ПЕРФОРМАНСЕ ИВИЧНЕ ОБЈЕКТИВНЕ ПРОЦЕНЕ КВАЛИТЕТА СЛИКЕ OBJECTIVE EDGE-BASED IMAGE QUALITY ASSESSME T PERFORMA CES

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ПЕРФОРМАНСЕ ИВИЧНЕ ОБЈЕКТИВНЕ ПРОЦЕНЕ КВАЛИТЕТА СЛИКЕ OBJECTIVE EDGE-BASED IMAGE QUALITY ASSESSME T PERFORMA CES"

Transcript

1 ПЕРФОРМАНСЕ ИВИЧНЕ ОБЈЕКТИВНЕ ПРОЦЕНЕ КВАЛИТЕТА СЛИКЕ OJECTIVE EDGE-SED IMGE ULITY SSESSME T PERFORM CES Бобан Бонџулић, Владимир Петровић 2, Димитрије Бујаковић Војна академија - Београд 2 Imain Science - University of Manchester Садржај У раду су анализиране перформансе ивичне објективне процене квалитета слика. Предложена су два начина одређивања мапа субјективног значаја којима су модулисане мапе локалног квалитета слике. Предложени приступи су евалуирани коришћењем три референтне базе слика. bstract In this paper we analyzed ede-based objective rayscale imae quality metric performances. We proposed two perceptual importance maps which modulate local imae quality success. The proposed approaches are validated usin three, well known imae datasets with subjective results.. УВОД У литератури се могу наћи бројне објективне мере за процену квалитета слике. Основни циљ ових мера је добити предикције које су у доброј корелацији са просечном субјективном оценом (MOS mean opinion score). Према количини информација изворне слике која се користи у поступку процене квалитета од стране посматрача, објективне мере за процену квалитета слике се могу поделити у три категорије, без референцирања (NR no-reference), са потпуним референцирањем (FR full-reference) и са делимичним референцирањем (RR reduced-reference) []. Алгоритми за процену квалитета слике најчешће имају две фазе. У првој фази, квалитет се евалуира на локалном нивоу и добија се мапа (матрица) квалитета. У другој фази се примењује алгоритам просторног удруживања локалних вредности квалитета како би се добила нумеричка вредност која представља квалитет комплетне слике. И док је велики труд уложен у развој прве фазе, мало је урађено за проналажење најбоље стратегије у другој фази, па се најчешће користи просторно усредњавање [2]. Проблеми са просторним усредњавањем се јављају када дисторзија није униформно распоређена у простору слике. На пример, када у малом делу слике постоји дисторзија а остали делови су доброг квалитета, посматрач ће већу пажњу обратити региону лошег квалитета и даће процену нижу од средње вредности мапе квалитета. Евалуација субјективног значаја визуелних информација није једноставан задатак и она представља део моделовања визуелног система човека. У контексту објективне процене квалитета слике, евалуација значаја идентификује информације на слици које утичу на посматрача када формира импресију о квалитету. То омогућава да се повећа утицај битних информација на резултат процене. У [3] се за одређивање мапе субјективног значаја користе особине региона добијених сегментацијом: контраст, димензија, облик, позиција и припадност предњем плану/позадини. Подела слика на регионе, одређивање сличности региона и одређивање мапе субјективног значаја на основу особина региона користе се и у [4]. У [5] је субјективни значај пиксела одређен као производ три фактора: амплитуде градијента, позиције пиксела на слици и припадности ентитетима вишег реда (објектима као што су путеви, реке, возила и сл.). У [6] је уведена мапа субјективног значаја која зависи од локалних варијанси нивоа сивог. У [2] су истражене три технике просторног удруживања: Минковски удруживање, удруживање на основу локалног квалитета и удруживање на основу информационог садржаја. Експерименти су показали да сва три метода могу побољшати предикцију мера за процену квалитета слика, али се трећи метод показао као генералан и робустан. У раду [7] мапа значаја формирана је на два начина. Први начин је на основу броја фиксација на свакој позицији пиксела а други начин је на основу трајања фиксација. Међутим, увођењем мапа субјективног значаја нису остварена значајна побољшања у односу на просторно усредњавање. У [8] се значај пиксела одређује након поделе пиксела слике у три класе: ивице, текстуре и глатки (flat) региони. Пикселима сврстаним у класу ивица дат је дупло већи значај него пикселима преостале две класе. У раду [9] су истражене две хипотезе просторног удруживања. Прва је визуелна пажња а друга коришћење p% најнижих скорова који одговарају деловима слике са лошим квалитетом. У другом делу рада описана је ивична објективна процена квалитета слике, и у оквиру њега су предложена два начина одређивања мапа субјективног значаја. Субјективни значај одређен је на основу информационог садржаја изворне и тест слике. У трећем делу рада дати су примери процене квалитета слика са компресијом, док су перформансе ивичне објективне процене квалитета (без и са мапама субјективног значаја) евалуиране у четвртом делу. 2. ИВИЧНА ПРОЦЕНА КВАЛИТЕТА СЛИКЕ У ивичној процени полази се од издвајања параметара ивица и коришћења субјективног модела значаја пиксела. Разматрањем субјективног значаја региона слике, очување параметара ивица локалних региона интеграли се у једну нумеричку вредност која одсликава квалитет тест слике. Наведени приступ је проистекао из приступа који се користи у процени квалитета сједињавања монохроматских слика [5], где се очување просторних информација евалуира кроз ивичну (градијентну) репрезентацију. Ивична процена

