Примена математичке статистике при избору лаптоп рачунара
|
|
- Μαγδαληνή Αργυριάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Примена математичке статистике при избору лаптоп рачунара Ирина Симовић Факултет техничких наука, Чачак СП ИАС Професор технике и информатике, школска 2013/2014. година Ментор рада: др Момчило Вујичић Апстракт Циљ овог мастер рада је да размотри проблем при одабиру лаптоп рачунара који задовољавају потребе корисника. При одабиру разматрани су лаптоп рачунари различитих произвођача али приближних карактеристика као што су: процесор (GHz), рам меморија (MHz), хард диск (GB), графичка карта (MB) и цена у (динарима). Рад се састоји из два дела: теоријског и практичког. Теоријски део има уводни карактер, где су описане објективне методе, методе CRITIC, FANMA, SDV као и метода COPRAS, нормална расподела, контролне карте. У практичном делу приказани су прикупљени узорци и резултати након извршених анализа помоћу методе COPRAS. Кључне речи лаптоп, метода, нормална расподела, контролне карте, COPRAS, CRITIC, FANMA, SDV 1 УВОД Србија, као земља у развоју, закаснила је са почетком коришћења рачунара и лаптоп уређаја. Али последњих десетак година код нас се бележи убрзани развој на том пољу, као и све већи број корисника. Можемо закључити да је структура популације која корити рачунаре у већем проценту школског узраста, као и пословни свет ком је природа посла таква да морају да користе рачунаре Рачунари су нашли широку примену у готово свакој свери људског живота. Основне компоненте сваког рачунара су процесор, RAM меморија, графичка карта, хард диск, мрежне карте и остали прикључни уређаји.. Назив Ознака CPU (GHz) RAM (MHz) HDD (GB) Графичка карта (МB) Цена (рсд) HP E Acer Aspire AS E Asus X451CA-VX022D Toshiba Satellite C50D-A Lenovo B Dell Inspiron Pacard Bell EasyNote ENTE11BZ Fujitsu LIFEBOOK AH Samsung ATIV Book NP270E5V-X02HS Табела 1. Приказ карактеристика лаптопова 2 УВОД У СТАТИСТИКУ Статистика је математичка дисциплина која је почела свој интезивни развој теку у XX веку. Почеци статистике настали су из потпуно практичних разлога и проблем свакодневног живота. Сваком истраживачу или научнику потребно је познавање статистике због праћења стручне и научне литературе, обраде резултата прикупљених истраживањем или огледима, за доношење закључака, као и из многих других разлога. Статистику можемо дефинисати као метод квантитативног истраживања појава. Наиме статистика истражује појаве не на појединим већ на мноштву случајева, и ово истраживање има квантитативан, а не
2 квалитативан карактер. Индивидуалне појаве могу показати мање или веће оступање од просечног или типичног, па је зато неопходно да се посматрају у великом броју, маси, да би се открило ста је у њима законито и опште. Законистост се испољава у маси, она има масовни карактер. 3 СРЕДЊЕ ВРЕДНOСТИ Средње вредности носе заједничке карактеристике свих вредности обележја на посматраном статистичком скупу. Појам средње вредности посматраног обележја може се увести по два основа, па разликујемо: рачунске средње вредности (израчунате из података узорка или популације, а то су: аритметичка средина, геометријска средина, хармонијска средина, средина квадрата, и др.) позиционе средње вредности (оне су одређене позицијом коју заузимају у серији података, а то су: медијана и модус (мод)) Мере дисперзије Дисперзија је појам за распршеност чланова нумеричког низа од неке средње вредности. Мере дисперзије су величине којим се утврђује величина распршености чланова нумеричког низа од неке средње вредности, односно утврђује репрезентативност средњих вредности. Апсолутне мере дисперзије су изражене у истим јединицама мере као и нумеричко обележје. То су: распон варијације, варијанса, стандардна девијација, интерквартил. Њихов је недостатак што не омогућавају упоређивање диспарзије разнородних низова. Релативне мере дисперзије изражене су у релативним бројевима: коефицијент варијације, коефицијент квартилне девијације. Распон варијације је интервал између највеће и најмање вредности нумеричког обележја. Варијанса (σ 2 ) је аритметичка средина квадрата одступања вредности нумеричког обележја од њихове аритметичке средине. Изражена је у истим јединицама мере као и нумеричко обележје Нормална раподела Нормална расподела или Гаусова расподела, је важна фамилија непрекидних расподела вероватноће, са применама у многим пољима. Чланови фамилије нормалне расподеле су дефинисани преко два параметра, математичко очекивање и варијанса (дисперзија) σ 2. Нормална нормирана расподела је нормална расподела са очекивањем једнаким нули, и варијансом једнаком један. Карл Фридрих Гаус се доводи у везу са овим скупом расподела, јер је помоћу њих анализирао астрономске податке, и дефинисао једначину функције густине расподеле нормалне расподеле. Важност нормалне расподеле као модела квантитативних феномена у природним и друштвеним наукама је последица централне граничне теореме. Многа психолошка мерења и физички феномени се могу добро апроксимирати нормалном расподелом. Иако су механизми који леже у основи ових феномена често непознати, употреба модела нормалне расподеле се теоретски оправдава претпоставком да много малих, независних утицаја адитивно доприносе свакој опсервацији. Нормална расподела се јавља и у многим областима статистике. На пример, средња вредност узорка има приближно нормалну расподелу, чак и ако расподела вероватноће популације из које се узорак узима није нормална. Нормална расподела је најчешће коришћена фамилија расподела у статистици, и многи статистички тестови су базирани на претпоставци нормалности. У теорији вероватноће, нормалне респоделе се јављају као граничне расподеле више непрекидних и случајних фамилија расподела. 4 УЛОГА И ЗНАЧАЈ КОНТРОЛНИХ КАРАТА У процесу производње појављује се велики број фактора који утичу на квалитет производа. Да би се ти фактори открили и на њих благовремено утицало, потребно је да се процес стално прати. Сваком процесу иманентни су недостаци који узрокују поправке, дораде, губитке, додатно време израде и повећане трошкове. Усредсређивањем на те недостатке и концентрисањем напора за њихово смањење, смањиће се и време израде и трошкови процесирања. Трошкови се могу смањити смањењем расипања. Када се то постигне, аутоматски се подиже и ниво квалитета производа. У сваком процесу потребно је пратити карактеристике квалитета производа или услуге. Код новог производа најзначајније је установљавање толеранција димензионалних мера. Одреднице за квалитет потребно је утврдити још у фази планирања. Конструктор одређује толеранције, које процес производње често није у стању да задовољи. Чак и уколико је квалитет јасно дефинисан за све операције производа, и установљено да су
3 обезбеђени сви предуслови да се исправна производња настави, то још увек не значи да за време рада неће доћи до одређених промена у процесу. Због тога је потребно карактеристике квалитета пратити јединственом картом. Контролне карте као средство статистичке контроле квалитета, наравно, сасвим је јасно да радник у производњи неће моћи одмах да уочи да је дошло до одступања која су значајна за квалитет, с обзиром на то да се одступања у карактеристикама квалитета очигледно ретко показују. Због тога је потребно организовати и неки начин контроле док производња тече, те се контролне карте и јављају као погодно средство. При употреби контролних карата, било за мерене величине, било за атрибутивне оцене, узимају се узорци из процеса у одређеним интервалима, а у карту уписују статистичке карактеристике узорака. Контролне границе, као границе случајних расипања статистичких карактеристика узорака из процеса за одређени интервал поверења, такође се уцртавају у контролну карту. Рачунање контролних граница заснива се на претпоставци статистички стабилних процеса, односно процеса на које делују само случајни узроци. Појава значајних узрока у процесу манифестоваће се на контролној карти тачкама изван контролних граница, што ће представљати показатељ потребе за предузимањем одређених корективних захвата. 5 МЕТОДЕ ОБЈЕКТИВНОГ ПРИСТУПА ОДРЕЂИВАЊУ ТЕЖИНА КРИТЕРИЈУМА У методама објективног приступа одређивању тежина критеријума тежиште је на анализи матрице одлучивања, односно разматрају се вредности варијанти у односу на скуп критеријума, да би се потом извела информација о вредностима тежина критеријума. Општост прилаза као и појма матрица одлучивања се не нарушавају ни код тзв. вишенивовских хијерархија одлучивања, јер се тада на сваком нивоу генеришу матрице одлучивања, а принципи доминантности и даље важе. У објективном приступу одређивању тежина критеријума критеријуми се посматрају као извори информација и релативна важност критеријума рефлектује количину информација садржану у сваком од њих. Објективне тежине критеријума, мерене преко средње вредности унутрашње (својствене) информације генерисане датим скупом варијанти у односу на сваки критеријум, одражавају природу конфликта између критеријума. Количина информације садржана у