Примена сличности. Фрактали и ритам
|
|
- Ωκεανός Μάξιμος Γερμανού
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Примена сличности Фрактали и ритам
2 Сличност Погледајте филмове и подсетите се: (сличност троуглова) (сличне и подударне фигуре) (фрактали у природи) (забава са фракталима) (хомотетограф) (ФРАКТАЛНИЦА-збирка папирних модела фракталне структуре)
3 Дефиниција сличности Пресликавање P1 равни α на саму себе, које сваке две тачке A, B преводи у тачке А 1 B 1 =k AB, где је к дати позитиван број, назива се трансформацијом сличности (или сличношћу) са коефицијентом k.
4 Сличност троуглова Код сличних троуглова одговарајући углови су једнаки, а одговарајуће странице пропорционалне. Потребне и довољне услове за доказивање сличности утврђују следећи ставови.
5 Сличност троуглова Први став: Два троугла ABC и A 1 B 1 C 1 су слична ако и само ако је један пар страница једног троугла пропорционалан пару страница другог троугла, а углови захваћени овим страницама једнаки међусобом.
6 Сличност троуглова Други став: Троуглови АBC и A 1 B 1 C 1 су слични ако и само ако су два угла првог троугла једнака одговарајућим угловима другог троугла.
7 Сличност троуглова Трећи став: Троуглови АBC и A 1 B 1 C 1 су слични ако и само ако су им одговарајуће странице пропорционалне.
8 Сличност троуглова Четврти став: Два троугла АBC и A 1 B 1 C 1 су слична ако и само ако су две странице једног троугла пропорционалне одговарајућим страницама другог троугла, углови наспрам двеју од тих одговарајућих страница су једнаки, а наспрам других двеју одговарајућих страница оба оштра, оба тупа или оба права угла. оштри углови
9 Сличност фигура У геометрији, две фигуре су сличне ако су истог облика. Два квадрата су увек слична. Два правоугаоника су слична код којих је размера страница иста. Два троугла су слична на основу претходно наведених ставова.
10 Самосличост Самосличност можемо дефинисати као особину фигура да су одређени мањи делови те фигуре слични фигури у целини, апсолутно или приближно. Троугао Сиерпинског
11 Самосличност Када је део одређеног објекта сличан целом објекту, говоримо о самосличности.
12 Фрактали Фрактал је геометријски облик сличан самом себи. Назив фрактал смислио је године пољски математичар Benoit Mandelbrot, а потиче од латинске речи fractus, што значи изломљен. Облаци нису сфере, планине нису конуси, разуђене обале нису кругови, кора дрвета није глатка... Манделброт
13 Фрактали Фракталне слике настају итерацијом односно узастопним понављањем неког рачунског или геометријског поступка. Покушајмо да конструишемо један пример понављајући геометријски поступак.
14 Фрактали Пример: Кохова крива Конструишите: 1. Једну дуж поделите на три једнака дела. 2. Средишњи део дужи обришите и замените са две дужи, које су исте дужине као преостале две само се састају под углом од 60º. 3. Над сваким сегментом поновите поступак. 4. Поступак понављате бесконачно много пута
15 Фрактали Фрактале је могуће увећавати бесконачно много пута, а да се при сваком новом повећању виде неки детаљи који пре повећања нису били видљиви и да количина нових детаља увек буде отприлике једнака.
16 Фрактали Примере фрактала можемо видети у свету око нас: у природи, на различитим архитектонским објектима, уметничким делима, машинама и слично, али неки делови нашег тела такође имају фракталну структуру.
17 Примери фрактала у људском телу Систем за дисање има фракталну структуру. Састављен је од цевчица кроз које пролази ваздух у алвеоле. Главна цев система је трахеа, која се дели на две мање цеви-бронхије које воде у плућна крила.то дељење се наставља све до најмањих цевчица-алвеола. Овај је опис сличан опису типичног фрактала, који настаје дељењем линија.
18 Фракталне структуре у нашем телу Део система за крвоток такође има фракталну структуру. Највећа артерија је аорта, која се дели на мање крвне жиле. Оне се такође деле, и тако све до капилара, који су као и алвеоле изразито близу једна другој.
19 Фракталне структуре у нашем телу Површина мозга има фракталну структуру. Графички приказ ДНА (низ нуклеотида који носе све генетичке особине) има фракталну структуру.
20 Фрактали у свету око нас Облаци,кора дрвета, разуђена обала, планине...
21 Фрактали у свету око нас Биљке Многе биљке се на неки начин гранају. Главна стабљика се грана на неколико гранчица. Свака од тих гранчица се даље дели на нове. Гранање се наставља до најситнијих гранчица.заправо грана стабла изгледа као стабло у целини. Та особина, звана самосличност је једна од главних карактеристика фрактала.
22 Фрактали у свету око нас Биљке Код овог гранања биљке, крајње тачке гранчица чине не повезану целину. карфиол броколи
23 Фрактали у свету око нас Бактеријске културе Бактеријску културу чине све бактерије које су настале од заједничког претка иживе на истом месту. Како култура расте, шири се уразличитим смеровима од места на ком се налазио први организам. Као ибиљке, такве бактерије се могу ширити истварати облике који представљају фрактале.
24 Фрактали у свету око нас
25 Фрактали у уметности Паул Кле, бавећи се педагошким радом на Баухаусу највише је допринео изучавању предмета теорија форме. На слици је створен ритам системом сличног облика и односа.
26 Фрактали у уметности Корбан-Флобер, тим из Сиднеја, бави се дизајном и скулптуром. Кроз свој рад истражују енергију и кретање, испитују тензије између нестабилности и равнотеже.
27 Фрактали у архитектури На овој слици приказан је хексаграм катедрале у Валенсији, у Шпанији. Он представља пример примене Сиерпинског троугла у Готском стилу. Најважнија карактеристика овог стила је самосличност у његовој структури. Процес формирања троуглова може да се настави у бесконачност, Од највећег до бесконачно малих елемената, што је и основна карактеристика.
28 Фрактали у архитектури Метафизичка школа Ђорђо де Кирико својим делима поручује да и не живи објекти поседују моћ привлачења у зачарани круг и магичну димензију. Све елементе смешта у нестварну атмосферу. Ђорђо де Кирико,Велики торањ, 1918.
29 Фрактали у архитектури Модерна архитектура се и даље ослања на математику за основе конструисања и то не само кроз бројке и мере. Основни принципи математике заслужни су што данас имамо сјајне грађевине које нас подсећају на сетове из научно-фантастичних филмова.
30 Фрактали у архитектури Многе архитекте користе самосличност у дизајну модерних грађевина. Првобитна станица у Лос Анђелесу реновирана је, а сви елементи су скинути и убачени у фракталну целину. Грађевина је потпуно биолошка; направљена је од рециклираног нерђајућег челика, соларне плоче су уклопљене у зидове зграде, а кров безинске пумпе покривен је биљкама. Надстрешница сакупља кишницу која се користи за наводњавање на лицу места и да задовољи потребе за водом станице.
31 Фрактали у архитектури У дизајну павиљона Ендеса у Барселони, користили су математичке алгоритме којима је мењана кубична геометрија зграде. Да би изградили Ендесу, која се базира на максималној искористивости сунчеве енергије, архитекта Института за напредну архитектуру у Каталонији, прво прати кретање сунца на дотичној локацији, а планирање затим темељи на алгоритму.
32 Фрактали у филму У филму Матрикс можемо видети специјале ефекте фракталне структуре. У филмској индустрији, тј.у примени рачунарске графике фрактали се често користе за цртање планина и реалих пејзажа, али и за специјалне ефекте у многим филмовима укључујући и Звездане стазе.
33 Нацртајмо фрактале у равни: Кохова пахуљица Троугао Сиерпинског Питагорино дрво
34 Фрактали уравни Кохова пахуљица Конструкција: Почињемо са једнакостраничним троуглом. Страницу једнакостраничног троугла поделимо на три једнака дела. Средњи део обришемо и заменимо га са две странице дужине1/3 почетне странице (као део који смо обрисали) под углом 60ᵒ. То урадимо са сваком страницом троугла. Сада поновимо цео поступак неколико пута. Ако поновимо бесконачно много пута добијамо тражени фрактал.
35 Фрактали уравни Пахуљицу можете нацртати и применом Autocad-а Упуство можете погледати на адреси
36 Троугао Сиерпинског Конструкција: Фрактали уравни Почињемо са једнакостраничим троуглом. Одредимо средишта страница тог троугла. Спојимо их.одузмемо (изместимо) од почетног троугла новонастали троугао у средини.остају три једнакостранична троугла.са сваким од тих троуглова поновимо поступак. Троуглом Сиерпинског називамо скуп тачака у равни који остане када број итерација тежи бесконачности.
37 Тепих Сиерпинског Конструкција: Фрактали уравни Почиње се од квадрата који се подели на 9 мањих квадрата чије су дужине страница 1/3 дужине почетне странице.средњи квадрат се одузме(измести), а поступак се понавља са преосталих 8 квадрата. Тепих Сиерпинског настаје након бесконачно много итерација (понављања).
38 Фрактали-примена Занимљиво је како је тепих Сиерпинског нашао примену у савременој технолошкој индустрији.
39 Фрактали-Менгеров сунђер Овај пример је тродимензионалан аналоган тепиху Сиерпинског.Свака страна Менгеровог сунђера је тепих Сиерпинског. Конструкција-Почињемо са коцком која се подели на 27 мањих коцкица. Након тога одузме се 7 коцкица( 1 у средини, а 6 у средиштима страна почетне коцке). Поступак се понови са преосталих 20 коцкица.
40 Канторов скуп Фрактали уравни v Задатак: Објасните који се геометријски поступак понавља при настанку овог фрактала у равни
41 Нацртајмо примере фрактала Конструкција: Питагорино дрво Конструишемо квадрат. Над страницом квадрата конструишемо правоугли једнакокраки троугао. Над сваком катетом једнакокраког правоуглог троугла конструишемо квадрат дужине странице као катета. Поновимо поступак...
42 . Питагорино дрво је добило назив по Питагориној теореми: Збир квадрата над катетама једнак је квадрату над хипотенузом. што заиста уочавамо на датом дрвету.
43 Фрактали примена Питагорино дрво нам може послужити за прављење родослова које такође има фракталну структуру.
44 Родослов Родослов је породично стабло које показује историју породичне лозе. Родослов, родословље се са научног аспекта зове и генеалогија.назив је настао од грчких речи GENEA што значи породица, фамилија и LOGOS у преводу знање.па можемо рећи да генеалогија проучава породичну историју и порекло.
45 Родослов У манастиру Милешево је први пут приказана српска владарска породична композиција, која ће се касније претворити у хоризонтално генеалошко стабло владајуће куће у Србији и као такво одржати у српској уметности до краја XIII односно почетка XIV века. Оглашени својом светошћу, први Немањићи су на тој слици били заступници потомака пред Христом, а Симеон Немања постао је претеча који уводи у царство небеско.
46 Подела фрактала Према степену самосличности I. Потпуно самослични фрактали II. Квази самослични фрактали III.Статистички самослични фрактали Према начину настанка I. Итеративни фрактали II. Рекурзивни фрактали III.Случајни фрактали
47 Подела фрактала према степену самосличности Потпуно самослични фрактали садрже копије себе које су сличне целом фракталу. Кохова Троугао Хилбертова Канторов крива Сиерпинског крива скуп
48 Подела фрактала према степену самосличности Квази самослични фрактали Фрактал садржи мале копије себе које нису потпуно сличне целом фракталу, него се појављују у искривљеном облику. Моделбротов скуп Јулијев скуп
49 Подела фрактала према степену самосличности Статистички самослични фрактали Фрактали који поседују нумеричке или статистичке мере које се чувају кроз увећање или умањење,имају најнижи степен самосличости. Перлиов шум
50 Подела фрактала према начину настанка Итеративни фрактали настају копирањем, ротирањем и/или транслирањем копије, могућим замењивањем неког елемента копијом Пример: Кохова крива Ови фрактали поседују највећи степен самосличности, тзв. потпуну самосличност. Без обзира на то који смо део слике увећали увек добијамо слику исту почетној.
51 Подела фрактала према начину настака Рекурзивни фрактали су фрактали одређени рекурзивном математичком формулом која одређује припада ли одређена тачка простора скупу или не. Пример Манделбротов скуп
52 Подела фрактала према начину настанка Случајни фрактали су фрактали који настају цртањем графова неких стохастичних процеса и имају најмањи степен самосличности. vповежимо: итеративни фрактали су потпуно самослични, рекурзивни фрактали су квази самослични, а случајни фрактали су само статистички самослични.
53 Подела фрактала Ради једноставности претходно наведене три групе фрактала назваћемо геометријски, алгебарски и стохастични фрактали.
54 Фрактали и игра Ако желите кроз игру да истражујете фрактале посетите следеће сајтове:
55 Домаћи задатак v С обзиром да наш родослов има фракталну структуру, направите свој родослов у неком од следећа три облика: дрво сликовница електронска форма
56 Домаћи задатак Идеје за родослов
57 Домаћи задатак v Погледајте филм о папирној збирци модела фрактала на блогу vпроверите своје знање попуњавањем упитника на истом блогу. v Завршни пројекат је филм, плакат или презентација на тему фрактала.
58 Домаћи задатак v У оквиру филма можете снимати своје активности које ће бити објашњене путем текста или нарације. v Погледајте и филм који ће објединити и употпунити ваше знање из фрактала Живот као холограм Vqkm8#t=21
59 Литература Математика за I први разред средње школе; П. Миличић, В.Стојановић, З. Каделбург,Б.Боричић; Завод за уџбенике и наставна средства, Београд године Математика,Збирка задатака и тестова за I разред гимназија и техничких школа; Ж. Ивановић, С. Огњановић; Круг, Београд 2012 године Матиш, баш свуда!; K. Dal и S. Nordkvist; Propolis Plus d.o.o. за Србију године КУРС: Mатематика у архитектури 1, Проф. Др Мирјана Петрушевски Тајни код; Priya Hemenway, Загреб,
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Διαβάστε περισσότεραг) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Διαβάστε περισσότεραТеорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Διαβάστε περισσότεραТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Διαβάστε περισσότερα4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова
4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид
Διαβάστε περισσότερα6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Διαβάστε περισσότεραналазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Διαβάστε περισσότερα7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Διαβάστε περισσότερα6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
Διαβάστε περισσότερα6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
Διαβάστε περισσότεραПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Διαβάστε περισσότεραТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
Διαβάστε περισσότερα6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Διαβάστε περισσότεραКРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Διαβάστε περισσότεραРЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Διαβάστε περισσότεραпредмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Διαβάστε περισσότερα4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима
50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?
Διαβάστε περισσότερα10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
Διαβάστε περισσότερα3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Διαβάστε περισσότεραПоложај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Διαβάστε περισσότεραПримена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
Διαβάστε περισσότεραОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Διαβάστε περισσότερα6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.
91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина
Διαβάστε περισσότερα5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
Διαβάστε περισσότερα7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
Διαβάστε περισσότεραTестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
Διαβάστε περισσότεραСИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Διαβάστε περισσότεραВектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότερα8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Διαβάστε περισσότεραАНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2
АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла
Διαβάστε περισσότεραУпутство за избор домаћих задатака
Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета
Διαβάστε περισσότερα2.1. Права, дуж, полуправа, раван, полураван
2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.
Διαβάστε περισσότερα6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1
6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,
Διαβάστε περισσότεραТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).
СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која
Διαβάστε περισσότεραВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
Διαβάστε περισσότεραЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
Διαβάστε περισσότεραАнализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Διαβάστε περισσότεραАксиоме припадања. Никола Томовић 152/2011
Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна
Διαβάστε περισσότεραМАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4
МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :
Διαβάστε περισσότεραСкупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић
Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових
Διαβάστε περισσότερα2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Διαβάστε περισσότερα4.4. Тежиште и ортоцентар троугла
50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава
Διαβάστε περισσότερα2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Διαβάστε περισσότεραКоличина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Διαβάστε περισσότεραI Наставни план - ЗЛАТАР
I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1
Διαβάστε περισσότεραОд површине троугла до одређеног интеграла
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање
Διαβάστε περισσότεραb) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Διαβάστε περισσότεραМатематика Тест 3 Кључ за оцењивање
Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Διαβάστε περισσότεραМАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3
МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =
Διαβάστε περισσότεραIV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.
IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.
Διαβάστε περισσότεραТеорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Διαβάστε περισσότερα2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Διαβάστε περισσότεραУниверзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραI Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
Διαβάστε περισσότεραМАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
Διαβάστε περισσότεραПредмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Διαβάστε περισσότεραВаљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
Διαβάστε περισσότεραМихаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ
Мајци Душанки Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ подела угла на три једнака дела подела угла на n једнаких делова конструкција сваког правилног многоугла уз помоћ једног шестара и једног лењира
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραЗакони термодинамике
Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо
Διαβάστε περισσότεραTAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Διαβάστε περισσότεραРЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
Διαβάστε περισσότεραПРИЈЕМНИ ИСПИТ. Јун 2003.
Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραПрви корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραТеорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла
Διαβάστε περισσότεραКОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z
КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Διαβάστε περισσότερα4. ЗАКОН ВЕЛИКИХ БРОЈЕВА
4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи
Διαβάστε περισσότεραКонструкција правилних конвексних 4-политопа и њихових дводимензиналних пројекција
MAT-KOL (Banja Luka) XXIII ()(7) 89- http://wwwimviblorg/dmbl/dmblhtm DOI: 7/МК789D ISSN -6969 (o) ISSN 986-88 (o) Конструкција правилних конвексних -политопа и њихових дводимензиналних пројекција Ратко
Διαβάστε περισσότεραПовршине неких равних фигура
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3() (5), -6 Површине неких равних фигура Жарко Ђурић Париске комуне 4-/8, Врање zarkocr@gmail.com
Διαβάστε περισσότεραЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ
Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике
Διαβάστε περισσότεραМАСТЕР РАД. Увођење полинома у старијим разредима основне школе. Математички факултет. Универзитет у Београду. Студент: Милица Петровић.
Математички факултет Универзитет у Београду МАСТЕР РАД Увођење полинома у старијим разредима основне школе Студент: Милица Петровић Београд, 2016. Ментор: проф. др Александар Липковски, ред. проф. Чланови
Διαβάστε περισσότεραСваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.
IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита
Διαβάστε περισσότεραСеминарски рад из методике наставе математике и рачунарства Тема: Основне геометријске конструкције помоћу програма The Geometer's SketchPad
Универзитет у Београду Математички факултет Семинарски рад из методике наставе математике и рачунарства Тема: Основне геометријске конструкције помоћу програма The Geometer's SkethPd Студент: Марија Миленковић
Διαβάστε περισσότερα< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5
05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)
Διαβάστε περισσότεραТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
Διαβάστε περισσότεραСкрипта ријешених задатака са квалификационих испита 2010/11 г.
Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна
Διαβάστε περισσότεραТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ ПОЧИЊЕМО
ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ Сабирање, одузимање, множење. Сад је ред на дељење. Ево једног задатка с дељењем: израчунајте колико је. Наравно да постоји застрашујући начин да то урадите: Нацртајте
Διαβάστε περισσότεραL кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
Διαβάστε περισσότεραДинамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
Διαβάστε περισσότεραЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ
Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена
Διαβάστε περισσότεραИзометријске трансформације еуклидскее равни и простора и њихове групе
УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАКСИМОВИЋ ТАЊА Изометријске трансформације еуклидскее равни и простора и њихове групе МАСТЕР РАД Ментор: др. Александар Липковски Београд 2015. Садржај Увод
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραСВОЈСТВА И КОНСТРУКЦИЈА ПРАВИЛНИХ МНОГОУГЛОВА КОРИШЋЕЊЕМ СОФТВЕРА GEOGEBRA. Аутор: Лидија Трифуновић, професор математике ОШ ''Цар Константин'', Ниш
СВОЈСТВА И КОНСТРУКЦИЈА ПРАВИЛНИХ МНОГОУГЛОВА КОРИШЋЕЊЕМ СОФТВЕРА GEOGEBRA Аутор: Лидија Трифуновић, професор математике ОШ ''Цар Константин'', Ниш Мотивација за реализацију ових наставних јединица коришћењем
Διαβάστε περισσότεραПисмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
Διαβάστε περισσότερα61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао
ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани
Διαβάστε περισσότεραКОНСТРУКЦИЈА ТРОУГЛОВА
КОНСТРУКЦИЈА ТРОУГЛОВА КОРИШЋЕЊЕМ ИНТЕРАКТИВНЕ ТАБЛЕ И ПРОГРАМА ГеоГебра Израда: Јан Славка, дипломирани математичар ОШ ''Јан Чајак'', Бачки Петровац Мотивација за реализацију часова GeoГebrе ГеоГебра
Διαβάστε περισσότεραМАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5
МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)
Διαβάστε περισσότεραПисмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
Διαβάστε περισσότεραТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
Διαβάστε περισσότεραЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије
ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ
Διαβάστε περισσότεραМАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4
МАТЕМАТИЧКИ ЛИСТ 0/5. бр. XLIX- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 70 5 = 50; б) 0 = 80; в) 0 = 9; г) 5 = 850; д) 60 : = 0; ђ) 0 : 8 = 0; е) 86 : = ;
Διαβάστε περισσότερα