2 полази од идеје да је пренос (компресија, деградација) којим се пренесе више ивичних информација бољи. А. Издвајање параметара ивица За потребе објективне процене потребно је обе слике филтрирати са Собел просторним маскама. Резултате конволуције слика који дају информације о хоризонталним и вертикалним компонентама ивица (x и y оријентације) означимо sa s x и s y, респективно. Од ових компоненти се добијају амплитуда, (m,, и оријентација ивице, α(m,, пиксела слике (слике ): x 2 y 2 max s + s = () s = arctan s y x α (2) У () је са max означена максимална вредност градијента која се може добити применом Собел маски ( max =.8) за 8.-битне монохроматске слике сведене на опсег од нула до један. Амплитуда може бити у опсегу [0,], где минимална вредност одговара ситуацијама када нема промена нивоа сивог, а максимална вредност одговара максималном контрасту. Оријентација α може бити у опсегу [-π,π]. Оријентација је циклична променљива, тј. екстремне вредности -π и π су у основи исте. Б. Мера одржања ивица Ивица изворне слике је сасвим пресликана у тест слику ако су амплитуде и оријентације остале непромењене. Промена једног или оба параметра је показатељ губитка информација. Уколико постоји губитак контраста од изворне слике до тест слике, промена амплитуде,, се дефинише као однос амплитуда изворне и тест слике: + C, ( m, n ) > ( m, n ) (, ) m n + C = (3) + C, ( m, n ) ( m, n ) + C У (3) је са C (C=4/256=/64) означена константа која се додаје због ситуација у којима су оба градијента веома близу нуле или прага детекције ивице. Промена оријентације ивица слике у односу на слику, α, се дефинише као нормализована разлика оријентација α и α : α = π α α π Вредности и α описују линеарне промене ивичних информација. Међутим, како субјективни губитак информација није линеарно завистан од промене амплитуда и оријентација у обзир је узета и нелинеарна природа визуелног система човека. Губитак амплитуда и оријентација ивица модулисан је са нелинеарним функцијама. Коришћењем ових функција добијају се мере одржања параметара ивица, (4) и α, које моделују истинитост улазних амплитуда и оријентација на позицији (m, у тест слици: i Γ i =, {,α} + ( ki( i m n σ i) ) exp (, ) i. (5) Вредности параметара нелинеарних сигмоидних функција [k,σ,k α,σ α ]=[-,0.7,-24,0.8] оптимизоване су за потребе сједињавања слика [5]. Константе Γ i добијају се тако да је i = када је i =. Мере одржања амплитуда и оријентација (m, и α (m, се комбинују у меру одржања ивица (m,, која представља меру верности којом слика представља слику : = (6) Крајња мера квалитета тест слике,, се добија као средња вредност одржања ивичних параметара пиксела изворне слике, (m,: = M m= n= M На слици приказане су изворна слика uildins, три њене модификације настале JPEG компресијом и мапе квалитета добијене применом мере одржања ивица. Степени компресије и вредности анализираних објективних мера процене дати су у табели. Са слике види се да тест слике имају различит визуелни квалитет, а са мапа квалитета види се да се са повећањем степена компресије (смањење bpp) очува и мање информација о ивицама изворне слике (црни пиксели 0, бели пиксели ). Из табеле види се да се повећање степена компресије правилно евалуира са ивичном објективном проценом квалитета, као и са PSNR. В. Одређивање мапе субјективног значаја Расподела субјективног значаја на слици је комплексан процес који зависи од од бројних фактора као што су контраст, оријентација ивица, позиција на слици, припадност ентитетима вишег реда (објектима), садржај слике, итд. Евалуација значаја је потребна у истој резолуцији као што су резолуције изворне и тест слике и њен циљ је формирање мапе субјективног значаја, w(m,, која одсликава субјективну важност пиксела слике. Уколико је позната мапа субјективног значаја, w, крајња мера квалитета се може добити као нормализована сума мапе квалитета тест слике модулисане са мапом субјективног значаја w. То значи да се мера квалитета тест слике може добити као: M = m n= w = M m= n= α w( m, w( m, (7) (8)