сваком критеријуму доводи се у везу са интензитетом контраста сваког критеријума. Стандардна девијација и ентропија су могуће мере интензитета и начини извођења објективних тежина критеријума. Најпознатије објективне методе су: метода ЕNTROPIJА, метода CRITIC и метода FANMA Метода CRITIC Конфликт између различитих критеријума једна је од основних појава у вишекритеријумском одлучивању која представља суштину сваке ситуације одлучивања. У вишекритеријумским проблемима код којих су критеријумске вредности варијанти по свим критеријумима у потпуној сагласности решење је очигледно. Међутим, када су критеријуми међусобно конфликтни, решење вишекритеријумског проблема захтева примену сложених поступака избора једне префериране варијанте или утврђивања поретка варијанти. Метода CRITIC (CRiteria Importance Through Intercriteria Correlation) је метода за одређивање објективних вредности тежина критеријума која укључује интензитет контраста и конфликт који је садржан у структури проблема одлучивања. Она спада у класу корелационих метода и заснива се на аналитичком испитивању матрице одлучивања ради утврђивања информација садржаних у критеријумима по којима се оцењују варијанте. За утврђивање контраста критеријума користе се стандардна одступања нормираних критеријумских вредности варијанти по колонама, као и коефицијенти корелације свих парова колона Metoda FANMA Одређивање тежина критеријума методом FANMA заснива се на коришћењу принципа растојања од идеалне тачке и тзв. ране тежинске нормализације Метода COPRAS Методе вишекритеријумског одлучивања су широко анализиране у научној литератури,а примењују се на решавању проблема у стварним животним ситуацијама. Предложена методологија је веома релевантна у привреди. Комплекс пропорционалне процене алтернатив (COPRAS) анализира различите алтернативе, утврди њихов степен корисности, показује у процентима,у којој мери је једна алтернатива боља или гора од других које су узете за поређење. Алтернативе се рангирају према вредностима критеријума. Оптимална алтернатива је она која је у геометријском смислу најближа идеалном решењу, односно најдаља од идеалног негативног решења. У последњих неколико година, вишекритеријумске методе су у широкој употреби за упоредну процену компликованих технолошких и друштвено-економским процесима, као и за одређивање шта је најбоље међу
4 понуђеним опцијама и рангирање алтернатива на основу њиховог значаја за одређену сврху. Професор Универзитета у Виљнусу Завадскас је био први који користе ове методе за оцењивање и избор оптималних технолошких решења. Овај метод се може користити за процену тржишних вредности алтенатива. Метод пропорционалне сложене процене, претпоставља директне и пропорционалну зависност значаја и корисности степена расположивих алтернатива под присуством међусобно конфликтних критеријума. Она узима у обзир перформансе алтернатива у односу на различите критеријуме и одговарајуће критеријумске тежине. COPRAS метода која се овде користи за процену и избор алтернатива за дати инжењерски проблем користи степенасто рангирање и вредновање алтернатива у смислу њиховог значаја и степена корисности. Доносилац одлука може лако применити COPRAS метод за процену алтернатива и изабрати најпогоднију за систем производње, док је потпуно свесни физичког смисла доношења одлуке. Коришћење ове методологије, учесник / доносилац одлуке може да процени алтернативе на непокретности у смислу критеријума и квалитативне и квантитативне. 6 COPRAS МЕТОДА СА ТЕЖИНСКИМ КРИТЕРИЈУМОМ CRITIC Уз претходно одређивање тежинских критеријума методом CRITIC, можемо приступити примењивању COPRAS методе коришћењем већ одређених улазних података и тежинских критеријума при чему се добијају рангови: Табела 2. - Добијени рангови методом Copras Critic
5 Добијени рангови се применом образаца за хармоничну и аритметичку средину своде на коначне рангове: Aritm Rang µ COPRAS Табела 8. - Приказ рангова Такође, алтернативе након извршене CОPRAS методе се могу приказати и графиком. На основу графика 1. Добијеног помоћу рангова можемо закњучити да је оптимално решење. Лаптоп под редним бројем један, јер има најмању вредност збира рангова. График 1. На графику 2. Такође се може видети да при оптималном избору лаптопова, лаптоп под редним бројем један је најбољи, узимајући у обзир стандардно одступање израчунато преко фреквенције f i. Лаптоп под редним бројем 1. је најбољи јер је његова нормална расподела (Гаусова расподела) најближа кординатном почетку. График 2.
