2.1 Amplificatorul de semnal mic cu cuplaj RC
|
|
- Ἰουλία Ανδρεάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Lucrarea nr.6 AMPLIFICATOAE DE SEMNAL MIC 1. Scopurile lucrării - ridicarea experimentală a caracteristicilor amplitudine-frecvenţă pentru amplificatorul cu cuplaj C şi amplificatorul selectiv; - determinarea grafică a benzii de frecvenţă; - calculul amplificărilor. 2. Consideraţii teoretice 2.1 Amplificatorul de semnal mic cu cuplaj C In fig. 1 se prezintă schema tipică a unui amplificator de semnal mic cu cuplaj C (cuplaj prin condensator) având tranzistorul în conexiunea emitor-comun. Fig. 1. Amplificatorul se consideră de semnal mic dacă tensiunea in, furnizată de generator, determină o variaţie a tensiunii bază-emitor, u BE, suficient de mică pentru a se putea considera că dependenţa dintre curentul şi tensiunea pe joncţiunea aflată în conducţie este liniară. În aceste condiţii amplificatorul funcţionează liniar şi se păstrează proporţionalitatea semnalului de ieşire cu cel de intrare. Condiţia de semnal mic se exprimă prin relaţia: kt u BE (1) q kt unde este tensiunea termică şi are valoarea de aproximativ 26mV la temperatura de q 300K (27 C). Cuplajul se numeşte C deoarece condensatorul de cuplaj C formează împreună cu rezistenţa de intrare a etajului următor un divizor de tensiune. Acest divizor de tensiune 35
2 asigură separarea în curent continuu (c.c.) între etaje (datorită condensatorului C) şi atenuarea semnalelor la frecvenţe joase (comportare de filtru trece-sus, FTS). În cazul circuitului din fig.1, cuplajul de tip C la intrare este alcătuit din rezistenţa de intrare a amplificatorului, notată cu in şi condensatorul de cuplaj cu generatorul, C G. La ieşirea circuitului din fig. 1, cuplajul de tip C este reprezentat de rezistenţa de sarcină L şi condensatorul de cuplaj cu sarcina C L. Elementul activ al amplificatorului de semnal mic este tranzistorul T din fig. 1. Comportarea amplificatorului de semnal mic se poate descrie cu ajutorul caracteristicilor de frecvenţă (amplitudine-frecvenţă respectiv fază-frecvenţă). Dacă se consideră in ( ω) şi o ( ω ) imaginile în complex ale tensiunilor de intrare, respectiv de ieşire, reprezentarea în complex a amplificării se scrie: A( unde ( ω) o jϕ( ω) ω ) = = A( ω)e (2) in ( ω) A(ω) reprezintă caracteristica amplitudine-frecvenţă, iar ϕ(ω) - caracteristica fază-frecvenţă. In fig. 2 se prezintă caracteristica amplitudine-frecvenţă, A(ω) pentru un amplificator de semnal mic de tipul celui din fig. 1. Fig. 2. Din punct de vedere fiziologic, pentru a se proteja, urechea umană percepe sunetele după o lege de variaţie logaritmică. Astfel urechea sesizează o modificare a intensităţii sonore a unui semnal numai după ce semnalul s-a dublat ca putere sau s-a atenuat de 2 ori. Se obişnuieşte să se exprime rapoartele de puteri sau de tensiuni în decibeli db. P Astfel, un raport de puteri se exprimă în db sub forma 10 log 10, iar un raport de Pmax tensiuni în db se scrie sub forma 20 log 10. Din modul de exprimare max logaritmică a rapoartelor de puteri sau tensiuni, la o scădere la jumătate a puterii unui semnal îi corespunde o micşorare a mărimii semnalului la 1 = 0, 707 din amplitudinea maximă ( 10log10 = 10log10 = 2 ). Exprimat în max max 2 36
3 1 db, acest lucru înseamnă o atenuare cu 3dB ( 10log10 = 3dB). Frecvenţa 2 corespunzătoare acestei situaţii se numeşte frecvenţă la 3dB sau frecvenţă limită. Banda de frecvenţă, B a unui amplificator de semnal mic este: B = f s f i (3) unde f i reprezintă frecvenţa limită inferioară iar f s - frecvenţa limită superioară. Amplificarea în tensiune la frecvenţe medii se poate calcula pe schema echivalentă din fig. 3, pe care tranzistorul s-a înlocuit cu o rezistenţa între bază şi emitor şi un generator de curent între colector şi emitor. Prin frecvenţe medii, dacă ne referim la domeniul de audiofrecvenţă cuprins între 20 Hz şi 20 khz, se înţeleg semnalele a căror frecvenţă este egală cu aproximativ 1000 Hz (fig. 2). Fig. 3. Se presupune că la frecvenţele medii reactanţele capacitive ale condensatoarelor C G, C L şi C E sunt egale cu zero (capacităţile au valori mari), deci reprezintă scurtcircuit în curent