3 (a) (б) (в) (г) (д) (ђ) (е) Слика. (а) изворна слика, (б) (в) (г) тест слике, (д) (ђ) (е) мапе квалитета добијене применом ивичне мере (7). Табела. Вредности објективних процена тест слика. Слика bpp PS R (d) (б) (в) (г) Вредности мера (7) и w (8) се налазе у опсегу [0,], где вредност нула указује да је дошло до потпуног губитка информација изворнe сликe, док вредност један указује да се ради о идеалном преносу при коме су информације изворне слике у потпуности пресликане у тест слику. За тест слику која има већу вредност / w кажемо да је бољег квалитета. Субјективни значај у раду је одређен на два начина. Први начин је на основу локалног информационог садржаја изворне слике (слике А): w( ) = lo P( ), (9) 2 где је P( ) функција густине вероватноће градијента изворне слике. Из (9) се види да значај пиксела зависи од расподеле вредности градијента. Значај пиксела p(m, се може тумачити као број бита потребних за репрезентацију вредности његовог градијента (m,. За претпоставку о Рејлијевој расподели амплитуда градијента, функција значаја (9) ће бити нелинеарна функција, што је у складу са нелинеарном природом визуелног система човека. Како би се у обзир узео и локални информациони садржаји тест слике уведена је и друга функција значаја пиксела: w(, ) = lo 2 P(, ), (0) где је P(, ) здружена расподела градијената изворне и тест слике. На овај начин збирна процена (8) ће испуњавати услов симетричности ( w= w). Увођењем функција значаја (9) и (0) избегава се хеуристичко одређивање значаја пиксела са нултим градијентом, јер значај зависи од фреквенције појаве нултог градијента. Одсуство промене сигнала носи малу али коначну количину информација. На слици 2 приказане су изворна и тест слика, мапа одржања ивица (светлије вредности имају веће вредности квалитета) и одговарајуће мапе значаја (светлије вредности имају већи значај). Мапа одржања ивица (мапа квалитета) 2(в) рефлектује просторне варијације субјективног квалитета. Са слика 2(г) и 2(д) види се да објекти на слици у предњем плану имају већи субјективни значај од позадине (небо). Такође, са слике 2(д) види се да пиксели позадине код којих се уочава блоковски ефекат добијају на значају.

4 (а) (б) (в) (г) (д) Слика 2. (а) изворна слика, (б) тест слика, (в) мапа одржања ивица, (г) (д) мапе субјективног значаја добијене коришћењем (8) и (9), респективно. 3. ПРИМЕРИ ПРОЦЕНЕ КВАЛИТЕТА На сликама 3 и 4 приказане су тест слике различитог квалитета настале применом JPEG и JPEG2000 компресије. Степен компресије тест слика је различит. Груба квантизација коришћењем JPEG и JPEG2000 компресије доводи до губљења финих детаља изворних слика (цреп на слици 3, односно дрвеће на слици 4). Како су у овим регионима структурне информације скоро потпуно изгубљене то условљава и лошији визуелни квалитет. У табелама 2 и 3 дати су степени компресије тест слика и вредности објективних процена. У даљем раду са обележени су резултати добијени применом ивичне објективне процене (7), где је свим пикселима дат једнак субјективни значај (просторно усредњавање). Са w и w2 обележене су вредности добијене коришћењем (8) и мапа значаја (9) и (0), респективно. Из табеле 2 види се да се коришћењем објективних мера процене правилно евалуира субјективни утисак слика са JPEG компресијом. Код слика са JPEG2000 компресијом субјективни утисак се не слаже са објективним проценама добијеним применом PSNR. (а) (б) (в) (г) (д) (ђ) (е) (ж) (з) Слика 3. (а) (б) (в) изворне слике, (г) (д) (ђ) тест слике настале применом JPEG компресије, (е) (ж) (з) мапе квалитета/дисторзије тест слика (г) (д) (ђ), респективно.

5 Табела 2. Вредности објективних процена тест слика са JPEG компресијом. Слика bpp PS R (d) w w2 3(г) (д) (ђ) Табела 3. Вредности објективних процена тест слика са JPEG2000 компресијом. Слика bpp PS R (d) w w2 4(г) (д) (ђ) ПЕРФОРМАНСЕ ИВИЧНЕ ПРОЦЕНЕ Перформансе објективних мера процене евалуиране су кроз три аспекта предикције []: предикција тачности, одређена рачунањем коефицијента корелације CC, средње апсолутне грешке ME и корена средње квадратне грешке RMSE, између објективних процена и субјективних скорова, предикција монотоности, одређена Спирмановим коефицијентом корелације рангова SROCC, предикција конзистентности, одређена рачунањем тачака ван прозора од две стандардне девијације субјективних процена outlier ratio OR. За нелинеарно пресликавање између објективних процена и субјективних скорова користи се логистик функција са четири параметра []. Перформансе ивичне објективне процене (без и са мапама субјективног значаја) упоређене су са перформансама PSNR и перформансама мера које се због добре предикције субјективних процена најчешће користе: VSNR (Visual-Sinal-to-Noise Ratio) [0], MS- SSIM (Multi-Scale Structural Similarity) [] и VIF (Visual Information Fidelity) [2]. Поређење је извршено на референтним базама слика са доступним субјективним проценама: Toyama, LIVE и IVC база. На слици 5 приказани су дијаграми расипања MOS и DMOS вредности (диференцијални MOS) на три базе слика, при чему свака тачка представља једну тест слику. Вертикална и хоризонтална оса представљају MOS/DMOS и добијене ивичне процене w. Са дијаграма са слике 5 види се да ивичне објективне процене имају константно расипање око логистик криве у комплетном опсегу квалитета. Такође, расипање око логистик функција је слично за све три базе што говори о робустности ивичне процене. У табели 4 дате су перформансе објективних мера процене по анализираним аспектима (две најбоље мере су обележене масним словима). (а) (б) (в) (г) (д) (ђ) (е) (ж) (з) Слика 4. (а) (б) (в) изворне слике, (г) (д) (ђ) тест слике настале применом JPEG2000 компресије, (е) (ж) (з) мапе квалитета/дисторзије тест слика (г) (д) (ђ), респективно.

6 Табела 4. Поређење перформанси објективних мера процене на Toyama, LIVE и IVC базама. Toyama база LIVE база IVC база Мера CC SROCC ME RMSE OR [%] PS R VS R MS-SSIM VIF w w PS R VS R MS-SSIM VIF w w PS R VS R MS-SSIM VIF w w Из табеле 4 види се да се ивична објективна процена налази раме уз раме са најбољим техникама објективне процене квалитета (MS-SSIM и VIF), а на свим базама слика је боља од PSNR и VSNR. Генерално, из табеле 4 може се закључити да се предложеним мапама субјективног значаја незнатно побољшава предикција ивичне објективне процене. 5. ЗАКЉУЧАК Ивична објективна процена се налази раме уз раме са најбољим техникама објективне процене квалитета. Увођењем предложених мапа субјективног значаја незнатно је побољшана предикција ивичне процене. Побољшање не зависи од базе слика која се користи у евалуацији. У даљем раду потребно је испитати утицај мапа субјективног значаја на различитим класама слика (JPEG, JPEG2000, шум,...). Такође, предложени приступ ће се проширити на процену квалитета колор слика и процену квалитета видео секвенци. ЛИТЕРАТУРА [] International Telecommunication Union, TUTORIL: Objective perceptual assessment of video quality - Full reference television, ITU-T, [2] Wan, Z., Shan, X., Spatial poolin strateies for perceptual imae quality assessment, IEEE Inter. Conf. Imae Proc., tlanta, G, October [3] Osberer, W., Maeder,.J., utomatic Identification of Perceptually Important Reions in an Imae, IEEE 4 th International Conference on Pattern Reconition, 998. Слика 5. Дијаграми расипања DMOS вредности. Toyama база LIVE база IVC база [4] Ghanem,., Resendiz, E., huja, N., Sementation-based perceptual imae quality assessment (SPI), IEEE Inter. Conf. Imae Proc., [5] Petrović, V., Multisensor Pixel-level Imae Fusion, PhD Thesis, University of Manchester, 200. [6] Wan, Z., Simoncelli, E.P., Stimulus Synthesis for Efficient Evaluation and Refinement of Perceptual Imae uality Metrics, IS&T/SPIE s Symposium on Electr. Ima., [7] Ninassi,., Meur, O.L., Callet, P.L., arba, D., Does where you aze on an imae affect your perception of quality? pplyin visual attention to imae quality metric, IEEE Inter. Conf. Imae Proc., [8] Li, C., ovik,.c., Three-Component Weihted Structural Similarity Index, SPIE Conference on ISP, [9] Moorthy,.K., ovik,.c., Perceptually Sinificant Spatial Poolin Techniques for Imae uality ssessment, SPIE Conference on HVEI, [0] Chandler, D.M., Hemami, S.S., VS R: Wavelet-ased Visual Sinal-to- oise Ratio for atural Imaes, IEEE Trans. on Imae Proc., Vol. 6 (9), pp , [] Wan, Z., Simoncelli, E.P., ovik,.c., Multi-Scale Structural Similarity for Imae uality ssessment, 37 th silomar Conf. on Sinals, Systems and Computers, [2] Sheikh, H.R., ovik,.c., Imae information and visual quality, IEEE Transactions on Imae Processin, Vol. 5, No. 2, pp , Feb

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων» Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ

7. Модели расподела случајних променљивих ПРОМЕНЉИВИХ 7. Модели расподела случајних променљивих 7. МОДЕЛИ РАСПОДЕЛА СЛУЧАЈНИХ ПРОМЕНЉИВИХ На основу природе појаве коју анализирамо, често можемо претпоставити да расподела случајне променљиве X припада једној

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје

8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје Регулација електромоторних погона 8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: регулација брзине напонски управљаним микромотором једносмерне струје Увод Simulik модел На основу упрошћеног блок дијаграма

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )

ITU-R BT.1908 (2012/01) ! # $ %& '( ) * +, - ( ) (2012/01)!" # $ %& '( ) * +, - 0 1 "'./ ( ) BT ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS S SA

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

У Н И В Е Р З И Т Е Т У Б Е О Г Р А Д У Е Л Е К Т Р О Т Е Х Н И Ч К И Ф А К У Л Т Е Т. дипломски рад. Ментор: проф. др Слободан Вукосавић

У Н И В Е Р З И Т Е Т У Б Е О Г Р А Д У Е Л Е К Т Р О Т Е Х Н И Ч К И Ф А К У Л Т Е Т. дипломски рад. Ментор: проф. др Слободан Вукосавић У Н И В Е Р З И Т Е Т У Б Е О Г Р А Д У Е Л Е К Т Р О Т Е Х Н И Ч К И Ф А К У Л Т Е Т ФРАКТАЛНА КОМПРЕСИЈА СЛИКЕ дипломски рад Кандидат: Дарко Штерн Ментор: проф. др Слободан Вукосавић Београд септембар

Διαβάστε περισσότερα

СЕГМЕНТАЦИЈА ДИГИТАЛНИХ СЛИКА ПРИМЕНОМ MEAN SHIFT АЛГОРИТМА

СЕГМЕНТАЦИЈА ДИГИТАЛНИХ СЛИКА ПРИМЕНОМ MEAN SHIFT АЛГОРИТМА УНИВЕРЗИТЕТ У БАЊАЛУЦИ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ СЕГМЕНТАЦИЈА ДИГИТАЛНИХ СЛИКА ПРИМЕНОМ MEAN SHIFT АЛГОРИТМА Дипломски рад Бања Лука, јул 007. Тема: СЕГМЕНТАЦИЈА ДИГИТАЛНИХ СЛИКА ПРИМЕНОМ MEAN SHIFT АЛГОРИТМА

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Слика бр.1 Површина лежишта

Слика бр.1 Површина лежишта . Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Средња вредност популације (m), односно независно промењљиве t чија је густина расподеле (СЛИКА ) дата функцијом f(t) одређена је изразом:

Средња вредност популације (m), односно независно промењљиве t чија је густина расподеле (СЛИКА ) дата функцијом f(t) одређена је изразом: 7. и 8. ПРИМЕНА СТАТИСТИКЕ У ПРОЦЕСУ КОНСТРУИСАЊА РЕЗИМЕ: Пошто се статистички искази ослањају на законе случаја и рачун вероватноће, важе само у оквиру извесне исказане поузданости. Код уобичајених техничких

Διαβάστε περισσότερα

НЕПАРАМЕТАРСКИ ТЕСТОВИ. Илија Иванов Невена Маркус

НЕПАРАМЕТАРСКИ ТЕСТОВИ. Илија Иванов Невена Маркус НЕПАРАМЕТАРСКИ ТЕСТОВИ Илија Иванов 2016201349 Невена Маркус 2016202098 Параметарски и Непараметарски Тестови ПАРАМЕТАРСКИ Базиран на одређеним претпоставкама везаним за параметре и расподеле популације.

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом

Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом висинских техничким нивелманом Страна 1 Радна секција: 1.. 3. 4. 5. 6. Задатак 1. За нивелмански инструмент нивелир са компензатором серијски број испитати услове за мерење висинских : 1) Проверити правилност

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

Терминирање флексибилних технолошких процеса

Терминирање флексибилних технолошких процеса ИНТЕЛИГЕНТНИ ТЕХНОЛОШКИ СИСТЕМИ АТ-8 Терминирање производно-технолошких ентитета Терминирање флексибилних технолошких процеса Терминирање (енгл. scheduling) представља процес планирања машинске обраде,

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

Основе теорије вероватноће

Основе теорије вероватноће . Прилог А Основе теорије вероватноће Основни појмови теорије вероватноће су експеримент и исходи резултати. Најпознатији пример којим се уводе појмови и концепти теорије вероватноће је бацање новчића

Διαβάστε περισσότερα

Апсорпција γ зрачења

Апсорпција γ зрачења Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет

Διαβάστε περισσότερα

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност, Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да

Διαβάστε περισσότερα

Површине неких равних фигура

Површине неких равних фигура Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3() (5), -6 Површине неких равних фигура Жарко Ђурић Париске комуне 4-/8, Врање zarkocr@gmail.com

Διαβάστε περισσότερα

Теорија друштвеног избора

Теорија друштвеног избора Теорија друштвеног избора Процедура гласања је средство избора између више опција, базирано на подацима које дају индивидуе (агенти). Теорија друштвеног избора је студија процеса и процедура доношења колективних

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα