιος 2017 Παραλλακτικότητα To φαινόμενο εμφάνισης διαφορών μεταξύ ατόμων ή αντικειμένων ή παρατηρήσεων-μετρήσεων, που ανήκουν στην ίδια ομάδα-κατηγορία,
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Γ. Πειραματισμός Βιομετρία
ANOVA με δειγματοληψία Το Γραμμικό Πρότυπο = µ τ ε i ij δ όπου = το k-στό δείγμα της j-στής παρατήρησης της i-στής επέμβασης µ = ο μέσος όρος του πληθυσμού τ i = η επίδραση της i-στής επέμβασης ε ij =
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011
Πάτρα, 11 Ιανουαρίου 2011 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Γενικά completely random design with
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών
Στατιστικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος : t - Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύμανση Έλεγχος 4: t-έλεγχος για την
1. Πειραματικά Σφάλματα
. Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,
Γ. Πειραματισμός Βιομετρία
Περιγραφή του σχεδίου Με το μπορούμε να επιλέξουμε την παραλλακτικότητα σε δύο κατευθύνσεις Οι επεμβάσεις τοποθετούνται σε σειρές και στήλες Κάθε σειρά περιλαμβάνει όλες τις επεμβάσεις Κάθε στήλη περιέχει
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το
Έλεγχος υποθέσεων ΙI ANOVA
Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
Γ. Πειραματισμός Βιομετρία
Πολλαπλές Συγκρίσεις Μέσων Γενικά Η ANOVA αποκαλύπτει εάν υπάρχουν διαφορές μεταξύ των επεμβάσεων, αλλά ποιες ακριβώς είναι αυτές? Κατηγορίες συγκρίσεων A posteriori συγκρίσεις (αφού δούμε τα δεδομένα)
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις
Έλεγχος Χ -Προβλήματα και Ασκήσεις Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις 1. Στη βιβλιογραφία αναφέρεται ότι τα ποσοστά των ομάδων αίματος Α, Β, ΑΒ και Ο σε
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ
Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)
Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Ανάλυση Διακύμανσης. Ι. Κ. Δημητρίου
Ανάλυση Διακύμανσης Ι. Κ. Δημητρίου Να κάνετε πολλά παραδείγματα και για να κατανοήσετε την Ανάλυση Διακύμανσης (ΑΝΑΔΙΑ) ή Analysis of Variance (ANOVA). Ακόμη, να κοιτάξετε περιπτώσεις εφαρμογής. 3 Εισαγωγή
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα 12 η Διάλεξη 1 ο Παράδειγμα (1) Μια αυτόματη μηχανή συσκευάζει καλαμπόκι σε τσουβάλια των 25kg Το βάρος του καλαμποκιού που συσκευάζεται ανά τσουβάλι
Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο
Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή
Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)
Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς
Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test
1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset
Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών
Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.
Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή
Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
Γ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ & ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ & ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΒΑΣΙΛΙΚΗΣ ΡΗΓΑ ΕΠΙΒΛΕΠΩΝ:Φ. ΑΛΕΒΙΖΟΣ
Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017
Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017 2 Έλεγχοι Χ 2 Οι έλεγχοι που μπορούν να πραγματοποιηθούν είναι οι εξής: 1. Έλεγχος Χ 2 καλής προσαρμογής 2. Έλεγχος Χ 2 ανεξαρτησίας 3. Έλεγχος Χ 2 ομογένειας Αυτό που
Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