6 7 ЗАКЉУЧАК Основни циљ овог рада је био примена оптимизационе методе COPRAS за одређивање најбољег избора лаптопа. Метода је примењена на 9 уређаја (HP, Acer, Asus, Toshiba, Lenovo, Dell, Pacard Bell, Fujitsu, Samsung) при чему се узимало у обзир пет критеријума, тј. карактеристика лаптоп рачунара (процесор, рам меморија, хард диск, графичка карта и цена). За одређивање тежина критеријума у овом раду су примењене објективне методе: CRITIC, FANMA и SDV, резултати су представљени помоћу контролних карти и нормалне расподеле. Резултати нам говоре да лаптоп HP - E представља најбољи избор. До тог закључка смо дошли приликом анализе резултата оптимизационе методе COPRAS.. ЛИТЕРАТУРА [1] Радојичић, М., Жижовић, М. (1998) Примена метода вишекритеријумске анализе у пословном одлучивању, Чачак: Факултет техничких наука [2] Светозар Вукадиновић, Елементи теорије вероватноће и математичке статистике, Београд, Србија: Привредни преглед [3] Александар Ж. Дреновац, Душан М. Дреновац, Контролне карте као средство статистичке контроле квалитета, Крагујевац: Факултет инжењерских наука [4] Презентација са сајта факултета: Вера Лазаревић, Пројекат TEMPUS JPCR Master programe in 2013.) (2010.-, MAS Applied Statistics [5] Увод у статистику. Доступно на: Сајтови који су коришћени:
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
Могућност примене статистике у породилишту
Могућност примене статистике у породилишту Бојана Бојовић Факултет техничких наука, Чачак СП ИАС Професор технике и информатике, школска 2013./2014. година bokiloki172@gmail.com Ментор рада: проф. др Вера
I део ТЕОРИЈА ВЕРОВАТНОЋЕ Глава 1
ПРЕДГОВОР... 1 УВОД...3 1. Предмет теорије вероватноће... 3 2. Преглед историјског развоја теорије вероватноће... 5 I део ТЕОРИЈА ВЕРОВАТНОЋЕ Глава 1 ВЕРОВАТНОЋА СЛУЧАЈНОГ ДОГАЂАЈА... 13 1.1. Случајни
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)
Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге
ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА
ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања
АКАДЕМСКЕ ДОКТОРСКЕ СТУДИЈЕ - МЕДИЦИНСКЕ НАУКЕ
УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА АКАДЕМСКЕ ДОКТОРСКЕ СТУДИЈЕ - МЕДИЦИНСКЕ НАУКЕ В: СТАТИСТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Школске 2016/2017 (I семестар) В: СТАТИСТИЧКЕ МЕТОДЕ
Теорија одлучивања. Анализа ризика
Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни
НЕПАРАМЕТАРСКИ ТЕСТОВИ. Илија Иванов Невена Маркус
НЕПАРАМЕТАРСКИ ТЕСТОВИ Илија Иванов 2016201349 Невена Маркус 2016202098 Параметарски и Непараметарски Тестови ПАРАМЕТАРСКИ Базиран на одређеним претпоставкама везаним за параметре и расподеле популације.
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ
ПОДЗЕМНИ РАДОВИ 15 (2006) 43-48 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ИЗВОД
Упутство за избор домаћих задатака
Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Средња вредност популације (m), односно независно промењљиве t чија је густина расподеле (СЛИКА ) дата функцијом f(t) одређена је изразом:
7. и 8. ПРИМЕНА СТАТИСТИКЕ У ПРОЦЕСУ КОНСТРУИСАЊА РЕЗИМЕ: Пошто се статистички искази ослањају на законе случаја и рачун вероватноће, важе само у оквиру извесне исказане поузданости. Код уобичајених техничких
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић
Математика Интервали поверења и линеарна регресија предавач: др Мићо Милетић Интервали поверења Тачкасте оцене параметара основног скупа могу се сматрати као приликом обраде узорка. Њихов недостатак је
Параметарски и непараметарски тестови
Параметарски и непараметарски тестови 6.час 12. април 2016. Боjана Тодић Статистички софтвер 4 12. април 2016. 1 / 25 Поступци коjима се применом статистичких метода утврђуjе да ли се, на основу узорка
4. ЗАКОН ВЕЛИКИХ БРОЈЕВА
4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
1. Функција интензитета отказа и век трајања система
f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани
5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА
МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА МЕДИЦИНА И ДРУШТВО ШЕСТА ГОДИНА СТУДИЈА школска 2015/2016. Предмет: МЕДИЦИНСКА СТАТИСТИКА И ИНФОРМАТИКА Предмет се вреднује са 2 ЕСПБ. Недељно има 2 часа активне наставе
Семинарски рад из линеарне алгебре
Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити
Потрошачки трендови и социјално стање у друштву
Потрошачки трендови и социјално стање у друштву Тијана Костић Факултет техничких наука, Чачак СП ИАС Професор технике и информатике, школска 203./204. година e-mail: tijana.kostic@gmail.com Ментор рада:
7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ
7. Модели расподела случајних променљивих 7. МОДЕЛИ РАСПОДЕЛА СЛУЧАЈНИХ ПРОМЕНЉИВИХ На основу природе појаве коју анализирамо, често можемо претпоставити да расподела случајне променљиве X припада једној
Примена статистике у медицини
Примена статистике у медицини Аутор: Андријана Пешић Факултет техничких наука, Чачак Информационе технологије, инжењер ИТ, 2016/2017 andrijana90pesic@gmail.com Ментор рада: др Вера Лазаревић Апстракт Статистика
ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ
ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ ТРЕЋА ГОДИНА СТУДИЈА СТАТИСТИКА У ФАРМАЦИЈИ школска 2016/2017. Предмет: СТАТИСТИКА У ФАРМАЦИЈИ Предмет се вреднује са 6 ЕСПБ. Недељно има 6 часова активне наставе
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ -
ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ЦЕНЕ ПРОИЗВОДЊЕ И ДИСТРИБУЦИЈЕ ВОДЕ И ЦЕНЕ САКУПЉАЊА, ОДВОђЕЊА И ПРЕЧИШЋАВАЊА ОТПАДНИХ ВОДА НА НИВОУ ГРУПАЦИЈЕ ВОДОВОДА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Аксиоме припадања. Никола Томовић 152/2011
Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна
Статистичко истраживање у новинарству
Статистичко истраживање у новинарству МилицаЛукић Факултет техничких наука, Чачак СП ИАС Професор технике и информатике, школска 2013/2014. година e-mail: micile26@gmail.com Ментор рада: др Вера Лазаревић
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
Монте Карло Интеграциjа
Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
Статистичка анализа територијалног распореда врста библиотека на територији Републике Србије
Статистичка анализа територијалног распореда врста библиотека на територији Републике Србије Милекић Маријана Факултет техничких наука, Чачак СП ИАС Техника и информатика, школска 2015/2016. marijanamilekic92@hotmail.rs
Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ
Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези
Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
ВЕЛИЧИНА ЕФЕКТА СТАТИСТИЧКИХ ТЕСТОВА У АГРОЕКОНОМСКИМ ИСТРАЖИВАЊИМА
УНИВЕРЗИТЕТ У НОВОМ САДУ ПОЉОПРИВРЕДНИ ФАКУЛТЕТ Департман за економику пољопривреде и социологију села Игор Гуљаш ВЕЛИЧИНА ЕФЕКТА СТАТИСТИЧКИХ ТЕСТОВА У АГРОЕКОНОМСКИМ ИСТРАЖИВАЊИМА Мастер рад Нови Сад,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије
Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те
Количина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ
ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације
Теорија одлучивања. Циљеви предавања
Теорија одлучивања Бајесово одлучивање 1 Циљеви предавања Увод у Бајесово одлучивање. Максимална а постериори класификација. Наивна Бајесова класификација. Бајесове мреже за класификацију. 2 1 Примене
ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈE ФАРМАЦИЈЕ ЧЕТВРТА ГОДИНА СТУДИЈА ИСТРАЖИВАЊЕ У ФАРМАЦИЈИ 1. школска 2016/2017.
ИСТРАЖИВАЊЕ У ФАРМАЦИЈИ 1 ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈE ФАРМАЦИЈЕ ЧЕТВРТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ИСТРАЖИВАЊЕ У ФАРМАЦИЈИ 1 Предмет се вреднује са 9 ЕСПБ. Недељно има 6 часова предавања
ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА
ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић
КОМПАРАТИВНА АНАЛИЗА КЛАСИЧНЕ ИНФЕРЕНЦИЈЕ И БАЈЕСОВОГ ПРИСТУПА У ОБРАДИ ЕКОНОМСКИХ ПОДАТАКА
УНИВЕРЗИТЕТ У НИШУ ЕКОНОМСКИ ФАКУЛТЕТ НИШ Мр Наташа M. Папић-Благојевић КОМПАРАТИВНА АНАЛИЗА КЛАСИЧНЕ ИНФЕРЕНЦИЈЕ И БАЈЕСОВОГ ПРИСТУПА У ОБРАДИ ЕКОНОМСКИХ ПОДАТАКА Докторска дисертација Ниш, 2014. год.
Примена статистике у кинематографији
Примена статистике у кинематографији Горан Мићовић Факултет техничких наука Чачак Мастер професор технике и информатике, 526/20 goranmico@gmail.com Ментор рада: др Вера Лазаревић,ванр. проф. Сажетак. У
Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља
Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/
ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
ИСТРАЖИВАЊЕ У ФАРМАЦИЈИ 1
ИСТРАЖИВАЊЕ У ФАРМАЦИЈИ 1 ЧЕТВРТА ГОДИНА СТУДИЈА школска 2017/2018. Предмет: ИСТРАЖИВАЊЕ У ФАРМАЦИЈИ 1 Предмет се вреднује са 9 ЕСПБ бодова. Недељно има 6 часова предавања или консултација. НАСТАВНИЦИ
ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА
ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег
Универзитет у Београду. Математички факултет. Мастер рад. Тема: Геометријски случајни процеси
Универзитет у Београду Математички факултет Мастер рад Тема: Геометријски случајни процеси Ментор: Проф др Слободанка Јанковић Кандидат: Радојка Станковић дипл математичар Београд 2012 Садржај Садржај
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Апсорпција γ зрачења
Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет
θ = rt Sl r КОМПЈУТЕРСКА СИМУЛАЦИЈА И ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА Лист/листова: 1/45 ЗАДАТАК 4 Задатак 4.1.1
И ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА Лист/листова: 1/45 ЗАДАТАК 4 Задатак 4.1.1 Математички доказ изведен је на основу постављања робота у произвољан положај и одабира произвољне референтне тачке кретања из које се
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c
6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно
Слика бр.1 Површина лежишта
. Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
Тестирање статистичких хипотеза. Методичка упутства и варијанте домаћих задатака
Тестирање статистичких хипотеза Методичка упутства и варијанте домаћих задатака ПРОВЕРА СТАТИСТИЧКИХ ХИПОТЕЗА Статистичка хипотеза је претпоставка о облику непознате расподеле случајне променљиве или о
Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић
Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових
РАЗВОЈ И ПРИМЕНА МЕТОДА ХЕУРИСТИЧКЕ ОПТИМИЗАЦИЈЕ МАШИНСКИХ КОНСТРУКЦИЈА
УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА Ненад Костић РАЗВОЈ И ПРИМЕНА МЕТОДА ХЕУРИСТИЧКЕ ОПТИМИЗАЦИЈЕ МАШИНСКИХ КОНСТРУКЦИЈА Докторска дисертација Крагујевац, 2017. Идентификациона страна:
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА
МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА Драгутин Павловић 1 Војислав Вукмировић 2 Јасна Плавшић 3 Јован Деспотовић 4 УДК: 519.217 DOI: 10.14415/zbornikGFS24.008 Резиме: Метода пикова
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
АКТУАРСТВО. Предавања 2. мр Наташа Папић-Благојевић
АКТУАРСТВО Предавања 2 мр Наташа Папић-Благојевић АКТУАРСКЕ ОСНОВЕ ОСИГУРАЊА Актуарска математика личног осигурања - обрачун тарифа животног осигурања. Актуарска математика имовинског осигурања - обрачун