alternativ. Tot scurtcircuit în curent alternativ este şi sursa de curent continuu de alimentare E C. Dacă se consideră generatorul de tensiune de la intrare ideal, ceea ce presupune G =0, se poate demonstra că amplificarea la frecvenţe medii este: A β ( ) o C L med = = (4) in rπ unde I I B β rπ = 40 - rezistenţa dinamică a joncţiunii bază-emitor a tranzistorului. C β = reprezintă factorul de amplificare în curent al tranzistorului iar I C Semnul minus arată că tensiunea de ieşire este în opoziţie de fază cu cea de intrare (defazată cu -180 faţă de cea de intrare). La amplificatorul de semnal mic din fig. 1, amplificarea la frecvenţe medii, A med depinde de parametrii β şi r π ai tranzistorului. Aceste mărimi au o dispersie mare de la un tip de tranzistor la altul şi chiar la acelaşi tip de tranzistor între exemplare diferite. 37
4 2.2 Amplificatorul de semnal mic cu cuplaj C şi cu reacţie negativă eacţia constă în preluarea unei părţi bine determinate din semnalul de ieşire al amplificatorului şi aducerea acesteia la intrare. eacţia se numeşte negativă dacă din semnalul de intrare se scade cel de reacţie. Montajul din fig. 1 devine un amplificator cu reacţie negativă dacă se deconectează condensatorul C E. În acest caz se poate demonstra că amplificarea cu reacţie negativă se scrie: A r med deoarece β( C L ) = r + ( β + 1) π π E C ( β + 1) E r iar β + 1 β. Dacă amplificatorul lucrează în gol ( L ), atunci A r med E E L ) C (6) ezultă că amplificarea cu reacţie nu mai depinde de tranzistor ci de valorile unor rezistenţe. Dacă se aleg rezistoare de precizie, atunci amplificarea se poate controla cu exactitate mare. n alt efect important al reacţiei negative constă în creşterea benzii de frecvenţă a amplificatorului cu reacţie faţă de cel fără reacţie. 2.3 Amplificatorul selectiv (acordat) (5) a) b) Fig. 4. Amplificatorul selectiv din fig. 4a este un amplificator de semnal mic, realizat cu tranzistorul în conexiunea cu emitor comun, cu circuit rezonant derivaţie în colector (LC). Tranzistorul se comportă ca un generator de curent care atacă circuitul rezonant. Tensiunea de ieşire este o = Z I, unde Z este impedanţa circuitului rezonant. Pentru schema echivalentă de curent alternativ din fig. 4b se poate scrie: 38
5 1 Z 1 = Y = G + jω C + (7) jω L unde Y este admitanţa iar G = 1 reprezintă conductanţa circuitului.. La frecvenţa de rezonanţă: 1 f o = (8) 2π LC rezultă Y=G, deoarece reactanţa inductivă devine egală cu cea capacitivă şi sarcina din colector se comportă rezistiv. La rezonanţă, impedanţa Z a circuitului oscilant derivaţie este pur activă şi are o valoare maximă. ezultă că şi tensiunea care apare la bornele circuitului oscilant este maximă. Astfel rezonanţa se poate detecta măsurând tensiunea la bornele circuitului oscilant. aportul dintre mărimea reactanţei la rezonanţă şi rezistenţa activă din circuit se numeşte factor de calitate, se notează cu Q şi este exprimat prin relaţia: ωol f o Q = = (9) B unde B reprezintă banda de frecvenţă a amplificatorului selectiv, definită cu o expresie de forma relaţiei (3). In fig. 5 se prezintă caracteristica amplitudine-frecvenţă o = o (f) a unui amplificator selectiv. 3. Desfăşurarea lucrării Fig. 5. Aparatura necesară: sursă simplă de tensiune (c.c.), 0 7,5V; generator de semnal sinusoidal, 1Hz 1MHz; voltmetre de curent alternativ (voltmetre electronice); osciloscop; montajul de laborator AMPLIFICATOAE DE SEMNAL MIC ; 39
6 Montajul experimental este prezentat în fig Amplificator C fără reacţie Fig. 6. Se ridică experimental caracteristica amplitudine-frecvenţă, se determină grafic banda de frecvenţă, B 1 şi se calculează A med1 cu relaţia: o,max A med1 = (10) in În acest scop: se scurtcircuitează (se fac legăturile între) bornele 3-4 şi 6-7; la intrare, între bornele 1 şi 2 se conectează generatorul de semnal sinusoidal şi un voltmetru (V 1 ) de c.a.; la ieşire, între bornele 4 şi 13,se conectează un voltmetru (V 2 ) de c.a. se alimentează montajul de la sursa simplă de tensiune, conectând borna + a sursei cu borna 12 (+7,5V) şi borna - a sursei cu borna 13; se reglează de la generator nivelul semnalului astfel încât valoarea efectivă a tensiunii de intrare, măsurată cu