Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια
|
|
- Λύσανδρος Παπάγος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Κεφάλαιο 6: Ενότητα 6. Παρασκευόπουλος []: Εφαρµογές, Κεφάλαιο 6: Ενότητα 6. DiStefo [99]: Chpter Tewri []: Chpter : Sectio.8 6 Nicol Tptouli
2 Κριτήριο Routh ΚΕΣ : Αυτόµατος Έλεγχος Εισαγωγή Τα Σ.Α.Ε παρουσιάζουν ορισµένα χαρακτηριστικά τα οποία είναι ιδιαίτερης σηµασίας για τη συµπεριφορά τους. Τα πιο σηµαντικά από αυτά τα χαρακτηριστικά είναι: Η ελεγξιµότητα cotrollbility Η παρατηρησιµότητα obervbility Οι ιδιοτιµές eigevlue Η ευστάθεια tbility Με δεδοµένο ότι σε πολλά Σ.Α.Ε η έξοδος είναι επιθυµητό να ακολουθεί την είσοδο π.χ ένας τηλεπικοινωνιακός δέκτης είναι χρήσιµο να αναπαράγει όσο το δυνατό καλύτερα το σήµα που δηµιουργήθηκε στον ποµπό η ευστάθεια είναι εκ των ουκ άνευ. Σε ένα ασταθές σύστηµα η έξοδος δεν µπορεί να ακολουθήσει την είσοδο. Μετά την εξασφάλιση της ευστάθειας επιδιώκεται η ικανοποίηση άλλων παραµέτρων σχεδίασης όπως: Το εύρος ζώνης Το σφάλµα στη µόνιµη κατάσταση Η ταχύτητα και η ακρίβεια της απόκρισης. 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Ορισµός Ευστάθειας Σ.Α.Ε Για γραµµικά Σ.Α.Ε υπάρχουν αρκετοί ορισµοί για την ευστάθεια, οι οποίοι µπορούν να ελεγχθούν εύκολα. Αντίθετα για µη γραµµικά συστήµατα ο έλεγχος της ευστάθειας είναι περισσότερο δυσχερής και χρειάζονται ειδικές µεθοδολογίες για τον έλεγχος της π.χ οι µέθοδοι Lypuov, η µέθοδος Nyquit κ.λ.π Γενικός Ορισµός Ευστάθειας ισχύει τόσο για γραµµικά όσο και για µη γραµµικά συστήµατα: Ένα σύστηµα είναι ευσταθές όταν παραµένει σε κατάσταση ισορροπίας όταν δεν εφαρµόζεται σε αυτό κάποια διέγερση και επανέρχεται στην κατάσταση ισορροπίας όταν παύει να υφίσταται η διέγερση Ορισµός ισχύει για γραµµικά συστήµατα: Ένα σύστηµα είναι ευσταθές όταν η κρουστική του απόκριση ht προσεγγίζει το µηδέν όταν ο χρόνος τείνει προς το άπειρο: lim h t t Τα συστήµατα στα οποία ικανοποιείται η ανωτέρω συνθήκη ονοµάζονται ασυµπτωτικά ευσταθή 6 Nicol Tptouli
3 ΚΕΣ : Αυτόµατος Έλεγχος Ορισµοί Ευστάθειας Ορισµός ισχύει για γραµµικά αλλά και µη γραµµικά συστήµατα: Ένα σύστηµα είναι ευσταθές αν για οποιαδήποτε φραγµένη είσοδο η έξοδος του είναι φραγµένη Ορισµός βασίζεται στον ορισµό και ισχύει για γραµµικά συστήµατα: Ένα ΓΧΑ σύστηµα είναι ευσταθές αν οι ρίζες του χαρακτηριστικού πολυωνύµου πόλοι του συστήµατος βρίσκονται στο αριστερό µιγαδικό ηµιεπίπεδο δηλαδή έχουν πραγµατικό µέρος αρνητικό. Αν κάποιες από τις ρίζες του χαρακτηριστικού πολυωνύµου είναι καθαρά µιγαδικές έχουν πραγµατικό µέρος ίσο µε µηδέν τότε το σύστηµα είναι οριακά ευσταθές. Σε αυτή την περίπτωση η κρουστική απόκριση του συστήµατος δεν τείνει προς το µηδέν αλλά παραµένει φραγµένη: h t c < Το πόσο ευσταθές είναι κάποιο σύστηµα καθορίζει την ευρωστία του. Χαρακτηριστικά από τα οποία µπορούµε να αποφανθούµε για την ευρωστία ενός συστήµατος είναι τα περιθώρια κέρδους και φάσης. 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Να ελεγχθεί η ευστάθεια των συστηµάτων µε κρουστικές αποκρίσεις: he -t b hte -t c h d he -t it e hiωt, ω,,. Οι γραφικές παραστάσεις των αποκρίσεων -e φαίνονται στο διπλανό σχήµα ->µπλε, b->κόκκινο,c->φούξια, d-> πράσινο, e->µαύρο. Είναι φανερό ότι τα συστήµατα c,e είναι ασταθή καθώς η κρουστική τους απόκριση δεν προσεγγίζει το µηδέν όταν το t-> 6 Nicol Tptouli
