Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
|
|
- Κύρα Αυγερινός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το ο Γενικό Λύκειο Χανίων [00-0 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος και την ευχάριστη διάθεση, με την οποία συμβάλλει στην ελεύθερη διάθεση της γνώσης. Για την αντιγραφή: Κόλλας Αντώνης.
2 ΚΕΦΑΛΑΙΟ. Δίνεται η συνάρτηση g, με g() =. Για ποιες τιμές του έχουμε g() = 0 ; ΣΥΝΑΡΤΗΣΕΙΣ Για ποιες τιμές του η γραφική παράσταση της g() βρίσκεται "κάτω" απ' τον άξονα ; Να βρείτε τα πεδία ορισμού των συναρτήσωσεων: f() =, h() =, φ() =. Να βρείτε τα πεδία ορισμού των συναρτήσεων: f() = log( 9 ) f() = ε. ζ. f() = e f() = στ. εφ f() = ημ ημ f() = f() = η. f() =. Να βρείτε τα πεδία ορισμού των συναρτήσεων: f() = ln h() = ln ln k() = φ () = ln ε. r() = στ. t() = log( log ). Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων: f() φ() = e = ρ () = ln g() =
3 π ε. σ() = ln στ. π () = ημ. Αν f() = ln( ) και g() =, τότε να ορίσετε (εφόσον είναι εφικτό) τις συναρτήσεις: f g, f g, f / g. 6. Να βρείτε τα κοινά σημεία των αξόνων με τις γραφικές παραστάσεις των παρακάτω συναρτήσεων: f() = e f() = ln( ) 7. Εξετάστε αν είναι ίσα τα παρακάτω ζεύγη συναρτήσεων. Στην περίπτωση που δεν είναι, να βρεθεί το ευρύτερο υποσύνολο του, στο οποίο ισχύει η ισότητ f() = και g() = f () = και g () = ( ) f() = ln( ) και g() = ln 8. Να βρεθούν τα σημεία τομής με τους άξονες των συναρτήσεων: f() = και g() = καθώς και τα κοινά, μεταξύ τους, σημεί 9. Δίνεται η συνάρτηση f() = log. Να βρεθεί το πεδίο ορισμού Α της f. Να δείξετε ότι για κάθε, A ισχύει: f ( ) f( ) = f 0. Αν f() = τότε να αποδείξετε ότι: f = f() και f = f()
4 . Έστω η συνάρτηση f() = α β. Να βρεθούν οι πραγματικοί αριθμοί α, β, έτσι ώστε τα σημεία (, ) και (, 0) να ανήκουν στη Cf. Να μετασχηματιστεί ο τύπος της συνάρτησης σε γινόμενο πρωτοβάθμιων παραγόντων. Να βρεθούν οι πραγματικοί αριθμοί, για τους οποίους ισχύει f() > 0.. Δίνεται η συνάρτηση f() = /. Να βρεθεί η απόσταση των σημείων Α (, f() ) και B (, f() ).. Δίνεται η συνάρτηση f() = α. Να βρεθεί το α ώστε η Cf να διέρχεται από το σημείο Μ (, ).. Αν για μία συνάρτηση f ισχύει: f( ) f() =, τότε να βρείτε τα f(0) και f(). f() f(/) =, με 0, τότε να βρείτε το f().. Έστω η ευθεία (ε) : y = (λ λ). Αν η (ε) διέρχεται από το σημείο (, ) να βρεθεί το λ. Για ποιες τιμές του λ η (ε) είναι παράλληλη προς τον. Ποια είναι τα σημεία τομής της (ε) με τους άξονες ; 6. Να εξετάσετε τη μονοτονία των παρακάτω συναρτήσεων: f() = g() = ln( ) h() = e k() = /, > 0 7. Να υπολογίσετε τα παρακάτω όρια: e 7 ΟΡΙΑ
5 8. Ομοίως: 9 9 ) ( 0 7 ε. ) )(t (t t t t t στ. 9. Ομοίως: ημ συν π ε Ομοίως: 6 8. Ομοίως: 0 6. Ομοίως: 0
6 0 ε. 9 στ.. Ομοίως: 0. Ομοίως: 6 9. Ομοίως: 7 0 ε. 7 8 στ. 6. Ομοίως: ε. 9 στ. ( ) 0
7 7. Αν 6 f() = α α,, = τότε: Να βρεθεί το πεδίο ορισμού της συνάρτησης. Να βρεθεί ο πραγματικός αριθμός α, ώστε η συνάρτηση να είναι συνεχής στο. ΠΑΡΑΓΩΓΟΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ 8. Να βρείτε τις πρώτες παραγώγους των παρακάτω συναρτήσεων: f() = f() = ln f() = ln f() = ημ συν ε. στ. f() = ημ e ημ ζ. η. ι. ι ι ιε. e f () = α, α θ. f () = ι f() = ημ συνθ -, θ f() = α f() =, α e f() = ln f() = f() = ι f() = ( e ) ( ) ( ) f() = ιστ. ημ f() = εφ 9. Ομοίως: e f() = e f() = f() = ln( e) f () = εφ ε. f() = συν στ. f() = ημ συν ζ. f() = ημ( συν ) η. f() = ln( ln )
8 θ. f() = ημ συν( ) ι. e f() = ln ι f() = (e e ) ι f () = e ι ημ f() = συν 0. Να βρεθεί η δεύτερη παράγωγος των συναρτήσεων: f() = ln και g() = ln( ημ ). Να αποδείξετε ότι: Αν ημ f () = τότε : f () f () f() = 0. Αν f() = e ημ τότε : f () f () f() = 0. f () Αν f() = e τότε : f () e = 0.. Αν f, g είναι παραγωγίσιμες συναρτήσεις στο και ισχύει: =, f() g() e να αποδείξετε ότι : f () ( g () g() ) = g () ( f () f() ).. Η θέση ενός κινητού που εκτελεί ευθύγραμμη κίνηση δίνεται συναρτήσει του χρόνου t από τον τύπο s(t) = t t. Να βρείτε: τη μέση ταχύτητα του κινητού στο [, ]. τη στιγμιαία ταχύτητα του κινητού, όταν t =.. Αν λ f () = e, να υπολογιστεί ο λ ώστε : f () f () f (0)f() 8f() = 0. Δίνεται η συνάρτηση f() = e. Να αποδείξετε ότι, για κάθε : f () f () = 0 6. Να βρείτε πολυώνυμο P() δευτέρου βαθμού τέτοιο, ώστε να είναι Ρ(0) =, Ρ() = 6 και Ρ (0) =.
9 7. Ένας πληθυσμός μικροβίων Ρ μεταβάλλεται συναρτήσει του χρόνου t (σε ώρες) σύμφωνα με τον τύπο P(t) = 0 0 ( t). Να βρείτε τον αρχικό αριθμό των μικροβίων. Να βρείτε τον αριθμό των μικροβίων μετά από 9 ώρες. Να βρείτε το ρυθμό μεταβολής του πληθυσμού των μικροβίων, ως προς το χρόνο, μετά από 9 ώρες. 8. Δίνεται η συνάρτηση f με f() = e α, α. Να βρείτε τις τιμές του α, ώστε να ισχύει η σχέση : f () f () = f(), για κάθε. 9. Η θέση ενός κινητού, που εκτελεί ευθύγραμμη κίνηση, δίνεται συναρτήσει του χρόνου t από τον τύπο s(t) = t t. Να βρείτε: τη μέση ταχύτητα του κινητού στο [, ]. τη στιγμιαία ταχύτητα του κινητού όταν t =. 0. Έστω η συνάρτηση f() = e e,. Να αποδείξετε ότι : f () = f(). Να λύσετε την εξίσωση f () f () = e. ΕΦΑΠΤΟΜΕΝΗ. Να βρείτε τα σημεία της γραφικής παράστασης της συνάρτησης f, στα οποία οι εφαπτόμενες είναι παράλληλες στον άξονα όταν : α f() = 6 f () = ln e f() =. Να βρεθεί η εξίσωση της εφαπτόμενης της γραφικής παράστασης της συνάρτησης: ημ f() = στο σημείο της με 0 = π. συν ln f () = στο σημείο της με τετμημένη. f() = στο σημείο της με τεταγμένη 7. f(θ) = συνθ σφθ στο σημείο της με θ = π/.
10 . Αν g() = α βln( ), >, τότε να βρείτε τα α, β έτσι ώστε η γραφική παράσταση της g να έχει εφαπτόμενη παράλληλη στον άξονα των, στα σημεία με τετμημένες = 0, =,.. Έστω η συνάρτηση f() =,. Να βρείτε τις εξισώσεις των εφαπτόμενων της γραφικής παράστασης της f, που είναι παράλληλες στην ευθεία y =.. Έστω η συνάρτηση f() =,. Να βρείτε την εξίσωση της εφαπτόμενης της καμπύλης της f, που σχηματίζει με τον άξονα γωνία Δίνεται η f() = ln. Να βρείτε: τη γωνία, που σχηματίζει η εφαπτόμενη (ε) της Cf στο σημείο της Α (, f() ), με τον άξονα. το σημείο, όπου η εφαπτόμενη είναι παράλληλη στον. την εξίσωση της εφαπτόμενης στο 0 =. 7. Δίνεται η συνάρτηση f με f() = α( ), όπου, α. Να βρείτε: το α, ώστε ο συντελεστής διεύθυνσης της εφαπτόμενης της καμπύλης της f στο Α (, f() ) να είναι. την εξίσωση της παραπάνω εφαπτομένης. 8. Δίνεται η συνάρτηση f με f() = αe β, όπου, α, β. Να βρείτε: τα α, β, ώστε η εφαπτόμενη της καμπύλης της f στο σημείο (0, ) να είναι παράλληλη στην y =. την εξίσωση της παραπάνω εφαπτομένης. 9. Έστω η συνάρτηση f() = 0. Να βρείτε τα σημεία, στα οποία η εφαπτόμενη της γραφικής παράστασης της f έχει συντελεστή διεύθυνσης ίσο με το ρυθμό μεταβολής της παραγώγους f στα σημεία αυτά. Στο σημείο του ερωτήματος (α) με τη μικρότερη τετμημένη να βρεθεί η εξίσωση της εφαπτομένης.
11 0. Δίνεται η συνάρτηση f με f() = α β, όπου α, β. Να υπολογίσετε τα α, β, ώστε η y = να εφάπτεται στη γραφικής παράσταση της f, στο σημείο της με τετμημένη.. Να αποδείξετε ότι οι εφαπτόμενες της γραφικής παράστασης Cf της f με f() = στα σημεία, που τέμνει τους άξονες, είναι παράλληλες.. Έστω η συνάρτηση f() = α β 9. Να προσδιορίσετε τα α, β, ώστε το σημείο Α (, 0 ) να ανήκει στη γραφική παράσταση Cf της f και η εφαπτόμενη της Cf στο Α να έχει συντελεστή διεύθυνσης τον αριθμό.. Έστω ότι η συνάρτηση f είναι παραγωγίσιμη στο και είναι f(ημ) = e συν, για κάθε [0, π). Να αποδείξετε ότι η εξίσωση της εφαπτόμενης της Cf στο ( 0, f(0) ) σχηματίζει ισοσκελές τρίγωνο με τους άξονες.. Έστω ότι η συνάρτηση f είναι παραγωγίσιμη στο και είναι f() = f () = e. Να βρείτε την εξίσωση της εφαπτόμενης στη γραφική παράσταση τη g() = f( ln ) στο 0 = e.. Δίνεται η παραγωγίσιμη συνάρτηση f: (0, ) με f( ) = ln. Να βρείτε την εφαπτόμενη της γραφικής παράστασης της f στο σημείο της Α (, f() ). 6. Έστω η f() = ln( ) α β. Να βρεθούν οι τιμές των α, β, ώστε η y = να είναι εφαπτόμενη της Cf στο 0 = Δίνονται τα σημεία Α ( ln, 0 ) και Β ( 0, e ), > 0. Αν η f() εκφράζει την απόσταση των σημείων Α και Β, τότε να βρείτε: τη συνάρτηση f (). την εφαπτόμενη της Cf στο σημείο Μ (, f() ). ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ 8. Να μελετήσετε ως προςτ η μονοτονία και τα ακρότατα καθεμία από τις παρακάτω συναρτήσεις:
12 f() = 8 f() = e f() = ( ) e, f() = ( ) ε. f() = 6 στ. 9. Δίνεται η συνάρτηση f με f() = e. Να βρεθούν οι f (), f (). ln f() =, [0, 00] Να μελετηθεί η συνάρτηση f, ως προς τη μονοτονία και τα ακρότατά της. 60. Δίνεται η συνάρτηση f με f() =. Να βρείτε το πεδίο ορισμού και την πρώτη παράγωγο της f. Να εξετάσετε την f ως προς τη μονοτονί 6. Έστω η συνάρτηση f() = e ( α), α. Να αποδείξετε ότι : f () f() = ( f () e ). Να βρείτε το α, ώστε η εφαπτόμενη στο σημείο (, f() ) να είναι παράλληλη στον. Για την τιμή του α που βρήκατε, να μελετηθεί η f ως προς τη μονοτονία και τα ακρότατ 6. Δίνεται η συνάρτηση f με f() = κ λ, όπου, κ, λ. Να βρείτε τα κ, λ, ώστε η f να έχει στη θέση 0 = τοπικό ακρότατο ίσο με. Για τις τιμές των κ, λ, που βρήκατε στο προηγούμενο ερώτημα, να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατ 6. Αν τα f() = α β, τότε : Να βρείτε τους αριθμούς α, β, για τους οποίους ισχύει f () = f () = 0. Αν α = και β= 0, τότε να βρείτε τα τοπικά ακρότατα της f.
13 6. Δίνεται η συνάρτηση f() = αe βe, όπου α, β θετικοί, πραγματικοί αριθμοί. Να αποδείξετε ότι η ελάχιστη τιμή της f είναι αβ. 6. Αν V(r) = 00p( lnr) 00qr, όπου p και q θετικές σταθερές, τότε να αποδείξετε ότι το V έχει τη μέγιστη τιμή του όταν r = p/q. 66. Έστω η συνάρτηση f() = e α β, με α, β. Να βρείτε το α, ώστε : f () β( ) = f() f (). Να βρείτε το β, ώστε η εφαπτόμενη της f στο σημείο ( 0, f(0) ) να είναι παράλληλη στον άξονα. Για τις τιμές των α, β, που βρήκατε, να μελετηθεί η f() ως προς τη μονοτονία και τα ακρότατ 67. Έστω η συνάρτηση f() = 6. Σε ποιο σημείο της γραφικής της παράστασης η εφαπτόμενη έχει τον ελάχιστο συντελεστή διεύθυνσης; 68. Σε ποιο σημείο της γραφικής παράστασης της f() = ln η εφαπτόμενη έχει τον ελάχιστο συντελεστή διεύθυνσης; 69. Δίνεται η συνάρτηση f() = e e. Να βρείτε τα ακρότατά της. Να αποδείξετε την ανίσωση : e e. 70. Δίνεται η συνάρτηση f() =. Να βρείτε : το πεδίο ορισμού της. το όριό της όταν το τείνει στο 0 = 0. την παράγωγό της. τα διαστήματα μονοτονίας της, καθώς και τα ακρότατά της. 7. Δίνεται η συνάρτηση f με f() = ( α) λ, με και α, λ σταθερές. Να βρείτε το α, ώστε f () =. Να βρείτε το f() f().
14 Να αποδείξετε ότι η f έχει ελάχιστο. Εάν το ελάχιστο της f είναι το λ, τότε να βρείτε το λ. ε. Βρείτε την εξίσωση εφαπτομένης της Cf, στο σημείο (, f() ). στ. Βρείτε το ρυθμό μεταβολής της f στο 0 =. ΠΡΟΒΛΗΜΑΤΑ 7. Σώμα κινείται σε οριζόντιο άξονα ακολουθώντας τη συνάρτηση θέσης (t) = t 6t 9t (t σε sec, σε m). Ποια είναι η αρχική ταχύτητα του σώματος; Ποια είναι η ταχύτητα και η επιτάχυνση όταν το σώμα έχει διανύσει m; Πότε το σώμα έχει μηδενική ταχύτητα; Ποια η θέση και η επιτάχυνση αυτής της χρονικής στιγμής; Ποιο διάστημα διένυσε το σώμα τα πρώτα sec; ε. Περιγράψτε την κίνηση του σώματος στο [0, ]. 7. Οι συνολικές πωλήσεις ενός μοντέλου αυτοκινήτου δίνονται απο τη 0000 συνάρτηση f(t) = 0, όπου t [0, 0] ο χρόνος σε μήνες, t 0 e από την έναρξη των πωλήσεων. Να προσδιορίσετε τη χρονική στιγμή, κατά την οποία ο ρυθμός αύξησης των συνολικών πωλήσεων γίνεται μέγιστος, καθώς και τη μέγιστη τιμή του. 7. Μια βιομηχανία καθορίζει την τιμή πώλησης Π() κάθε μονάδας προϊόντος, συναρτήσει του πλήθους των μονάδων παραγωγής, σύμφωνα με τον τύπο Π() = 9. Το κόστος παραγωγής ανά μονάδα προϊόντος είναι 0 και, επιπλέον, η βιομηχανία πληρώνει φόρο 6, για κάθε μονάδα προϊόντος. Να βρεθεί πόσες μονάδες προϊόντος θα πρέπει να παράγει η βιομηχανία, ώστε να έχει το μέγιστο δυνατό κέρδος. 7. Ένα φορτηγό διανύει καθημερινά 00 km με σταθερή ταχύτητα km/h. Τα καύσιμα κοστίζουν 0,8 το λίτρο και καταναλώνονται με ρυθμό lt/h. Αν τα υπόλοιποα έξοδα του φορτηγού 00 ανέρχονται σε 9 την ώρα, τότε:
15 να εκφράσετε το κόστος της διαδρομής αυτής, ως συνάρτηση της ταχύτητας. να βρείτε την ταχύτητα, που πρέπει να έχει το φορτηγό, ώστε τα έξοδά του να είναι ελάχιστ να βρείτε πόσα είναι τα ελάχιστα αυτά έξοδ 76. Μια εταιρεία διαθέτει για να περιφράξει ένα οικόπεδο σχήματος ορθογωνίου, έστω ΑΒΓΔ. Η πλευρά ΑΒ πρόκειται να κατασκευαστεί από υλικό, που κοστίζει /m. Στην πλευρά ΓΔ θα κατασκευαστεί ένας τοίχος, του οποίου το κόστος θα ανέλθει σε.000. Να βρείτε τις διαστάσεις του οικοπέδου, ώστε να έχει το μεγαλύτερο εμβαδό. 77. Έχουμε δύο φάρμακα για την υπόταση των ενηλίκων. Η μεταβολή της πίεσης, σε συνάρτηση με το χρόνο δράσης των δύο φαρμάκων, είναι Π(t) = te t και Π(t) = t e t, με t [0, ] σε ώρες. Ποιο από τα δύο φάρμακα δίνει τη μεγαλύτερη μέγιστη πίεση και ποιο φέρνει το αποτέλεσμα αυτό πιο γρήγορα; 78. Δίνεται η ευθεία y =. Να βρείτε το σημείο της ευθείας αυτής, το οποίο απέχει από το σημείο Α ( 9, ) τη μικρότερη, δυνατή απόσταση. 79. Το άθροισμα δύο αριθμών είναι 8. Να βρείτε τη μέγιστη τιμή που μπορεί να πάρει το γινόμενό τους. 80. Από όλα τα ορθογώνια με εμβαδό 6 m, ποιο είναι εκείνο που έχει τη μικρότερη περίμετρο; 8. Από όλα τα ορθογώνια με περίμετρο cm, να βρείτε εκείνο που έχει το μεγαλύτερο εμβαδό. 8. Να βρεθεί το πλησιέστερο σημείο της παραβολής y = στην ευθεία y =. 8. Να βρείτε την εξίσωση της ευθείας, που διέρχεται από το σημείο (, ) και σχηματίζει με τους ημιάξονες O και Oy τρίγωνο ελαχίστου εμβαδού. 8. Η θέση ενός υλικού σημείου, που βάλλεται με φορά προς τα πάνω, από το έδαφος, δίνεται από τον τύπο y(t) = t (0 t), όπου t ο χρόνος της κίνησής του σε sec.
16 Να βρείτε την ταχύτητα και την επιτάχυνση του σημείου, μετά από δευτερόλεπτ Τι συμπεραίνετε για την κίνησή του, τη χρονική στιγμή αυτή; Να βρείτε την αρχική ταχύτητα του σημείου, καθώς και το μέγιστο ύψος στο οποίο φτάνει. Σε ποια χρονική στιγμή το ύψος του είναι 7 m ; 8. Δίνεται ορθή γωνία Oy και το ευθύγραμμο τμήμα ΑΒ μήκους 0 m, του οποίου τα άκρα Α και Β ολισθαίνουν πάνω στις πλευρές Oy και O αντίστοιχ Το σημείο Β κινείται με ταχύτητα u = m/sec και η θέση του στον άξονα O δίνεται από τη συνάρτηση S(t) = u t, όπου t ο χρόνος σε sec και t [0, ]. Να βρεθεί το εμβαδό Ε(t) του τριγώνου ΟΑΒ, συναρτήσει του t. Ποιος είναι ο ρυθμός μεταβολής του Ε(t) τη στιγμή, κατά την οποία το μήκος του ΟΑ είναι 6 m ; ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 86. Έστω η συνάρτηση f με f() = e με α, β, της οποίας η γραφική παράσταση διέρχεται από τα σημεία: Α (, e ) και Β (, e), τότε: Να βρεθεί ο τύπος της. Να βρεθεί το σημείο τομής της Cf με τον άξονα y y. α Να βρεθεί η εξίσωση της εφαπτομένης της Cf στο παραπάνω σημείο, καθώς και το εμβαδόν του τριγώνου, που ορίζει αυτή με τους άξονες. Να αποδείξετε ότι : f () = f () ( ) f(). ε. Να βρεθεί ο ρυθμός μεταβολής του συντελεστή διεύθυνσης της εφαπτομένης για =. 87. Μια αυτοκινητοβιομηχανία υπολόγισε ότι η σχέση, μεταξύ της τιμής Τ ενός νέου μοντέλου αυτοκινήτου και της ζητούμενης ποσότητας αυτοκινήτων του μοντέλου αυτού, δίνεται από τη συνάρτηση: Τ() = 0, 000 για Να βρεθεί η συνάρτηση Ε() των εσόδων της αυτοκινητοβιομηχανίας. Να βρεθεί ο ρυθμός μεταβολής της συνάρτησης εσόδων. β
17 Αν το κόστος των μονάδων αυτοκινήτου, που παράγονται, δίνεται από τη σχέση: Κ() = για Να προσδιορίσετε τη συνάρτηση κέρδους Ρ. Να βρείτε το ρυθμό μεταβολής της συνάρτησης κέρδους. ε. Για ποια έχει η αυτοκινητοβιομηχανία το μέγιστο κέρδος. 88. Δίνεται η συνάρτηση f() = ln. Να βρείτε: Τα σημεία στα οποία η Cf τέμνει τους άξονες. Να βρεθεί το διάστημα στο οποίο η Cf είναι πάνω από την ευθεία y = e. Να βρεθεί η f (). e Να βρεθεί το f. ε. Να βρεθεί η εξίσωση της εφαπτομένης της Cf, που είναι παράλληλη στην ευθεία με εξίσωση y =. e 89. Έστω η συνάρτηση f() = e,. Να βρείτε την εξίσωση της εφαπτόμενης της Cf στο σημείο της Α (, f() ). Να βρείτε τα διαστήματα μονοτονίας και τα τοπικά ακρότατα της f. 90. Ένα σώμα κινείται ευθύγραμμα πάνω σε άξονα, ώστε η θέση του την τυχαία χρονική στιγμή t (σε sec) να δίνεται από τον τύπο (t) = t t t σε μέτρα (m). Να βρείτε: την ταχύτητα του κινητού τη χρονική στιγμή t. τις χρονικές στιγμές, που το σώμα είναι ακίνητο. την απόσταση των θέσεων του σώματος, όταν αυτό είναι ακίνητο. 9. Έστω η συνάρτηση f με f() = e. Να βρείτε την τιμή της παράστασης: f () f () f(). Να υπολογίσετε το f ().
18 Να βρείτε την εξίσωση της εφαπτόμενης στη Cf, στο σημείο της με τετμημένη. 9. Αν η εφαπτόμενη (ε) στη γραφική παράσταση μιας συνάρτησης f: στο σημείο Α (, f() ) είναι παράλληλη στην ευθεία y = 0, τότε: να βρείτε το f (). να αποδείξετε ότι η (ε) εφάπτεται στη Cg, στο σημείο της Β (0, g(0)), όπου g η συνάρτηση g() = f( ). 9. Δίνονται οι συναρτήσεις f() = ln( ) και g() = α β, όπου α, β. Να βρείτε: την εξίσωση της εφαπτόμενης (ε) της Cf στο Α (, f() ). τα α, β, ώστε η (ε) να εφάπτεται στη Cg στο σημείο B (, g() ). 9. Θεωρούμε τη συνάρτηση g με τύπο g () = f( ) f(), ( 0, ), f() = f () = f() = f () =. Αν η εξίσωση της εφαπτόμενης της γραφικής παράστασης της f στο σημείο Α (, f() ) είναι παράλληλη στην ευθεία (ε) : y =, τότε να αποδείξετε ότι η εφαπτομένη της γραφικής παράστασης της g στο σημείο Β (, g() ), είναι παράλληλη στον άξονα. Να βρεθεί η εξίσωση της ευθείας, η οποία εφάπτεται στη Cg στο σημείο Γ (, g() ).
o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
010-011 4 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΚΕΦ1 1 Δίνεται
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε
Διαβάστε περισσότεραΜαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α
Διαβάστε περισσότεραπαράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο
Διαβάστε περισσότεραΔιαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για
Διαβάστε περισσότεραΜαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.
Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)
3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ)
ΘΕΜΑ ο Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ) Α. Να αποδείξετε ότι αν μία συνάρτηση είναι παραγωγίσιμη σ ένα σημείο 0,τότε είναι και συνεχής στο σημείο αυτό Β. Να αποδείξετε ότι
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ( - h). Αν η συνάρτηση είναι συνεχής στο 0 = και lim = h 0 h να αποδείξετε ότι η είναι παραγωγίσιμη στο 0 = και να βρείτε την (). () - + 6. Αν η συνάρτηση είναι συνεχής στο 0 =
Διαβάστε περισσότεραΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y f(x), όταν f είναι μια συνάρτηση παραγωγίσιμη στο x, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο
Διαβάστε περισσότερα1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.
Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
Διαβάστε περισσότερα= x + στο σηµείο της που
Ασκήσεις στην εφαπτοµένη καµπύλης 1. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f ( ) = + στο σηµείο της που έχει τετµηµένη.. Σε ποια σηµεία της γραφικής παράστασης της
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.
Διαβάστε περισσότεραii) f(x)= iv) f(x)= ii) f(x)= x iv) f(x)= 2x x ii) f(x)= iv) f(x)= x) f(x)= 2ln x ln x να έχει πεδίο ορισμού το R.
1 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρεθεί το πεδίο ορισμού των συναρτήσεων: 7 5 8 1 i) f()= ii) f()= 3 5 4 3 4 iii) f()= iv) f()= 3 3 8 7. Να βρεθεί το πεδίο ορισμού των συναρτήσεων: i) f()= 5 6 ii) f()= iii) f()= 1
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη
Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη e d g h g h Εκφωνήσεις 65, 6 Δίνονται η συνάρτηση και η σχέση g, 8 α) Να βρεθούν οι τιμές του πραγματικού αριθμού λ ώστε η συνάρτηση να έχει πεδίο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Usus est magister optimus (η χρήση είναι ο καλύτερο δάσκαλο ) y M(,f()) C f A( 0,f( 0 )) M ε O 0 (α) ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ
Διαβάστε περισσότερα5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :
ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k
Διαβάστε περισσότεραρυθμός μεταβολής = παράγωγος
ΠΡΟΒΛΗΜΑΤΑ Ρυθμός μεταβολής ρυθμός μεταβολής = παράγωγος Πιο σωστό είναι να λέμε «ρυθμός μεταβολής ενός μεγέθους, ως προς ένα άλλο», αλλά... :) Προσέχουμε γιατί οι συναρτήσεις, στα περισσότερα προβλήματα,
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιertyuiopasdghjklzερυυξnmηq σwωψerβνtyuςiopasdρghjklzcvbn mqwertyuiopasdghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ qπςπζαwωeτrtνyuτioρνμpκaλsdghςj ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnαmqwertyuiopasdghjklz
Διαβάστε περισσότερα2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων
. Ασκήσεις σχολικού βιβλίου σελίδας 8 4 A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων 7 i ( 4 6 ii ( ln 4 iii ( 4 iv ( συν i Για κάθε R είναι ( 7 6 4 6 ii Για κάθε (, είναι ( 6 iii Για κάθε R είναι
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο
Διαβάστε περισσότεραf(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)
. Έστω η συνάρτηση = + e. Να μελετήσετε την f ως προς τη μονοτονία.. Να λύσετε την εξίσωση e = 3. Θεωρούμε τη γνησίως μονότονη συνάρτηση g : R R η οποία για κάθε R ικανοποιεί τη σχέση g() + e g() = +.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 8γ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση
Διαβάστε περισσότερα, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο
Διαβάστε περισσότεραΗμερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Πέμπτη 5 Ιανουαρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω η συνάρτηση
Διαβάστε περισσότεραf ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει
Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,
Διαβάστε περισσότεραΣυνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1
Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Γ Λυκείου
Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 3 598 Περιεχόμενα Συνδυαστικά Θέματα... Προβλήματα... 6 Επιμέλεια
Διαβάστε περισσότερα3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις
Διαβάστε περισσότεραΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ
Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
Διαβάστε περισσότερα0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 8 ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί. Μια συνάρτηση f θα λέμε ότι παρουσιάζει στο o Α τοπικό μέγιστο, όταν υπάρχει δ > 0, τέτοιο ώστε f () f( o ) για κάθε A ( o δ, o δ ), όπου Α το πεδίο ορισμού της f. Το o λέγεται
Διαβάστε περισσότεραΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ
Ενότητα 17 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ Ασκήσεις για λύση 1. Σε ένα ορθογώνιο ΑΒΓΔ η πλευρά ΑΒ αυξάνεται με ρυθμό cm / s, ενώ η πλευρά ΒΓ ελαττώνεται με ρυθμό 3 cm / s. Να βρεθούν: i) ο ρυθμός μεταβολής
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /
Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία ορισμού των συναρτήσεων :. f ( ) 9. f(
Διαβάστε περισσότεραx R, να δείξετε ότι: i)
ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι
Διαβάστε περισσότεραΜαθηματικά Γενικής Παιδείας Γ Λυκείου
Γιώργος Α. Απόκης Μαθηματικά Γενικής Παιδείας Γ Λυκείου Πάτρα 0 Στην Ισμήνη, στη Μαριάννα και στην Αντιγόνη ΠΕΡΙΕΧΟΜΕΝΑ ΕΝΟΤΗΤΑ Α : Η έννοια της συνάρτησης Α. - Εισαγωγικές έννοιες 4 Α. Εύρεση πεδίου ορισμού..6
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Θ2. Δίνεται η συνάρτηση f: με f(x) = x 2 4x + 4. α. Να υπολογίσετε την παράγωγο της συνάρτησης f. β. Να μελετήσετε ως προς την μονοτονία
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα
Διαβάστε περισσότερα2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.
. Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +
Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,
Διαβάστε περισσότεραΓ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Παράγωγοι. Ταξινομημένες ασκήσεις για λύση
Γ Λυκείου Μαθηματικά Προσανατολισμού 06-07 Mίλτος Παπαγρηγοράκης Χανιά ανάλυση Ταξινομημένες ασκήσεις για λύση Παράγωγοι Ταξη: Γ Γενικού Λυκείου Μαθηματικά Θετικών Σπουδών Μέρος Β: Διαφορικός Λογισμός
Διαβάστε περισσότερα1. Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων : 2. Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων:
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Πεδίο ορισμού Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων : i) ( ) e ii) ( ) iii) iv) v) () vii) () e ln viii) () ) συν () ημ i) 4 4 ( ) ( ) ( ) 5 vi) () i) () 7 4 Να
Διαβάστε περισσότεραΣημαντικές παρατηρήσεις
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β
Διαβάστε περισσότερα1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης
. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Ορισµός της παραγώγου συνάρτησης Έστω µια συνάρτηση µε πεδίο ορισµού Α, και Β το σύνολο των Α στα οποία η είναι παραγωγίσιµη. Τότε ορίζεται νέα συνάρτηση µε την οποία κάθε
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να
Διαβάστε περισσότεραlim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =
Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο
Διαβάστε περισσότερα0 είναι η παράγωγος v ( t 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f(, όταν f
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ
Διαβάστε περισσότερα2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0
.7 Ασκήσεις σχολικού βιβλίου σελίδας 67 7 A Οµάδας. H παράγωγος µιας συνάρτησης είναι () = ( ) ( ) ( ) Για ποιες τιµές του η παρουσιάζει τοπικό µέγιστο και για ποιες τοπικό ελάχιστο; D = R, όπου και παραγωγίζεται.
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /
Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88 Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 1 Ο «ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α ΣΥΝΑΡΤΗΣΕΙΣ Δίνεται η συνάρτηση i Να
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη
Διαβάστε περισσότεραΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιeryuiopasdfghjklερυυξnmηq σwωψerβνyuςiopasdρfghjklcvbn mqweryuiopasdfghjklcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qπςπζαwωeτrνyuτioρνμpκaλsdfghςj Τάξη : Γ Λυκείου klcvλοπbnαmqweryuiopasdfghjkl
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και
Διαβάστε περισσότερα1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1
Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3
Διαβάστε περισσότερα20 επαναληπτικά θέματα
0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Ζαχαράκης Δημήτρης Καρύμπαλης Νώντας Κλίτσας Γιώργος Κοτσώνης Γιώργος Μπούζας Δημήτρης Πετρόπουλος
Διαβάστε περισσότεραΓ. ΛΥΚΕΙΟΥ. Μαθηματικά θετικής τεχνολογικής κατεύθυνσης. Θ. Κουτσανδρέας
Γ. ΛΥΚΕΙΟΥ Μαθηματικά θετικής τεχνολογικής κατεύθυνσης ΑΝΑΛΥΣΗ ΚΕΦ. Ο ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Θ. Κουτσανδρέας Γεράσιμος Κεφ. ο Διαφορικός Λογισμός Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Παράγωγος αριθμός στο o R Έστω συνάρτηση
Διαβάστε περισσότεραlim lim ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Tι ορίζουμε ως εφαπτομένης της C f στο σημείο της A x, f ( )); Έστω f μια συνάρτηση και A x, f ( )) ένα σημείο της C
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Tι ορίζουμε ως εφαπτομένης της C στο σημείο της A, ( ; ( Έστω μια συνάρτηση και A, ( ένα σημείο της C. Αν υπάρχει το ( ( ( lim και είναι ένας πραγματικός αριθμός λ, τότε ορίζουμε ως
Διαβάστε περισσότερα4 0 Κεφάλαιο Στοιχεία Διαφορικού Λογισμού
4 0 Κεφάλαιο Στοιχεία Διαφορικού Λογισμού Η έννοια της παραγώγου Η έννοια της παραγώγου είναι η επόμενη, μετά την έννοια του ορίου, σημαντική έννοια που συναντούμε κατά τη μελέτη της θεωρίας συναρτήσεων.
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε
Διαβάστε περισσότεραΔιαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Διαβάστε περισσότεραΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότερακαι είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0
ΚΕΦΑΛΑΙΟ Ο 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (Θεώρημα Frmat) Εστω μια συναρτηση ορισμενη σ ένα διαστημα Δ και ένα εσωτερικο σημειο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο
Διαβάστε περισσότερα2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 8 ΟΡΙΣΜΟΣ, 9 Πότε μια συνάρτηση λέγεται παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της ; Απάντηση : Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο
Διαβάστε περισσότεραερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α).
Ερωτήσεις ανάπτυξης. ** Για να υπολογίσει κάποιος την (0 ) χρησιµοποιεί για + προσέγγιση τον αριθµό +, ενώ ένας άλλος τον αριθµό. 3 α) Να εκτιµήσετε ποια από τις δύο προσεγγίσεις δίνει το ελάχιστο (απόλυτο)
Διαβάστε περισσότεραΠ Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ
Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και
7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότεραΚώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos.
Κώστας Γλυκός Γενικής κεφάλαιο Κατεύθυνση Κεφάλαιο Κατεύθυνση σχολικές ασκήσεις 87 ασκήσεις και τεχνικές σε 8 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / / 0 6 εκδόσεις Καλό
Διαβάστε περισσότεραΚεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ
Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Αν η συνάρτηση f είναι παραγωγίσιμη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β). Σ Λ. * Αν η συνάρτηση
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής).
Ρυθμός μεταβολής Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ i Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f( x) και η συνάρτηση f είναι παραγωγίσιμη στο x τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το
Διαβάστε περισσότεραΣυναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :
Διαβάστε περισσότεραΜαθηματικά κατεύθυνσης Γ Λυκείου Επαναληπτικές ασκήσεις
Μαθηματικά κατεύθυνσης Γ Λυκείου + Επαναληπτικές ασκήσεις ς Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς Βαγγέλης Ραμαντάνης Ευάγγελος Τόλης wwwaskisopolisgr η έκδοση Μάρτιος 6 wwwaskisopolisgr Παράγωγοι Εκφωνήσεις
Διαβάστε περισσότερα3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Νρεθεί η εξίσωση του κύκλου σε καθεμιά από τις παρακάτω περιπτώσεις: α) έχει κέντρο την αρχή των αξόνων και ακτίνα β) έχει κέντρο το σημείο (3, - ) και ακτίνα 5 γ) έχει κέντρο το σημείο
Διαβάστε περισσότεραlim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης
Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y
Διαβάστε περισσότεραΓ ΛYKEIOY. Μαθηματικά Προσανατολισμού. ανάλυση Mίλτος Παπαγρηγοράκης Χανιά. Παράγωγοι. Ταξινομημένες ασκήσεις για λύση
ανάλυση Γ ΛYKEIOY Μαθηματικά Προσανατολισμού 9- Mίλτος Παπαγρηγοράκης Χανιά 6 Ταξινομημένες ασκήσεις για λύση Παράγωγοι Ταξη: Γ Γενικού Λυκείου Μαθηματικά Θετικών Σπουδών και Σπουδών οικονομίας & πληροφορικής
Διαβάστε περισσότεραΡ Υ Θ Μ Ο Σ Μ Ε Τ Α Β Ο Λ Η Σ
Ρ Υ Θ Μ Ο Σ Μ Ε Τ Α Β Ο Λ Η Σ Ο Ρ Ι Σ Μ Ο Ι ) Αν δύο μεταβλητά μεγέθη χ, ψ συνδέονται με την σχέση ψ = f ( χ ), όταν f μία παραγωγίσιμη συνάρτηση στο χ 0, τότε ονομάζουμε ρυθμό μεταβολής του ψ ως προς
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραV. Διαφορικός Λογισμός. math-gr
V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν
Διαβάστε περισσότερα2. ** ίνεται η συνάρτηση f (x) = logx. α) Να εξετάσετε αν ισχύουν οι προϋποθέσεις του θεωρήµατος µέσης τιµής στο [1, 20] για τη συνάρτηση f.
Ερωτήσεις ανάπτυξης. ** Έστω µια συνάρτηση f παραγωγίσιµη στο R, η οποία έχει δύο τουλάχιστον ρίζες. α) Να αποδείξετε ότι µεταξύ δύο ριζών της f περιέχεται τουλάχιστον µια ρίζα της f. β) Αν η f έχει δύο
Διαβάστε περισσότερα1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ
1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Παράγωγοι Κώστας Γλυκός Για αρχή 598 ασκήσεις και τεχνικές σε 4 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 7 / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.
Παράγωγοι Κώστας Γλυκός ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 59 ασκήσεις σε 9 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 6 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό
Διαβάστε περισσότερα