voltmetrul V 1 să fie de 10 mv ( in1 =10mV); se modifică de la generatorul de semnal frecvenţa la valorile indicate în tabelul 1, linia 1 (menţinând constantă in1 pentru toate frecvenţele) şi se măsoară pentru fiecare valoare a frecvenţei, valoarea efectivă a tensiunii de ieşire o1 cu voltmetrul V2, completându-se tabelul 1, linia a 2-a. 3.2 Amplificator C cu reacţie negativă în emitor Se ridică experimental caracteristica amplitudine-frecvenţă, se determină grafic banda de frecvenţă, B 2, se calculează A med2 cu relaţia (10) şi se compară cu rezultatul dat de relaţia (6). În acest scop se procedează ca la punctul 3.1 faţă de care apar următoarele modificări: se desface legătura dintre bornele 6 şi 7; 40
7 f [khz] o1 [V] o2 [V] nivelul semnalului de la generator se reglează astfel încât in2 =100mV; se completează tabelul 1, linia a 3-a. Tabelul 1 0,02 0,05 0,1 0,2 0, Amplificator selectiv (cu reacţie negativă în emitor) Se ridică experimental caracteristica amplitudine-frecvenţă, se determină valoarea frecvenţei de rezonanţă a circuitului, f o, se determină grafic banda de frecvenţă, B şi se calculează valoarea factorului de calitate Q, în cazul circuitului acordat care are o sarcină de 15kΩ (fig. 6). În acest scop se foloseşte schema de montaj de la punctul 3.2 la care: se desface legătura dintre bornele 3 şi 4; se face legătura între bornele 4 şi 5; nivelul semnalului de la generator se reglează astfel încât in3 = 0,3V şi se menţine constant pentru toate frecvenţele de măsură; se modifică frecvenţa semnalului de intrare începând de la 10kHz şi se determină frecvenţa de rezonanţă f o care corespunde la valoarea maximă a tensiunii de ieşire, notându-se valoarea lui f o în tabelul 2; se modifică frecvenţa semnalului de intrare în jurul celei de rezonanţă de la f o - 5kHz la f o +5kHz şi se completează tabelul 2. Tabelul 2 f o ±n khz f o -5 f o -4 f o -3 f o -2 f o -1 f o f o +1 f o +2 f o +3 f o +4 f o +5 f [khz] o [V] 4. Conţinutul referatului schema montajului de lucru; desfăşurarea lucrării şi tabelele pentru rezultatele experimentale; caracteristicile o1 (f) şi o2 (f), reprezentate pe hârtie milimetrică (sau foaie de matematică) şi construite pentru o scară logaritmică de frecvenţă (vezi fig. 2); determinarea grafică a benzilor de frecvenţă B 1 şi B 2 pentru amplificatorul fără reacţie, respectiv cel cu reacţie; se verifică dacă B 2 >B 1 ; 41
8 calculul amplificărilor A med1 şi A med2 cu relaţia (10); amplificarea A med2 se compară cu valoarea dată de relaţia (6); caracteristica de frecvenţă a amplificatorului selectiv; determinarea grafică a benzii de frecvenţă B a amplificatorului selectiv; calculul factorului de calitate Q cu relaţia (9) pentru circuitul acordat care are o sarcină de 15kΩ, B fiind mărimea determinată anterior iar f o se ia din tabelul 2; calculul factorului de calitate Q cu relaţia (9) pentru circuitul acordat care are o sarcină de 1Ω (fig. 6 se face legătura între bornele 10 şi 11). Se repetă măsurările de la punctul 3.3 pentru o gamă de frecvenţă mai largă în jurul frecvenţei de rezonanţă; observaţii şi concluzii personale. 42
i R i Z D 1 Fig. 1 T 1 Fig. 2
TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare
Διαβάστε περισσότεραLucrarea nr. 5 STABILIZATOARE DE TENSIUNE. 1. Scopurile lucrării: 2. Consideraţii teoretice. 2.1 Stabilizatorul derivaţie
Lucrarea nr. 5 STABILIZATOARE DE TENSIUNE 1. Scopurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare serie şi derivaţie; -
Διαβάστε περισσότεραAMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN
AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραV O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Διαβάστε περισσότεραL2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR
L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural
Διαβάστε περισσότερα10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότερα1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Διαβάστε περισσότερα7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE
7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE 7.1. GENERALITĂŢI PRIVIND AMPLIFICATOARELE DE SEMNAL MIC 7.1.1 MĂRIMI DE CURENT ALTERNATIV 7.1.2 CLASIFICARE 7.1.3 CONSTRUCŢIE 7.2 AMPLIFICATOARE DE SEMNAL MIC
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότεραOvidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Διαβάστε περισσότεραM. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.
Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se
Διαβάστε περισσότερα4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Διαβάστε περισσότεραL3. TRANZISTORUL CU EFECT DE CÂMP TEC-J
L3. RANZISORUL CU EFEC DE CÂMP EC-J În lucrare sunt măsurate caracteristicile statice ale unui tranzistor cu efect de câmp cu rilă-jocţiune (EC-J) şi este verificată concordanţa cu relaţiile analitice
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραREACŢIA NEGATIVĂ ÎN AMPLIFICATOARE
Lucrarea nr. 7 REACŢA NEGATVĂ ÎN AMPLFCATOARE. Scopurile lucrării: - determinarea experimentală a parametrilor amplificatorului cu şi fără reacţie negativă şi compararea rezultatelor obţinute cu valorile
Διαβάστε περισσότεραCapitolul 4 Amplificatoare elementare
Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector
Διαβάστε περισσότεραProblema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραLucrarea 9. Analiza în regim variabil de semnal mic a unui circuit de amplificare cu tranzistor bipolar
Scopul lucrării: determinarea parametrilor de semnal mic ai unui circuit de amplificare cu tranzistor bipolar. Cuprins I. Noţiuni introductive. II. Determinarea prin măsurători a parametrilor de funcţionare
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότεραFig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n';
ELECTRONIC Lucrarea nr.3 DISPOZITIVE OPTOELECTRONICE 1. Scopurile lucrării: - ridicarea caracteristicilor statice ale unor dispozitive optoelectronice uzuale (dioda electroluminiscentă, fotodiodă, fototranzistorul);
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Διαβάστε περισσότεραLucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)
ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic
Διαβάστε περισσότεραExemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni
Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine
Διαβάστε περισσότεραStabilizator cu diodă Zener
LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator
Διαβάστε περισσότεραCAPITOLUL 3. STABILIZATOARE DE TENSIUNE
CAPTOLL 3. STABLZATOAE DE TENSNE 3.1. GENEALTĂȚ PVND STABLZATOAE DE TENSNE. Stabilizatoarele de tensiune sunt circuite electronice care furnizează la ieșire (pe rezistența de sarcină) o tensiune continuă
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραCIRCUITE LOGICE CU TB
CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune
Διαβάστε περισσότεραElectronică anul II PROBLEME
Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le
Διαβάστε περισσότεραCAPITOLUL 1. AMPLIFICATOARE CU TRANZISTOARE BIPOLARE
CAPIOLUL 1. AMPLIFICAOARE CU RANZISOARE BIPOLARE 1.1. AMPLIFICAOARE DE SEMNAL MIC 1.1.1 MĂRIMI DE CUREN ALERNAIV. CARACERISICI. Amplificatorul electronic este un cuadripol (circuit electronic prevăzut
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραElectronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE
STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea
Διαβάστε περισσότεραFENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραElectronică Analogică. 5. Amplificatoare
Electronică Analogică 5. Amplificatoare 5.1. Introducere Prin amplificare înţelegem procesul de mărire a valorilor instantanee ale unei puteri sau ale altei mărimi, fără a modifica modul de variaţie a
Διαβάστε περισσότεραTranzistoare bipolare cu joncţiuni
Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători
Διαβάστε περισσότεραCOMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE
COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire
Διαβάστε περισσότεραEtaj de amplificare elementar cu tranzistor bipolar în conexiune colector comun (repetorul pe emitor)
taj de amplificare elementar cu tranzistor bipolar în conexiune colector comun (repetorul pe emitor) Circuitul echivalent natural π - hibrid (Giacoletto)... taj de polarizare cu TB in conexiune colector
Διαβάστε περισσότεραTransformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Διαβάστε περισσότεραTEORIA CIRCUITELOR ELECTRICE
TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =
Διαβάστε περισσότεραAparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
Διαβάστε περισσότεραAmplificatoare liniare
mplificatoare liniare 1. Noţiuni introductie În sistemele electronice, informaţiile sunt reprezentate prin intermediul semnalelor electrice, care reprezintă mărimi electrice arible în timp (de exemplu,
Διαβάστε περισσότεραREDRESOARE MONOFAZATE CU FILTRU CAPACITIV
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării
Διαβάστε περισσότεραV CC 10V. Rc 5.6k C2. Re 1k OSCILOSCOP
LUCRARE DE LABORATOR 1 AMPLIFICATOR CU UN TRANZISTOR ÎN CONEXIUNEA EMITOR COMUN. o Realizarea circuitului de amplificare cu simulatorul; o Realizarea practică a circuitului de amplificare; o Setarea și
Διαβάστε περισσότεραLucrarea Nr. 5 Tranzistorul bipolar Caracteristici statice
Lucrarea Nr. 5 Tranzistorul bipolar Caracteristici statice A.Scopul lucrării - Determinarea experimentală a plajei mărimilor eletrice de la terminale în care T real este activ (amplifică)precum şi a unor
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραLucrarea Nr. 11 Amplificatoare de nivel mare
Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul
Διαβάστε περισσότεραA1. Valori standardizate de rezistenţe
30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea
Διαβάστε περισσότερα(N) joncţiunea BC. polarizată invers I E = I C + I B. Figura 5.13 Prezentarea funcţionării tranzistorului NPN
5.1.3 FUNŢONAREA TRANZSTORULU POLAR Un tranzistor bipolar funcţionează corect, dacă joncţiunea bază-emitor este polarizată direct cu o tensiune mai mare decât tensiunea de prag, iar joncţiunea bază-colector
Διαβάστε περισσότερα11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.
Διαβάστε περισσότεραAMPLIFICATORUL CU CIRCUIT ACORDAT DERIVATIE
AMPLIFICATORL C CIRCIT ACORDAT DERIVATIE 4 M IN OT OT Analizor spectru IN Fiura 6 (). Comutatorul K este pe poziţia de R mare. Comutatorul K scurtcircuitează rezistenţa R a. Cunoscând valoarea L a bobinei
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραL1. DIODE SEMICONDUCTOARE
L1. DIODE SEMICONDUCTOARE L1. DIODE SEMICONDUCTOARE În lucrare sunt măsurate caracteristicile statice ale unor diode semiconductoare. Rezultatele fiind comparate cu relaţiile analitice teoretice. Este
Διαβάστε περισσότεραPolarizarea tranzistoarelor bipolare
Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea
Διαβάστε περισσότεραTranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Διαβάστε περισσότεραF I Ş Ă D E L U C R U 5
F I Ş Ă D E L U C R U 5 UNITATEA DE ÎNVĂŢARE:STABILIZATOARE DE TENSIUNE TEMA: STABILIZATOARE DE TENSIUNE CU TRANZISTOARE BIPOLARE.. STABILIZATOR DE TENSIUNE SERIE A. Prezentarea montajului 8V Uce - V 3.647
Διαβάστε περισσότεραa. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
Διαβάστε περισσότερα11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite
Διαβάστε περισσότεραLUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL
LUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL 1. Scopul lucrării În această lucrare se studiază experimental amplificatorul instrumental programabil PGA202 produs de firma Texas Instruments. 2. Consideraţii
Διαβάστε περισσότεραL6. PUNŢI DE CURENT ALTERNATIV
niversitatea POLITEHNI din Timişoara epartamentul Măsurări şi Electronică Optică 6.1. Introducere teoretică L6. PNŢI E ENT LTENTIV Punţile de curent alternativ permit măsurarea impedanţelor. Măsurarea
Διαβάστε περισσότεραLucrarea Nr. 10 Stabilizatoare de tensiune
ucrarea Nr. 10 Stabilizatoare de tensiune Scopul lucrării - studiul funcţionării diferitelor tipuri de stabilizatoare de tensiune; - determinarea parametrilor de calitate ai stabilizatoarelor analizate;
Διαβάστε περισσότεραVII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Διαβάστε περισσότεραMăsurări în Electronică şi Telecomunicaţii 3. Măsurarea tensiunilor şi a curenţilor electrici
3. Măsurarea tensiunilor şi a curenţilor electrici 3.1 Aspecte generale Procesul de măsurare A măsura = a compara o mărime necunoscută, X, cu o alta, de aceeaşi natură, X u : X = m X u m = valoarea mărimii
Διαβάστε περισσότεραC U P R I N S ARGUMENT PREZENTAREA AMPLIFICATOARELOR OPERAŢIONALE Simbol şi terminale AO ideal AO real...
