g = 1, b = 1, c = 7. V eff (r) = L2 V eff (r).
|
|
- Ἀχιλλεύς Μαυρογένης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι Τμήμα Κ Τσίγκανου & Ν Βαχάκη 5 Σεπτεμβρίου Διάρκεια εξέτασης ώρες Καή επιτυχία ( bonus ερωτήματα) Ονοματεπώνυμο: ΑΜ: Να ηφθεί υπόψη η πρόοδος της 5ης Δεκεμβρίου : ΝΑΙ ΟΧΙ αν ΝΑΙ μην απαντήσετε τα θέματα και Εχω παραδώσει εργασίες: ΝΑΙ ΟΧΙ Θέμα ο : Υποθέστε ότι υπάρχει ένα τούνε που διαπερνά τη Γη πάνω σε μια διάμετρό της Ενα σώμα ξεκινά από την επιφάνεια και κινείται μέσα σε αυτό το τούνε υπό την επίδραση μόνο του βάρους του (α) Εκτιμήστε διαστατικά σε πόσο χρόνο το σώμα θα φτάσει στο κέντρο της Γης θεωρώντας τον συνάρτηση των G M και R Εκφράστε το αποτέεσμα συναρτήσει της μέσης πυκνότητας της Γης ρ (β) Αν θεωρήσουμε την πυκνότητα της Γης σταθερή η επιτάχυνση της βαρύτητας σε θέση από το κέντρο της είναι g ω όπου ω πg ρ/ Βρείτε τη θέση του σώματος σε κάθε χρόνο Σε πόσο χρόνο φτάνει στο κέντρο της Γης; (γ) Σεισμικά δεδομένα δίνουν την εσωτερική δομή της Γης δη την πυκνότητα άρα και την επιτάχυνση βαρύτητας (Klotz A R 5 A J Phys Gavitational Aeleation (/s ) Gavity Sufae Density Mean 5 Density (g/ ) Radial Distane () Σύμφωνα με το παραπάνω διάγραμμα ένα πιο ρεαιστικό μοντέο για την επιτάχυνση βαρύτητας είναι σταθερή από την επιφάνεια μέχρι ακτίνα R και γραμμική από την ακτίνα μέχρι το κέντρο δη { ω R R R g ω R Βρείτε σε πόσο χρόνο το σώμα θα φτάσει στο κέντρο της Γης Εφαρμόστε για / και Μεταξύ του να θεωρήσουμε σε όη την κίνηση σταθερή την πυκνότητα ή την επιτάχυνση βαρύτητας τι είναι προτιμότερο; Δίνεται η σταθερά G s g και η μέση πυκνότητα της Γης ρ 55 g Θέμα ο : Εστω ο κατακόρυφος κόουρος κώνος του σχήματος με ημιάνοιγμα θ π/ 5 εάχιστη κυινδρική ακτίνα b και μέγιστη κυινδρική ακτίνα b Σημειακό σώμα μπορεί να κινείται χωρίς τριβές πάνω στην εσωτερική του επιφάνεια υπό την επίδραση του βάρους του g (και κάθετης αντίδρασης) z (b)/ π/ y O x Για να απουστευθούν οι πράξεις θέσατε g b (α) Γράψτε την έκφραση της ταχύτητας σε σφαιρικές συντεταγμένες (β) Αιτιοογήστε γιατί διατηρούνται οι ποσότητες L sin θ φ και E v g os θ (γ) Δείξτε ότι η κίνηση ανάγεται σε «μονοδιάστατη» με οοκήρωμα ενέργειας ṙ V eff() E όπου V eff () L Σχεδιάστε το γράφημα της V eff () (δ) Εστω βάουμε το σώμα από σημείο του κώνου που ισαπέχει από τις βάσεις δη από θέση με (δ ) Αν L και E 5 δείξτε τα όρια της κίνησης στο γράφημα της V eff () (δ ) Ποια πρέπει να είναι η αρχική ταχύτητα v v ˆ v φ ˆφ ώστε το σώμα να περάσει από όη την επιφάνεια του κόουρου κώνου χωρίς να φύγει έξω από αυτήν; (Υποογίσετε τις τιμές των L και E απαιτώντας η κίνηση να καύπτει την περιοχή και κατόπιν βρείτε τις v φ και v ) b v v φ
2 Θέμα ο : Θεωρείστε το ακόουθο βαρυτικό δυναμικό V () 5 5 όπου GM > και μια μικρή σταθερά Πρόκειται για το γνωστό δυναμικό μιας σφαιρικής κατανομής μάζας M αά περιέχει επιπέον και ένα δεύτερο όρο που περιγράφει μια διόρθωση (α) Υποογίστε τη γωνιακή ταχύτητα ω και στροφορμή L μιας κυκικής τροχιάς ακτίνας α μιας μάζας εντός του δυναμικού αυτού (β) Δείξτε ότι για μικρές διαταραχές της κυκικής τροχιάς της μάζας η γωνιακή συχνότητα ω των μικρών ακτινικών τααντώσεων της μάζας γύρω από αυτή την κυκική τροχιά είναι ω α α (γ) Για μια τροχιά της μάζας που αποκίνει εάχιστα από την κυκική ακτίνας α δδ αδ ή u / u o δu με u o /α να δειχθεί ότι η τροχιά της μάζας είναι εειπτική της οποίας ο μεγάος άξονας (η γραμμή των αψίδων) μεταπίπτει (β Σχήμα) (δ) Σύμφωνα με το ανωτέρω αποτέεσμα μια σχεδόν κυκική τροχιά είναι στην πραγματικότητα προσεγγιστικά μια έειψη που οι άξονές της μεταπίπτουν Δείξτε ότι η γωνιακή ταχύτητα μετάπτωσης της γραμμής των αψίδων είναι α α Ω α α (ε) Στο όριο όπου /α << δδ η διαταρακτική δύναμη είναι πού μικρότερη της βαρυτικής δύναμης απο το κεντρικό σώμα με σφαιρική κατανομή μάζας M δείξτε ότι Ω α ω Υπενθυμίζεται η γνωστή διαφορική εξίσωση L u (u u) f(/u) που ικανοποιεί η τροχιά (θ) /u(θ) σε ένα κεντρικό πεδίο δυνάμεων f(/u) f() Θέμα ο : (α) Ενα διάχυτο σφαιρικό νέφος ομογενούς πυκνότητος ρ o και αρχικής ακτίνας R ευρίσκεται σε ισορροπία Κάποια στιγμή όγω μιας εξωτερικής διαταραχής αρχίζει να καταρρέει υπό την επίδραση της δικής του βαρύτητας Να υποογισθεί η ακτινική ταχύτητα ενός σωματιδίου του νέφους το οποίο ξεκινά από την ηρεμία σε κάποια απόσταση o απο το κέντρο του νέφους και φθάνει σε τυχούσα άη απόσταση < o (β) Να αποδειχθεί ότι κάθε σωματίδιο του νέφους φθάνει στο κέντρο του νέφους στον ίδιο χρόνο ανεξαρτήτως της αρχικής απόστασης αφετηρίας o Δείξτε ότι ο χρόνος αυτός t ff (fee fall tie χρόνος εεύθερης πτώσης) είναι t ff π π R / Gρ o GM όπου M είναι η συνοική μάζα του νέφους M πρ o R / Υπόδειξη: η αντικατάσταση o sin θ ίσως είναι χρήσιμη σε κάποια οοκήρωση (γ) Εκτιμήστε το χρόνο κατάρρευσης t ff για ένα σώμα με μέση πυκνότητα g/ όπως η Γη και ο Ηιος (δ) Ως γνωστόν η Γη μάζας κινείται σε μια περίπου κυκική τροχιά γύρω από τον Ηιο μάζας M και ακτίνας R με μια ταχύτητα περί τα /se Αν κάποιο αόρατο και ισχυρό «χέρι» σταματούσε την κίνησή της τότε η Γη θα κατέρρεε κινούμενη ακτινικά προς το κέντρο του Ηιου Δείξτε ότι ο χρόνος αυτός της κατάρρευσης t o είναι t o π R / GM Μπορείτε να θεωρήσετε μια οριακή εειπτική τροχιά της Γης με εκκεντρότητα e και μεγάο ημιάξονα R/ (ε) Υποογίστε το χρόνο κατάρρευσης της Γης στον Ηιο σε ημέρες Δίδεται η σταθερά της παγκοσμίου έξεως G CGS SI
3 ΛΥΣΕΙΣ: Θέμα ο : (α) t G a M R b [G] [L] [M] [T ] (από GM/ v ) οπότε [T ] [L] a [M] ba [T ] a από την οποία προκύπτουν a / b / / Άρα t R /GM ή t / G ρ (β) Η κίνηση είναι μονοδιάσταση και περιγράφεται από ω ω δη είναι αρμονική ταάντωση Η ύση η οποία ικανοποιεί τις αρχικές συνθήκες ( R και ṙ για t ) είναι R os(ωt) π Το σώμα φτάνει στο κέντρο σε χρόνο ω π επτά G ρ (γ) Η αρχική φάση της κίνησης είναι ομαά επιταχυνόμενη με ω R ṙ ω Rt R ω Rt / Φτάνει στη θέση R σε χρόνο t στον οποίο R ω Rt / t ω Τότε έχει ταχύτητα v ω Rt ωr Στη δεύτερη φάση για t > t είναι ω C sin (ω t ) C os (ω t ) όπου ω ω και t t t Οι αρχικές συνθήκες αυτής της φάσης είναι t R ṙ t ωr και δίνουν C R ( ) C R Άρα R ( ) sin (ω t ) R os (ω t ) Το σώμα φτάνει στο κέντρο όταν tan (ω t ) t ( ω δη σε t() ) atan ω Για δη θεωρώντας σε όη την κίνηση g ω ή ισοδύναμα την πυκνότητα σταθερή προκύπτει t π/ω επτά Για / προκύπτει t 5/ω 9 επτά Για δη θεωρώντας σε όη την κίνηση σταθερή g ω R προκύπτει t /ω 9 επτά (Το ίδιο προκύπτει και από την εξίσωση ομαά επιταχυνόμενης κίνησης σε σταθερό g Rgt / άρα το σώμα φτάνει στο κέντρο σε χρόνο t R/g) Τεικά είναι προτιμότερη η προσέγγιση σταθερού g! Ο όγος είναι ότι τον περισσότερο χρόνο το σώμα τον περνά όταν κινείται αργά κάτι που συμβαίνει μακρυά από το κέντρο όπου η g είναι σταθερή (Από R μέχρι R/ έχει περάσει χρόνος R/g /ω 5 επτά) Μάιστα το μέγιστο του g σε ακτίνα R/ (όπου η g είναι μεγαύτερη από την τιμή επιφάνειας ω R) συνεισφέρει στη μείωση του σφάματος αφού εξουδετερώνει μερικώς το ότι η g είναι μικρή κοντά στο κέντρο Τα επόμενα αποτεέσματα δείχνουν πόσο κοντά είναι οι ύσεις με (σταθερή g ) και /R / / (το οποίο προσεγγίζει την επιτάχυνση βαρύτητας από τα σεισμικά δεδομένα) Radial Position () 5 (/) onstant gavity () unifo density () Tie (inutes) Στο παρακάτω διάγραμμα από την εργασία του Klotz η μαύρη καμπύη δείχνει τα αριθμητικά αποτεέσματα (PREM-Nuei) αμβάνοντας υπόψη την g() όπως προκύπτει από τα σεισμικά δεδομένα Υπάρχει εντυπωσιακή συμφωνία με την ύση που προκύπτει θεωρώντας σταθερή g Radial Position () 5 Θέμα ο : Tie (inutes) PREM-Nuei Constant Gavity Unifo Density (α) Σε σφαιρικές συντεταγμένες με θ π ισχύει ˆ v ṙˆ sin θ φ ˆφ ṙˆ φ ˆφ (β) Αφού δεν υπάρχει δύναμη στην ˆφ κατεύθυνση η ẑ συνιστώσα της στροφορμής διατηρείται δη ϖ φ L σταθερά ή ισοδύναμα με ϖ sin θ και φ L Ισχύει επίσης η διατήρηση της ενέργειας αφού το βάρος είναι συντηρητική δύναμη με δυναμική ενέργεια gz g os θ (δεν υπάρχουν τριβές και άρα το
4 έργο της αντίδρασης σαν κάθετη στην κίνηση είναι v g os θ E σταθερά μηδενικό) δη φ E ή ισοδύναμα L (γ) Αντικαθιστώντας φ προκύπτει το οο κήρωμα ενέργειας της «μονοδιάστατης» κίνησης L Veff () E όπου Veff () ή προς το σημείο Ο) Τα παρακάτω γραφήματα δείχνουν τα αποτεέσματα της αριθμητικής οοκήρωσης των εξι σώσεων κίνησης για t φ t t 9/ φ t / v 5 Veff() j p 5 5 t 5 E 5 in ax (δ ) Veff () Στην αρχική θέση είναι Veff 5 E και Veff > Αρα η αρχική θέση είναι η ακραία με το μέγιστο (Η άη ακραία θέση είναι η μικρότερη θετική ύση της Veff () E) Αιώς: Στα όρια κίνησης Veff () E 5 ( ) Οι θετικές ύσεις είναι και δη η αρχική θέση είναι η ακραία με το μέγιστο (Η μικρότερη κυινδρική ακτίνα είναι > επομένως το σώμα μένει πάντα πάνω στον κόουρο κώνο) (δ ) Πρέπει στις ακραίες ακτίνες και η ταχύτητα να είναι μόνο εφαπτομενική δη πρέπει Veff ( ) Veff ( ) E Η ισότητα Veff ( ) Veff ( ) δίνει τη στροφορμή: L L L± 9 5 Η ενέργεια είναι E Veff ( ) L Στην αρχική θέση είναι φ ± και vφ φ ± 9 E Veff ( ) v ± Αρα η αρχική ταχύτητα πρέπει να έχει αζιμουθια κή συνιστώσα vφ ± (δεξιόστροφα ή αριστερό 9 (από στροφα) και ακτινική συνιστώσα v ± 5 t Η περίοδος της ακτινικής κίνησης είναι T Z Z d d p 9 E Veff () Στο χρόνο αυτό το διάνυσμα θέσης του σώμαz φ τος έχει στραφεί κατά φ d Z L/ p d π E Veff () Το σώμα θα γυρίσει στην αρχική θέση αφού στραφεί κατά γωνία ίση με το εάχιστο κοινό ποαπάσιο των φ και π Αυτή είναι θεωρητικά άπειρη φ γωνία αν ο όγος είναι άρρητος αριθμός οπότε π το σώμα περνά από κάθε σημείο του κώνου φ Πρακτικά όμως ο όγος είναι κοντά σε κάποιο π φ ρητό αριθμό στην περίπτωσή μας στον π
5 οπότε μετά από πήρεις περιστροφές το σώμα γυρνά πού κοντά στο αρχικό σημείο Αυτό συμβαίνει μετά από περιόδους της ακτινικής κίνησης δη σε χρόνο T 5 και φαίνεται στο κάτω δεξιά σχήμα που δείχνει την προβοή της τροχιάς στο επίπεδο xy για t 5 (το αρχικό σημείο είναι το x y ενώ φαίνεται το σώμα να πησιάζει στο σημείο αυτό στον τεικό χρόνο) (Το κάτω αριστερά δείχνει την προβοή της τροχιάς για t 5) y - - L u (u u) u u Για μια τροχιά που αποκίνει εαφρά από κυκική γράφουμε u uo δu δu u Ετσι η προηγούμενη εξίσωση γίνεται: L d (δu) δu uo δu uo dθ uo δu uo uo ενώ για την κυκική τροχιά u uo έχουμε: y - σωση x Θέμα ο : x L uo uo Αντικαθιστώντας αυτή τη σχέση στην εξίσωση της διαταραγμένης τροχιάς έχουμε L d (δu) δu uo δu dθ ή d δu uo δu dθ L (α) V 5 5 d F d d α ω α F ω α α (α ) L ωα α L α (β) V V 55 α α d α d V α d α Θέτοντας u L o για κατάηη επιογή των ποικών αξόνων μια ύση είναι: δu B sin θ Επομένως η τροχιά είναι εειπτική με τον μεγάο άξονα να μεταπίπτει όγω της ύπαρξης του (δ) Εάν θ και θ είναι οι γωνίες δύο διαδοχικών διαβάσεων της μάζας από τη γραμμή των αψίδων π Επειδή < η γωνία της μετάπτωσης της γραμμής των αψίδων είναι θ θ π θ Η πρώτη παράγωγος μηδενίζεται στην κυκική θµ θ π π ακτίνα συνθήκη που ισοδυναμεί με και ο χρόνος t για να περιστραφεί κατά γωνία θ µ d α η γραμμή των αψίδων είναι την ω α F π θ t Επομένως για α και θέτοντας o x θ θ x << o η εξίσωση τροχιάς είναι Η γωνιακή ταχύτητα της μετάπτωσης είναι d d V θ α α µ x x η οποία δίνει τααντωτική Ω ω ω d α t ύση s με συχνότητα (ε) Η συχνότητα της μετάπτωσης είναι d V α ω d α α α Ω (γ) Η τροχιά ικανοποιεί τη γνωστή διαφορική εξί
6 α α [ ( ) ( / ) ] / α α α ω όπου στο ανάπτυγμα Taylo θεωρήσαμε ότι /α << δδ η διαταρακτική δύναμη είναι πού μικρότερη της βαρυτικής δύναμης απο το κεντρικό σώμα με σφαιρική κατανομή μάζας M Σημείωση : Η μάζα διαγράφει εειπτική κίνηση και αυτό είναι ένα γενικό αποτέεσμα για μικρές διαταρακτικές δυνάμεις σε σχέση με την κύρια δύναμη βαρύτητας που ασκείται από ένα κεντρικό βαρυτικό δυναμικό Μια απόδειξη αυτού για τη διαταρακτική δύναμη δf A δίδεται στη σε του βιβίου Εισαγωγή στη Θεωρητική Μηχανική Κ Τσίγκανος Ανάογα αποδείξαμε ότι η μάζα διαγράφει εειπτική κίνηση και για τη δεδομένη εδώ διαταρακτική δύναμη δf / Θέμα ο : (α) Από τον νόμο του Νεύτωνα η εξίσωση κίνησης του σωματιδίου στην τυχούσα απόσταση o εντός της κατανομής της μάζας είναι d dt πg oρ o ή επειδή d/dt (d/d)(d/dt) vd/d οοκηρώνοντας έχουμε v oρ o d πg πg oρ o C Για o έχουμε v και επομένως C πg oρ o / οπότε και v ( πg oρ o o ) v πg o ρ o o (β) Επειδή v d/dt dt d/v οοκηρώνοντας έχουμε t ff πg oρ o o Θέτοντας u / o έχουμε du t ff πgρ o u I du u d o πgρ o I Με u sin θ έχουμε τεικά I π/ οπότε π π t ff πgρ o Gρ o Επομένως κάθε σωματίδιο του νέφους φθάνει στο κέντρο του νέφους στον ίδιο χρόνο t ff ανεξαρτήτως της αρχικής απόστασης αφετηρίας o (γ) π t ff 5 ins πgρ o (δ) Θεωρούμε τη Γη ότι κινείται κατά την κατάρρευσή της προς το Ηιακό κέντρο σε μια οριακή εειπτική τροχιά με εκκεντρότητα e Ο μεγάος ημιάξονας αυτής της τροχιάς ισούται με R/ και από τον τρίτο νόμο του Κέπερ η ημιπερίοδος αυτής της εειπτικής τροχιάς είναι t o π(r/) / G(M ) πr/ GM t ff (ε) Ο χρόνος κατάρρευσης t o t ff ισούται με t o t ff P όπου P ισούται με έτος Επομένως t o t ff 5 ημέρες
Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
L2 {mk. K Z 1Z 2 e 2. v 8 ě 4 ˆ 10 7 m/s. Z 2 79, e 1.6ˆ10 19 C, 9ˆ10 9 Nm 2 /C 2
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βαχάκη, Ιανουαρίου Διάρκεια εξέτασης 3 ώρες, Καή επιτυχία ( = bonus ερωτήματα),
3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),
GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,
) z ) r 3. sin cos θ,
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία
Βαρύτητα Βαρύτητα Κεφ. 12
Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011
O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 3 Ιανουαρίου 018 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}
Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων
L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης
R 1. e 2r V = Gauss E + 1 R 2
: Γραμμική πυκνότητα φορτίου βρίσκεται στον άξονα αγώγιμου κυινδρικού φοιού εσωτερικής ακτίνας και εξωτερικής α) Να υποογιστεί η επαγόμενη πυκνότητα φορτίου στις δύο όψεις του φοιού, αν το συνοικό του
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
mv V (x) = E με V (x) = mb3 ω 2
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 6 Σεπτεμβρίου 6 Διάρκεια εξέτασης ώρες, Καλή επιτυχία ( = bonus ερωτήματα),
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:
ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 20 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Θέμα Α: (α) Να υπολογίσετε το βαρυτικό δυναμικό σε απόσταση r από το κέντρο ευθύγραμμης ράβδου
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
dv 2 dx v2 m z Β Ο Γ
Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
k 3/5 P 3/5 ρ = cp 3/5 (1) dp dr = ρg (2) P 3/5 = cgdz (3) cgz + P0 cg(z h)
Αριστοτελειο Πανεπιστημιο Θεσσαλονικης ΤΜΗΜΑ ΦΥΣΙΚΗΣ 3ο Σετ Ασκήσεων Αστρονομίας Author: Σταμάτης Βρετινάρης Supervisor: Νικόλαος Στεργιούλας Λουκάς Βλάχος December 5, 215 1 Άσκηση Σφαιρικός αστέρας με
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
Το βαρυτικό πεδίο της Γης.
Το βαρυτικό πεδίο της Γης. Θα μελετήσουμε το βαρυτικό πεδίο της Γης, τόσο στο εξωτερικό της όσο και στο εσωτερικό της, χρησιμοποιώντας τη λογική μελέτης του ηλεκτροστατικού πεδίου, με την βοήθεια της ροής.
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Το νήμα δεν ολισθαίνει στο αυλάκι της τροχαλίας και είναι συνεχώς τεντωμένο. Η αντίσταση του αέρα θεωρείται αμελητέα.
Ένα γιο γιο σε ταλάντωση Ομογενής κύλινδρος Σ, (γιο γιο) ισορροπεί έχοντας το νήμα τυλιγμένο γύρω της πολλές φορές. Η μία άκρη του νήματος είναι στερεωμένη στην οροφή Ο και η άλλη στο σώμα Σ, το οποίο
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)
Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 11 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 7 Φεβρουαρίου 5 Διάρκεια εξέτασης ώρες, Καλή επιτυχία, ΑΜ: Να ληφθεί
Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;
Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι
ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο
ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 5-Μάρτη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος.
ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΚΥΜΑΤΑ Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε στο φύο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.
ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 004 Τμήμα Π Ιωάννου & Θ Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα
Κύματα (Βασική θεωρία)
Κύματα (Βασική θεωρία) Λεεδάκης Κωστής ( koleygr@gmailcom ) 10 Δεκεμβρίου 015 1 1 Βασικά στοιχεία Κύμα ονομάζεται οποιαδήποτε διαταραχή διαδίδεται μέσα στο χώρο Τα ηεκτρομαγνητικά κύματα είναι τα μόνα
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
το άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας
γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
O y. (t) x = 2 cos t. ax2 + bx + c b 2ax b + arcsin. a 2( a) mk.
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 3 Ιανουαρίου 08 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.
ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
( ) = ke r/a όπου k και α θετικές σταθερές
Παράδειγµα 1 ΦΥΣ 11 - Διαλ.15 1 Θεωρήστε την κίνηση ενός σώματος,μάζας m σε ελκτικό δυναμικό: V r ke r/a όπου k και α θετικές σταθερές (α) Σχεδιάστε το για μικρές και μεγάλες τιμές της στροφορμής,, και
Κίνηση σε κεντρικό δυναμικό
Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 30 Μαρτίου 2014 Κεφάλαιο Ι: Κινηματική του Υλικού Σημείου 1. Αν το διάνυσμα θέσης υλικού σημείου είναι:
Μηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και
L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 Μαρούσι 06-0-0 ΘΕΜΑ ο (βαθμοί ) ΟΜΑΔΑ Α Μια οριζόντια ράβδος που έχει μάζα είναι στερεωμένη σε κατακόρυφο τοίχο. Να αποδείξετε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις
ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε
ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη
ΚΕΦΑΛΑΙΟ Παγκόσµια έλξη ύναµη µεταξύ υλικών σηµείων Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα είναι ακίνητη στην αρχή των αξόνων και η µάζα βρίσκεται στη διανυσµατική
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ
Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση
Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση α) Το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση λίγο πριν και αμέσως μετά το κόψιμο του νήματος, Η ομογενής και ισοπαχής ράβδος
Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009
Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα
Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα
Εισαγωγή στις Φυσικές Επιστήμες (9-7-5) Ονοματεπώνυμο Τμήμα Θέμα ο Ερώτημα Ένα σώμα μάζας kg τοποθετείται σε ένα κεκλιμένο επίπεδο και συνδέεται μέσω του νήματος αβαρούς τροχαλίας με ένα ελατήριο αμελητέας