4 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα II Να ελεγχθεί η ευστάθεια του συστήµατος µε συνάρτηση µεταφοράς: H Το χαρακτηριστικό πολυώνυµο Χ.Π. του ανωτέρω συστήµατος είναι. Οι ρίζες του είναι µιγαδικές, p -j, p j άρα το σύστηµα θα έπρεπε να είναι οριακά ευσταθές. Επειδή όµως όλες οι ρίζες του Χ.Π έχουν µηδενικό πραγµατικό µέρος το σύστηµα είναι ασταθές όπως φαίνεται από τη κρουστική του απόκριση: h t L { } i t αλλά και από την απόκριση στην είσοδο utit βλέπε σχήµα. 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα III Amplitude Impule Repoe Time ec Να ελεγχθεί η ευστάθεια του συστήµατος µε συνάρτηση µεταφοράς: H. Το χαρακτηριστικό πολυώνυµο Χ.Π. του ανωτέρω συστήµατος είναι.. ύο από τις ρίζες του είναι µιγαδικές, p -j, p j άρα το σύστηµα είναι οριακά ευσταθές η άλλη ρίζα είναι p -. δηλαδή έχει αρνητικό πραγµατικό µέρος. Η κρουστική απόκριση του συστήµατος είναι φραγµένη αλλά δεν φθίνει προς το µηδέν βλέπε σχήµα 6 Nicol Tptouli
5 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα IV Να ελεγχθεί η ευστάθεια των συστηµάτων µε συνάρτηση µεταφοράς: α β γ δ ε H H H H H α ασταθές, β ευσταθές, γ ευσταθές, δ ασταθές, ε οριακά ευσταθές 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Κριτήρια Ευστάθειας Η απευθείας εφαρµογή των ορισµών δεν είναι εύκολη για να αποφανθούµε για την ευστάθεια συστηµάτων ιδιαίτερα χωρίς τη βοήθεια υπολογιστή και εργαλείων προσοµοίωσης. Για το λόγο αυτό έχουν αναπτυχθεί κριτήρια ευστάθειας συστηµάτων τα οποία διακρίνονται σε: Αλγεβρικά Routh, Hurwitz, συνεχή κλάσµατα, Lypuov ιαγραµµατικά µε τη βοήθεια των µεθόδων ανάλυσης Γ.Τ.Ρ, Nyquit, Bode, Nichol Στη συνέχεια θα εξετάσουµε τα αλγεβρικά κριτήρια ευστάθειας τα οποία εφαρµόζονται εύκολα αν και σε πολλές περιπτώσεις δεν µας δίνουν πληροφορίες αντίστοιχες των διαγραµµατικών τεχνικών: εν δίνουν πληροφορίες σε σχέση µε την σχετική ευστάθεια ευρωστία των συστηµάτων εν εφαρµόζονται σε µη γραµµικά συστήµατα εξαίρεση η µέθοδος Lypuov Τα αλγεβρικά κριτήρια ευστάθειας εξετάζουν τη µορφή του χαρακτηριστικού πολυωνύµου του συστήµατος για να αποφανθούν για την ευστάθεια του. Θεώρηµα: Έστω το Χ.Π. µε α i, i,, πραγµατικούς αριθµούς. Το πολυώνυµο έχει µια ή περισσότερες ρίζες στο δεξιό µιγαδικό ηµιεπίπεδο αν κάποιος από τους συντελεστές α i είναι µηδενικός ή αρνητικός. Το αντίστροφο δεν ισχύει! 6 Nicol Tptouli
6 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Να ελεγχθεί η ευστάθεια των συστηµάτων µε χαρακτηριστικά πολυώνυµα: α β γ δ ε α ασταθές λείπει ο συντελεστής του, β δεν µπορούµε να αποφανθούµε στην πραγµατικότητα είναι ασταθές, γ δεν µπορούµε να αποφανθούµε στην πραγµατικότητα είναι ευσταθές, δ ασταθές λείπει ο συντελεστής του - στη πραγµατικότητα είναι οριακά ευσταθές ε ασταθές ο συντελεστής του είναι αρνητικός 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Κριτήριο Routh Το κριτήριο Routh προσδιορίζει το πλήθος των ριζών του X.Π που βρίσκονται στο δεξιό µιγαδικό ηµιεπίπεδο χωρίς να υπολογίζει τις ρίζες αυτές. Για το σκοπό αυτό κατασκευάζεται ο πίνακας Routh: b b b c c c όπου α i, i,, είναι οι συντελεστές του Χ.Π. και οι συντελεστές b, b,, c, c, υπολογίζονται από τις σχέσεις: b c b b b b c b b b 6 Nicol Tptouli 6
7 ΚΕΣ : Αυτόµατος Έλεγχος Κριτήριο Routh ΙΙ Θεώρηµα Όλες οι ρίζες του Χ.Π. βρίσκονται στο αριστερό µιγαδικό ηµιεπίπεδο τότε και µόνο τότε η πρώτη στήλη του πίνακα Routh δεν παρουσιάζει αλλαγές προσήµου. Ο αριθµός των αλλαγών προσήµου είναι ίσος µε τον αριθµό των ριζών στο δεξιό µιγαδικό ηµιεπίπεδο. Παράδειγµα: Να ελεγχθεί η ευστάθεια του συστήµατος µε Χ.Π Ο πίνακας Routh είναι >: Υπάρχουν δύο αλλαγές προσήµου στη πρώτη στήλη άρα έχουµε δύο ρίζες στο δεξιό µιγαδικό ηµιεπίπεδο >ασταθές σύστηµα b b c c d d 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Ύπαρξη µηδενικού στοιχείου στη πρώτη στήλη του πίνακα Routh Όταν υπάρχει µηδενικό στοιχείο στη πρώτη στήλη του πίνακα Routh τότε ο υπολογισµός του πίνακα Routh από τη γραµµή του µηδενικού στοιχείου και κάτω είναι αδύνατος διότι τα στοιχεία των επόµενων γραµµών απειρίζονται. Στη περίπτωση αυτή πολλαπλασιάζουµε το αρχικό πολυώνυµο µε b όπου b> και υπό την προϋπόθεση ότι το b δεν είναι ρίζα του και κατασκευάζουµε τον πίνακα Routh για το νέο πολυώνυµο: ˆ b Τα συµπεράσµατα όσον αφορά την ευστάθεια του συστήµατος µε Χ.Π το ˆ b ισχύουν και για το σύστηµα µε Χ.Π. το. Παράδειγµα: Να ελεγχθεί η ευστάθεια του συστήµατος µε Χ.Π Ο πίνακας Routh είναι >:??? 6 Nicol Tptouli 7
8 ΚΕΣ : Αυτόµατος Έλεγχος Ύπαρξη µηδενικού στοιχείου στη πρώτη στήλη του πίνακα Routh ΙΙ Λύση συνέχεια: Σχηµατίζουµε το βοηθητικό πολυώνυµο ˆ παρατηρούµε ότι έχουµε b, το b- δεν είναι ρίζα του. Σχηµατίζουµε τον πίνακα Routh για το νέο πολυώνυµο:.. Υπάρχουν δύο αλλαγές προσήµου στη πρώτη στήλη άρα έχουµε δύο ρίζες στο δεξιό µιγαδικό ηµιεπίπεδο >ασταθές σύστηµα 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Ύπαρξη µηδενικής γραµµής στο πίνακα Routh Όταν υπάρχει µηδενική γραµµή στον πίνακα Routh τότε ο υπολογισµός του πίνακα Routh από τη γραµµή αυτή και κάτω είναι αδύνατος διότι τα στοιχεία των επόµενων γραµµών απειρίζονται. Στη περίπτωση αυτή σχηµατίζουµε το βοηθητικό πολυώνυµο q το οποίο αντιστοιχεί στην προηγούµενη της µηδενικής γραµµής και συνεχίζουµε αντικαθιστώντας τους συντελεστές της µηδενικής γραµµής µε τους συντελεστές του dq d Παράδειγµα: Να ελεγχθεί η ευστάθεια του συστήµατος µε Χ.Π Ο πίνακας Routh είναι >:??? 6 Nicol Tptouli 8
9 ΚΕΣ : Αυτόµατος Έλεγχος Ύπαρξη µηδενικής γραµµής στο πίνακα Routh Λύση συνέχεια: Σχηµατίζουµε το βοηθητικό πολυώνυµο και το dq d q οπότε ο πίνακας Routh θα συνεχίσει ως: 8 Υπάρχουν δύο αλλαγές προσήµου στη πρώτη στήλη άρα έχουµε δύο ρίζες στο δεξιό µιγαδικό ηµιεπίπεδο >ασταθές σύστηµα 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Ι Με τη βοήθεια του κριτηρίου του Routh να προσδιορίσετε το διάστηµα διακύµανσης του K ώστε το κλειστό σύστηµα του σχήµατος να είναι ευσταθές Root Locu Sytem: h Gi: 8. Pole:.. 7i Dmpig: -.97 Overhoot %: Frequecy rd/ec:.7 Να κατασκευάσετε το Γ.Τ.Ρ για το κλειστό σύστηµα του σχήµατος και να επιβεβαιώσετε τα αποτελέσµατα που βρήκατε µε τη βοήθεια του κριτηρίου του Routh. Imgiry Axi Rel Axi Ο Γ.Τ.Ρ δίνεται στο διπλανό σχήµα, από όπου φαίνεται ότι το σύστηµα είναι ευσταθές για <Κ<8. Επειδή ο Γ.Τ.Ρ σχηµατίζεται µόνο για θετικές τιµές του K είναι πιθανό το σύστηµα να είναι ευσταθές και για κάποιες αρνητικές τιµές του K O Γ.Τ.Ρ για Κ< είναι συµµετρικός ως προς την κάθετη ευθεία που περνά από το κρίσιµο σηµείο -,j. Οπότε συµπεραίνουµε ότι το σύστηµα είναι ευσταθές και για Κ>-. Άρα τελικά -<Κ<8. 6 Nicol Tptouli 9
10 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Ι συν. Η συνάρτηση µεταφοράς του κλειστού συστήµατος είναι: KG K H KG F K K K Κατασκευάζουµε τον πίνακα Routh για το παραπάνω σύστηµα Χ.Π.: K K 8 K K Για να µην υπάρχει αλλαγή προσήµου στη πρώτη στήλη του πίνακα Routh πρέπει να ισχύουν: K > > K > 8 K > > K < 8 Οπότε τελικά -<Κ<8 το οποίο συµφωνεί µε το αποτέλεσµα του Γ.Τ.Ρ 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα ΙΙ Με τη βοήθεια του κριτηρίου του Routh να προσδιορίσετε το διάστηµα διακύµανσης του K ώστε το κλειστό σύστηµα του σχήµατος να είναι ευσταθές Imgiry Axi - - Root Locu Sytem: h Gi:. Pole:.7 i D mpig: -.7 Overhoot %: Frequecy rd/ec: Να κατασκευάσετε το Γ.Τ.Ρ για το κλειστό σύστηµα του σχήµατος και να επιβεβαιώσετε τα αποτελέσµατα που βρήκατε µε τη βοήθεια του κριτηρίου του Routh. Ο Γ.Τ.Ρ δίνεται στο διπλανό σχήµα, από όπου φαίνεται ότι το σύστηµα είναι ευσταθές για <Κ< Rel Axi 6 Nicol Tptouli
11 ΚΕΣ : Αυτόµατος Έλεγχος Κριτήριο Hurwitz Το κριτήριο Hurwitz προσδιορίζει αν το χαρακτηριστικό πολυώνυµο έχει ρίζες στο δεξιό µιγαδικό ηµιεπίπεδο ή πάνω στον άξονα των φανταστικών αριθµών. Αδυνατεί όµως σε σχέση µε το κριτήριο Routh να προσδιορίσει το πλήθος των ριζών αυτών. Το κριτήριο Hurwitz εφαρµόζεται µε βάση τις ορίζουσες Hurwitz οι οποίες είναι οι κύριες υποορίζουσες της ορίζουσας: περιττό: άρτιο: 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Κριτήριο Hurwitz II Θεώρηµα Όλες οι ρίζες του Χ.Π. βρίσκονται στο αριστερό µιγαδικό ηµιεπίπεδο τότε και µόνο τότε όλες οι ορίζουσες Hurwitz είναι θετικές k >, k,... Παράδειγµα: Να ελεγχθεί η ευστάθεια του συστήµατος µε Χ.Π Η ορίζουσα Hurwitz είναι: και οι κύριες υποορίζουσες είναι: > Είναι φανερό ότι το σύστηµα είναι ασταθές αφού και < 6 Nicol Tptouli
12 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Ι Με τη βοήθεια του κριτηρίου του Hurwitz να προσδιορίσετε το διάστηµα διακύµανσης του K ώστε το κλειστό σύστηµα του σχήµατος να είναι ευσταθές Το Χ.Π του συστήµατος είναι K Η ορίζουσα Hurwitz είναι: K 9 K K K K 8 K K Οι κύριες υποορίζουσες είναι: > K 8 K Οπότε για να έχουµε ευσταθές σύστηµα πρέπει Κ8-Κ> > -<Κ<8 6 Nicol Tptouli ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα ΙΙ Με τη βοήθεια του κριτηρίου του Hurwitz να προσδιορίσετε το διάστηµα διακύµανσης του K ώστε το κλειστό σύστηµα του σχήµατος να είναι ευσταθές Το Χ.Π του συστήµατος είναι K 6 9 8K Η ορίζουσα Hurwitz είναι: K 9 8K K K 9 8K 9 8K K 9 8K 9 8K 6 9K 9 8K 9 8K 7 K Οι κύριες υποορίζουσες είναι: K K 9 8K 6K 9 8K K 6 Οπότε για να έχουµε ευσταθές σύστηµα πρέπει 9 < K < 8 6 Nicol Tptouli
13 ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ : Αυτόµατος Έλεγχος 6 Nicol Tptouli Συνεχή Κλάσµατα Το κριτήριο συνεχών κλασµάτων, όπως και το κριτήριο Hurwitz, προσδιορίζει αν το χαρακτηριστικό πολυώνυµο έχει ρίζες στο δεξιό µιγαδικό ηµιεπίπεδο ή πάνω στον άξονα των φανταστικών αριθµών. Αδυνατεί όµως σε σχέση µε το κριτήριο Routh να προσδιορίσει το πλήθος των ριζών αυτών. Κατά την εφαρµογή του κριτηρίου το Χ.Π. διαχωρίζεται στα πολυώνυµα: Στη συνέχεια σχηµατίζεται ο λόγος των πολυωνύµων και ως συνεχές κλάσµα:. h h h ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ : Αυτόµατος Έλεγχος 6 Nicol Tptouli Συνεχή Κλάσµατα ΙΙ Θεώρηµα Όλες οι ρίζες του Χ.Π. βρίσκονται στο αριστερό µιγαδικό ηµιεπίπεδο τότε και µόνο τότε όλα τα h i είναι µεγαλύτερα από το µηδέν h k >, k,... Παράδειγµα: Να ελεγχθεί η ευστάθεια του συστήµατος µε Χ.Π Έχουµε Επειδή h -, h -/ το σύστηµα είναι ασταθές.. h h h
14 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Ι Με τη βοήθεια του κριτηρίου συνεχών κλασµάτων να προσδιορίσετε το διάστηµα διακύµανσης του K ώστε το κλειστό σύστηµα του σχήµατος να είναι ευσταθές Το Χ.Π του συστήµατος είναι K Έχουµε K 8 K K 9 K 9 8 K 8 K K 8 K 8 K Για h > πρέπει Κ<8, Για h > πρέπει -<Κ<8, 6 Nicol Tptouli
Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =
. Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών 6 Nicolas Tsapatsoulis ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Κεφάλαιο
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας
ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος
Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ : ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
Ευστάθεια συστημάτων
1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή
ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ
Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Εφαρµογές, Κεφάλαιο 9: Ενότητες 9.-9.4
ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ
ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ Εισαγωγή - Έννοιες Ένα ασταθές αντικείμενο προκαλεί γενικά ανεπιθύμητες παρενέργειες ή και καταστροφές Γενικά ένα ευσταθές σύστημα έχει μία οριοθετημένη τιμή στην απόκρισή
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
Ισοδυναµία τοπολογιών βρόχων.
Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς
Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους
Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο
Ευστάθεια, Τύποι συστημάτων και Σφάλματα
1. Ευστάθεια συστημάτων Ευστάθεια, Τύποι συστημάτων και Σφάλματα Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό
Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)
Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
Μάθημα: Θεωρία Δικτύων
Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Γεωμετρικός Τόπος Ριζών Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ Εφαρμ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Τυπική µορφή συστήµατος 2 ας τάξης
Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το
ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS
ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και
ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t
x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u u u u Ευστάθεια Ευστάθεια κατά Lyapunov Ασυµπτωτική Ευστάθεια Κριτήρια Ευστάθειας Ελεγξιµότητα Παρατηρησιµότητα Επίδραση της Δειγµατοληψίας στην Ελεγξιµότητα
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ
7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους
13 Μονοτονία Ακρότατα συνάρτησης
3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Κριτήριο Nyquist Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο
1.1. ΕΥΣΤΑΘΕΙΑ Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο Ένα από τα βασικά πρακτικά προβλήματα της επιστήμης των συστημάτων αυτομάτου ελέγχου είναι η σχεδίαση ενός συστήματος τέτοιου ώστε η έξοδος του να
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #4: Ευστάθεια Συστημάτων Κλειστού Βρόχου με τη Μέθοδο του Τόπου Ριζών Δημήτριος Δημογιαννόπουλος
ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση
Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις
ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών
10 2a 1 0 x. 1) Να εξεταστεί η ελεγξιμότητα και η παρατηρησιμότητα του συστήματος για τις διάφορες
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο Κ-Ω ΕΞΑΜΗΝΟ: 5 ο Ονοματεπώνυμο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος ΠΕΡΙΟΔΟΣ:
Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι
Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί
ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Β Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.
ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1
ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!
ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info
ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Για να μελετήσουμε και να χαράξουμε τη γραφική παράταση μιας συνάρτησης ακολουθούμε τα παρακάτω βήματα: 1. Βρίσκουμε το πεδίο ορισμού της.. Εξετάζουμε την
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Γεωμετρικός τόπος των ριζών Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας
ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης
Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:
Μελέτη και γραφική παράσταση συνάρτησης
7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Στα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο ΕΞΑΜΗΝΟ: 5 ο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος Αριθμός Μητρώου Ονοματεπώνυμο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
f(x) = και στην συνέχεια
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο) Ακαδ. Έτος: - ο Τµήµα (Κ-Μ), ιδάσκων: Κ. Τζαφέστας Λύσεις ης Σειράς Ασκήσεων Άσκηση - (I-
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι
Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.
Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό
Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u Συστήµατα από Δειγµατοληπτικά Δεδοµένα (Επανάληψη Ασκήσεις) u Στο πεδίο Συχνότητας (Συναρτήσεις Μεταφορά) u Στο πεδίο Χρόνου (Εξισώσεις Κατάστασης)
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση
Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς
Δυναμική Μηχανών I 7 2 Συνάρτηση και Μητρώο Μεταφοράς 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Αναπαραστάσεις
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
lim f ( x) x + f ( x) x a x a x a 2x 1
Ασύµπτωτες γραφικής παραστάσεως συναρτήσεως Ασύµπτωτες της γραφικής παραστάσεως συναρτήσεως y f ( ) ονοµάζονται οι ευθείες που για πολύ µικρές ή µεγάλες τιµές των, y προσεγγίζουν ικανοποιητικά την γραφική
Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ
Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f