C U P R I N S ARGUMENT.... 2 1. PREZENTAREA AMPLIFICATOARELOR OPERAŢIONALE... 4 1.1 Simbol şi terminale... 4 1.2 AO ideal..... 5 1.3 AO real... 5 1.4 Configuraţii de circuite cu AO... 6 2. PARAMETRII UNUI
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραLucrarea 12. Filtre active cu Amplificatoare Operaţionale
Scopul lucrării: introducerea tipurilor de iltre de tensiune, a relaţiilor de proiectare şi a modului de determinare prin măsurători/simulări a principalilor parametri ai acestora. Cuprins I. Noţiuni introductive
Διαβάστε περισσότεραProiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Διαβάστε περισσότερα3.5. STABILIZATOARE DE TENSIUNE CU CIRCUITE INTEGRATE.
3.5. STABILIZATOARE DE TENSIUNE CU CIRCUITE INTEGRATE. 3.5.1 STABILIZATOARE DE TENSIUNE CU AMPLIFICATOARE OPERAȚIONALE. Principalele caracteristici a unui stabilizator de tensiune sunt: factorul de stabilizare
Διαβάστε περισσότεραa) b) c) Fig Caracteristici de amplitudine-frecvenţă ale amplificatoarelor.
Clasificarea amplificatoarelor Amplificatoarele pot fi comparate după criterii diverse şi corespunzător există numeroase variante de clasificare ale amplificatoarelor. În primul rând, dacă pot sau nu să
Διαβάστε περισσότεραLucrarea 7. Polarizarea tranzistorului bipolar
Scopul lucrării a. Introducerea unor noţiuni elementare despre funcţionarea tranzistoarelor bipolare b. Identificarea prin măsurători a regiunilor de funcţioare ale tranzistorului bipolar. c. Prezentarea
Διαβάστε περισσότεραLucrarea Nr. 7 Tranzistorul bipolar Caracteristici statice Determinarea unor parametri de interes
Lucrarea Nr. 7 Tranzistorul bipolar aracteristici statice Determinarea unor parametri de interes A.Scopul lucrării - Determinarea experimentală a plajei mărimilor eletrice de la terminale în care T real
Διαβάστε περισσότεραFigura 1. Caracteristica de funcţionare a modelului liniar pe porţiuni al diodei semiconductoare..
I. Modelarea funcţionării diodei semiconductoare prin modele liniare pe porţiuni În modelul liniar al diodei semiconductoare, se ţine cont de comportamentul acesteia atât în regiunea de conducţie inversă,
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότερα2.2.1 Măsurători asupra semnalelor digitale
Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de
Διαβάστε περισσότεραCIRCUITE CU PORŢI DE TRANSFER CMOS
CIRCUITE CU PORŢI DE TRANSFER CMOS I. OBIECTIVE a) Înţelegerea funcţionării porţii de transfer. b) Determinarea rezistenţelor porţii în starea de blocare, respectiv de conducţie. c) Înţelegerea modului
Διαβάστε περισσότεραIV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Διαβάστε περισσότεραwscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal.
wscopul lucrării: prezentarea modului de realizare şi de determinare a valorilor parametrilor generatoarelor de semnal. Cuprins I. Generator de tensiune dreptunghiulară cu AO. II. Generator de tensiune
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραTRANZISTORUL BIPOLAR ÎN REGIM CONTINUU
Lucrarea nr 2 TRANZISTORUL IPOLAR ÎN REGIM ONTINUU uprins I Scopul lucrării II Noţiuni teoretice III Desfăşurarea lucrării IV Temă de casă V Simulări VI Anexă 1 I Scopul lucrării Ridicarea caracteristicilor
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραELECTRONICĂ ANALOGICĂ CIRCUITE ELECTRONICE
prof. RUSU CONSTANTIN ELECTRONICĂ ANALOGICĂ CIRCUITE ELECTRONICE - AUXILIAR CURRICULAR - BISTRIȚA - 2017 ISBN 978-973-0-23573-9 CUPRINS PREFAȚĂ... 1 CAPITOLUL 1. AMPLIFICATOARE CU TRANZISTOARE BIPOLARE...
Διαβάστε περισσότεραLUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT
LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa
Διαβάστε περισσότεραElemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer.
Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer. Scopul lucrării: Învăţarea folosirii osciloscopului în mod de lucru X-Y. Vizualizarea caracteristicilor
Διαβάστε περισσότεραAnaliza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare
Διαβάστε περισσότεραSTUDIUL CONVERTORULUI ELECTRO - PNEUMATIC
STUDIUL CONVERTORULUI ELECTRO - PNEUMATIC - - 3. OBIECTUL LUCRĂRII Studiul principiuluonstructiv şi funcţional al convertorului electro pneumatic ELA 04. Caracteristica statică : p = f( ), şi reglaje de
Διαβάστε περισσότεραAMPLIFICATORUL CU CIRCUIT ACORDAT DERIVAȚIE
AMPIFICATOU CU CICUIT ACODAT DEIVAȚIE ) Obiectul lucrării Se studiază un amplificator realizat cu un tranzistor având ca sarcină un circuit acordat derivație cu prize. Se evidențiază proprietățile de selectivitate
Διαβάστε περισσότεραFig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].
Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραUNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ
UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ 2015-2016 UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică
Διαβάστε περισσότεραMăsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor
4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραAMPLIFICATORUL CU CIRCUITE CUPLATE
AMPLIFICATOL C CICITE CPLATE 3 4 5 6 Se realizează schema de masură din figura 8. Macheta se utilizează cu rezistenţele adiţionale a şi a scurtcircuitate de călăreţii K şi K. Modul de lucru cu analizorul
Διαβάστε περισσότεραCAPITOLUL 2. AMPLIFICATOARE OPERAȚIONALE
CAPITOLUL 2. AMPLIFICATOARE OPERAȚIONALE 2.1. GENERALITĂȚI PRIVIND AMPLIFICATOARELE OPERAȚIONALE 2.1.1 DEFINIȚIE. Amplificatoarele operaţionale sunt amplificatoare electronice de curent continuu, care
Διαβάστε περισσότεραCIRCUITE CU DZ ȘI LED-URI
CICUITE CU DZ ȘI LED-UI I. OBIECTIVE a) Determinarea caracteristicii curent-tensiune pentru diode Zener. b) Determinarea funcționării diodelor Zener în circuite de limitare. c) Determinarea modului de
Διαβάστε περισσότεραMONTAJE CU IMPEDANŢĂ DE INTRARE MĂRITĂ
DCE I Îndrumar de laorator Lucrarea nr. 5 MONTAJU IMPEDANŢĂ DE INTRARE MĂRITĂ I. Scopul lucrării II. Noţiuni teoretice III. Desfăşurarea lucrării IV. Temă de casă V. Simulări VI. Anexă DCE I Îndrumar de
Διαβάστε περισσότεραDeterminarea tensiunii de ieşire. Amplificarea în tensiune
I.Circuitul sumator Circuitul sumator are structura din figura de mai jos. Circuitul are n intrări, la care se aplică n tensiuni de intrare şi o singură ieşire, la care este furnizată tensiunea de ieşire.
Διαβάστε περισσότεραLucrarea 5. Sursa de tensiune continuă cu diode
Cuprins I. Noţiuni teoretice: sursa de tensiune continuă, redresoare de tensiune, stabilizatoare de tensiune II. Modul de lucru: Realizarea practică a unui redresor de tensiune monoalternanţă. Realizarea
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότερα