1.6 Công thức tính theo t = tan x 2
|
|
- Δωρός Ρέντης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos b ± sin b cos cos( ± b) = cos cos b sin sin b 1 + cot 2 x = 1 sin 2 x tn x. cot x = 1 tn( ± b) = tn ± tn b 1 tn tn b 1.3 Công thức nhân đôi sin 2x = 2 sin x cos x tn 2x = 2 tn x 1 tn 2 x cos 2x = cos 2 x sin 2 x = 2 cos 2 x 1 = 1 2 sin 2 x 1.4 Công thức nhân b cos 3x = 4 cos 3 x 3 cos x 1.5 Công thức hạ bậc cos 2 x = 1 + cos 2x 2 sin 3x = 3 sin x 4 sin 3 x sin 2 x = 1 cos 2x 2 1
2 1.6 Công thức tính theo t = tn x 2 sin x = 2t 1 + t 2 cos x = 1 t2 1 + t 2 tn x = 2t 1 t Công thức tổng thành tích sin + sin b = 2 sin + b cos b 2 2 cos + cos b = 2 cos + b cos b Công thức tích thành tổng sin sin b = 2 cos + b sin b 2 2 cos cos b = 2 sin + b sin b 2 2 cos cos b = 1 [cos( b) + cos( + b)] 2 sin sin b = 1 [cos( b) cos( + b)] 2 sin cos b = 1 [sin( b) + sin( + b)] Một số công thức khác sin x + cos x = ( 2 cos x π ) 4 (sin x ± cos x) 2 = 1 ± sin 2x sin 6 x + cos 6 x = 1 3 sin2 2x 4 sin x cos x = ( 2 sin x π ) 4 sin 4 x + cos 4 x = 1 sin2 2x 2 2 Các lý thuyết về đạo hàm 2.1 Định nghĩ và các tính chất 1. Định nghĩ. Cho hàm số y = f(x) xác định trên khoảng (, b), x 0 (, b), x 0 + x (, b), nếu tồn tại giới hạn (hữu hạn) f(x 0 + x) f(x 0 ) lim x 0 x được gọi là đạo hàm củ f(x) tại x 0, kí hiệu là f (x 0 ) hy y (x 0 ), khi đó f f(x 0 + x) f(x 0 ) f(x) f(x 0 ) (x 0 ) = lim = lim x 0 x x x 0 x x 0 2. Các qui tắc tính đạo hàm. () [f(x) ± g(x)] = f (x) ± g (x). 2
3 (b) [f(x).g(x)] = f (x)g(x) + f(x)g (x). (c) [kf(x] = kf (x) với k R. ( ) f(x) (d) = f (x)g(x) f(x)g (x) g(x) [g(x)] 2 với g(x) 0. (e) y x = y u.u x với y = y(u), u = u(x). 2.2 Bảng các đạo hàm cơ bản Đạo hàm củ hàm sơ cấp Đạo hàm củ hàm hợp u = u(x) (c) = 0 với c R (x α ) = α.x α 1 (u α ) = α.u α 1 u ( ) 1 = 1 x x 2 ( x) = 1 2 x ( ) 1 = u u u 2 ( u) = u 2 u (e x ) = e x (e u ) = e u.u ( x ) = x ln ( u ) = u. ln.u (sin x) = cos x (sin u) = u. cos u (cos x) = sin x (tn x) = 1 cos 2 x (cot x) = 1 sin 2 x (cos u) = u. sin u (tn u) = u cos 2 u (cot u) = u 1. sin 2 u 2.3 Vi phân Cho hàm số y = f(x) xác định trên (, b) và có đạo hàm tại x (, b). Giả sử x là số gi củ x so cho x + x (, b). Tích f (x) x được gọi là vi phân củ hàm số 3
4 f(x) tại x, ứng với số gi x, ký hiệu là df(x) hy dy. Như vậy dy = df(x) = f (x)dx. 3 Lý thuyết khảo sát hàm số 3.1 Tính đồng biến - nghịch biến củ hàm số Giả sử hàm f(x) có đạo hàm trên khoảng (; b), khi đó: 1. f (x) > 0, x (, b) thì f(x) đồng biến trên khoảng (, b). 2. f (x) < 0, x (, b) thì f(x) nghịch biến trên khoảng (, b). 3. f(x) đồng biến trên khoảng (, b) thì f (x) 0, x (, b). 4. f(x) nghịch biến trên khoảng (, b) thì f (x) 0, x (, b). 3.2 Cực trị củ hàm số Giả sử hàm f(x) có đạo hàm trên khoảng (; b) và x 0 (; b) { 1. Nếu f (x) > 0, x (x 0 h; x 0 ) f (x) < 0, x (x 0 ; x 0 + h) thì x 0 là điểm cực đại củ f(x). 2. Nếu { f (x) < 0, x (x 0 h; x 0 ) f (x) > 0, x (x 0 ; x 0 + h) thì x 0 là điểm cực tiểu củ f(x). { 3. Nếu f (x 0 ) = 0 f (x 0 ) > 0 thì x 0 là điểm cực đại củ f(x). 4. Nếu { f (x 0 ) = 0 f (x 0 ) < 0 thì x 0 là điểm cực tiểu củ f(x). 3.3 Giá trị lớn nhất - nhỏ nhất củ hàm số 1. Xét trên một đoạn: () Tìm x i [, b], i = 1, 2,..., n là các điểm tại đó có đạo hàm bằng 0 hoặc không xác định. (b) Tính f(), f(b), f(x i ), với i = 1, 2,..., n. (c) So sánh để suy r giá trị lớn nhất và giá trị nhỏ nhất. 2. Xét trên một khoảng : Dùng bảng biến thiên để khảo sát hàm số. 4
5 3.4 Đường tiệm cận Kí hiệu (C) là đồ thị củ hàm số y = f(x). 1. Đường tiệm cận đứng. Nếu một trong các điều kiện su xảy r lim f(x) = + x x + 0 f(x) = lim x x + 0 lim x x 0 lim x x 0 f(x) = + f(x) = thì đường thẳng x = x 0 là tiệm cận đứng củ (C). 2. Đường tiệm cận ngng. Nếu lim f(x) = y 0 hoặc lim f(x) = y 0 thì đường thẳng y = y 0 là tiệm x + x cận ngng củ (C). 3.5 Các bước khảo sát hàm số y = f(x) 1. Tìm tập xác định củ hàm số. 2. Sự biến thiên () Chiều biến thiên i. Tính y. ii. Tìm các nghiệm củ phương trình y = 0 và các điểm tại đó y không xác định. iii. Xét dấu y và suy r chiều biến thiên củ hàm số. (b) Tìm các điểm cực trị (nếu có). (c) Tìm các giới hạn vô cực, các giới hạn tại +, và tại các điểm mà hàm số không xác định. Suy r các đường tiệm cận đứng và ngng (nếu có). (d) Lập bảng biến thiên 3. Vẽ đồ thị: Tính thêm tọ độ một số điểm đặc biệt, lập bảng giá trị và dự vào bảng biến thiên để vẽ đồ thị. 5
6 3.6 Tương gio củ hi đồ thị 1. Biện luận số nghiệm củ phương trình bằng đồ thị. Giả sử (C 1 ) là đồ thị củ hàm số y = f(x) và (C 2 ) là đồ thị củ hàm số y = g(x). Khi đó số nghiệm củ phương trình f(x) = g(x) tương ứng với số gio điểm củ (C 1 ) và (C 2 ). 2. Tiếp tuyến với đồ thị củ hàm số. () Dạng 1. Viết phương trình tiếp tuyến củ đồ thị hàm số y = f(x): i. Tại một điểm (x 0 ; y 0 ) trên đồ thị. ii. Tại điểm có hoành độ x 0 trên đồ thị. iii. Tại điểm có tung độ y 0 trên đồ thị. iv. Tại gio điểm củ đồ thị với trục tung. v. Tại gio điểm củ đồ thị với trục hoành. Phương pháp giải: Tìm đủ các giá trị x 0 ; y 0 = f(x 0 ) và f (x 0 ). Khi đó, phương trình tiếp tuyến củ đồ thị hàm số y = f(x) tại (x 0 ; y 0 ) là y y 0 = f (x 0 )(x x 0 ) (b) Dạng 2. Viết phương trình tiếp tuyến củ đồ thị hàm số y = f(x) biết tiếp tuyến song song hoặc vuông góc với đường thẳng y = x + b. Phương pháp giải như su i. Tính y = f (x). ii. Nếu tiếp tuyến song song với đường thẳng y = x + b thì hệ số góc củ tiếp tuyến bằng, tức là giải phương trình f (x) = để tìm x 0. Nếu tiếp tuyến vuông góc với đường thẳng y = x + b thì hệ số góc củ tiếp tuyến bằng 1, tức là giải phương trình f (x) = 1 để tìm x 0. iii. Tính y 0 = f(x 0 ). iv. Thy vào phương trình tiếp tuyến y y 0 = f (x 0 )(x x 0 ). (c) Dạng 3. Viết phương trình tiếp tuyến đi qu một điểm cho trước đến đồ thị hàm số y = f(x). Phương pháp sử dụng điều kiện tiếp xúc: Đồ thị hàm số y = f(x) và đường thẳng y = g(x) tiếp xúc tại điểm có hoành độ x 0 khi x 0 là nghiệm củ hệ { f(x) = g(x) f (x) = g (x) 6
7 4 Các lý thuyết về nguyên hàm 4.1 Nguyên hàm và các tính chất 1. Cho hàm số f(x) xác định trên khoảng K R. Hàm số F (x) gọi là nguyên hàm củ hàm f(x) trên khoảng K nếu F (x) = f(x), x K. 2. Mọi hàm số liên tục trên khoảng K R đều có nguyên hàm trên đoạn đó. 3. Nếu F (x) là một nguyên hàm củ hàm số f(x) trên khoảng K R thì với mỗi hằng số C, hàm số G(x) = F (x) + C cũng là một nguyên hàm củ f(x) trên K. Ngược lại, nếu F (x) là một nguyên hàm củ hàm số f(x) trên K thì mọi nguyên hàm củ f(x) trên K đều có dạng F (x) + C với C là một hằng số. Kí hiệu họ tất cả các nguyên hàm củ hàm số f(x) là f(x)dx, đọc là tích phân bất định củ f(x). Khi đó f(x)dx = F (x) + C với C R. 4. Các tính chất cơ bản () f (x)dx = f(x) + C với C là hằng số thực. (b) kf(x)dx = k f(x)dx với k là hằng số thực. (c) [f(x) ± g(x)]dx = f(x)dx ± g(x)dx. 4.2 Phương pháp tính nguyên hàm 1. Phương pháp đổi biến số. Nếu f(u)du = F (u) + C và u = u(x) là hàm số có đạo hàm liên tục thì f(u(x))u (x)du = F (u(x)) + C. 2. Phương pháp tích phân từng phần. Nếu hi hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì u(x)v (x)du = u(x)v(x) u (x)v(x)du. 4.3 Bảng các nguyên hàm cơ bản Nguyên hàm củ hàm sơ cấp 0dx = C Nguyên hàm củ hàm hợp u = u(x) 0du = C dx = x + C du = u + C 7
8 x α dx = xα+1 α C u α du = uα+1 α C 1 x dx = ln x + C 1 du = ln u + C u e x dx = e x + C x dx = x ln + C cos xdx = sin x + C e u du = e u + C u du = u ln + C cos udx = sin u + C sin xdx = cos x + C sin udu = cos u + C 1 cos 2 x dx = tn x + C 1 cos 2 du = tn u + C u 1 sin 2 x dx = cot x + C 1 sin 2 du = cot u + C u 5 Các lý thuyết về tích phân 5.1 Tích phân và các tính chất 1. Định nghĩ. Cho hàm số f(x) liên tục trên đoạn [, b]. Giả sử F (x) là một nguyên hàm củ f(x) trên đoạn [, b]. Hiệu số F (b) F () được gọi là tích phân từ đến b (hy tích phân xác định trên [, b]) củ hàm số f(x). Ký hiệu là f(x)dx. Khi đó Trường hợp = b t định nghĩ nghĩ f(x)dx = b f(x)dx = F (x) b = F (b) F () f(x)dx. 8 f(x)dx = 0. Trường hợp > b t định
9 2. Các tính chất củ tích phân. () (b) (c) kf(x)dx = k [f(x) ± g(x)]dx = f(x)dx = c f(x)dx với k là hằng số. f(x)dx + f(x)dx ± c g(x)dx. f(x)dx với < c < b. (d) Tích phân không phụ thuộc vào chữ dùng làm biến số trong dấu tích phân, tức là f(x)dx = 5.2 Phương pháp tính tích phân 1. Phương pháp đổi biến số f(t)dt = () Giả sử hàm số x = ϕ(t) có đạo hàm liên tục trên đoạn [α, β] so cho ϕ(α) =, ϕ(β) = b và ϕ(t) b, t [α, β]. Khi đó. f(x)dx = f(ϕ(t))ϕ (t)dt (b) Giả sử hàm số u = u(x) có đạo hàm liên tục trên đoạn [, b] so cho α u(x) β, x [, b]. Nếu f(x) = g(u(x))u (x), x [, b], trong đó g(u) liên tục trên đoạn [α, β] thì. f(x)dx = u(b) u() g(u)du 2. Phương pháp tích phân từng phần. Nếu u = u(x) và v = v(x) là hi hàm số có đạo hàm liên tục trên đoạn [, b] thì hoặc u(x)v (x)dx = [u(x)v(x)] b udv = [uv] b vdu. u (x)v(x)dx 9
10 5.3 Ứng dụng củ tích phân 1. Tính diện tích củ hình phẳng () Diện tích hình phẳng giới hạn bởi đồ thị củ hàm số y = f(x), hi đường thẳng x =, x = b và trục Ox là y y = f(x) S = f(x) dx f(x) dx x O b (b) Diện tích hình phẳng giới hạn bởi đồ thị củ hi hàm số y = f(x), y = g(x) và hi đường thẳng x =, x = b là y y = f(x) S = f(x) g(x) dx y = g(x) O b x 2. Tính thể tích củ vật thể tròn xoy () Giả sử hình phẳng giới hạn bởi các đường y = f(x), y = 0 (trục Ox), x =, x = b khi quy qunh trục Ox tạo thành một vật thể tròn xoy. Thể tích củ vật thể đó là V = π [f(x)] 2 dx. (b) Xét đường cong có phương trình x = g(y) liên tục với mọi y [; b]. Nếu hình giới hạn bởi các đường x = g(y), x = 0 (trục Oy), y =, y = b quy qunh trục Oy thì thể tích củ vật thể tròn xoy tạo thành xác định bởi V = π [g(y)] 2 dy. 10
11 6 Lũy thừ và logrit 6.1 Lũy thừ 1. Lũy thừ với số mũ nguyên dương. Với R, n N t có n =.... }{{} n thừ số 2. Lũy thừ với số mũ nguyên âm. Với 0, n N t có n = 1 n 3. Lũy thừ với số mũ 0. Với 0 t có 0 = Căn bậc n. Cho số thực b và số nguyên dương n 2. Khi đó () Số được gọi là căn bậc n củ b nếu n = b, ký hiệu = n b. (b) Khi n lẻ thì tồn tại duy nhất n b với mọi b R. (c) Khi n chẵn thì i. Nếu b < 0 thì không tồn tại căn bậc n củ b. ii. Nếu b = 0 thì có một căn n 0 = 0. iii. Nếu b > 0 thì có hi căn n b và n b. 5. Lũy thừ với số mũ hữu tỉ. Với > 0, m, n Z, n 2, t có m n = n m 6. Lũy thừ với số mũ vô tỉ. Cho > 0, α là một số vô tỉ và (r n ) là một dãy số hữu tỉ so cho lim r n =, khi đó α = lim. n + n + rn 7. Các tính chất. Cho > 0, b > 0, α, β R, khi đó α () α. β = α+β ; β = α β. ( ) α (b) (b) α = α.b α α ; = b b α ; (α ) β = αβ. (c) Nếu > 1 thì α > β α > β. (d) Nếu 0 < < 1 thì α > β α < β. 11
12 6.2 Logrit 1. Định nghĩ. Cho > 0, b > 0, 1, số α thỏ đẳng thức α = b được gọi là logrit cơ số củ b và ký hiệu là log b, như vậy α = log b α = b 2. Các tính chất 3. Các quy tắc log 1 = 0; log = 1; log b = b; log α = α () Với các số, b 1, b 2 > 0, 1, t có log (b 1 b 2 ) = log b 1 + log b 2 ( ) b1 log = log b b 1 log b 2 2 (b) Với các số, b > 0, 1, α R, n N, t có ( ) 1 log = log b b; log b α = α log b; log n b = 1 n log b (c) Với các số, b, c > 0, 1, c 1 t có log b = log c b log c ; log b = 1 log b (b 1); log α b = 1 α log b(α 0) 4. Logrit thập phân và logrit tự nhiên. Với x > 0 t viết gọn log 10 x = lg x hoặc log 10 x = log x; log e x = ln x 6.3 Phương trình mũ và phương trình logrit 1. Phương trình mũ dạng cơ bản x = b ( > 0, 1) () Nếu b 0 thì phương trình vô nghiệm. (b) Nếu b > 0 thì phương trình có nghiệm duy nhất x = log b. (c) Các phương pháp để biến đổi về dạng cơ bản: Đư về cùng cơ số, đặt ẩn phụ, lấy logrit hi vế,... 12
13 2. Phương trình logrit dạng cơ bản log x = b ( > 0, 1) () Phương trình logrit cơ bản luôn có nghiệm duy nhất x = b. (b) Các phương pháp để biến đổi về dạng cơ bản: Đư về cùng cơ số, đặt ẩn phụ, mũ hó hi vế, Bất phương trình mũ và bất phương trình logrit 1. Bất phương trình mũ cơ bản () Nếu > 1 thì f(x) g(x) f(x) g(x) (tính chất đồng biến). (b) Nếu 0 < < 1 thì f(x) g(x) f(x) g(x) (tính chất nghịch biến). 2. Bất phương trình logrit cơ bản () Nếu > 1 thì log f(x) log g(x) f(x) g(x) > 0 (tính chất đồng biến). (b) Nếu 0 < < 1 thì log f(x) log g(x) 0 < f(x) g(x) (tính chất nghịch biến). 7 Số phức 7.1 Cơ bản về số phức 1. Số phức có dạng trong đó z = + bi () là phần thực, b là phần ảo,, b R. (b) i là đơn vị ảo và i 2 = Hi số phức bằng nhu khi và chỉ khi phần thực và phần ảo tương ứng bằng nhu, tức là { = c + bi = c + di b = d 3. Số phức z = + bi được biểu diễn bởi điểm M(; b) trên mặt phẳng tọ độ Oxy. Khi đó, độ dài củ OM gọi là mô đun củ số phức z đó, tức là z = OM = 2 + b Số phức liên hợp củ z = + bi là z = bi. 13
14 7.2 Các phép toán với số phức 1. Phép cộng: ( + bi) + (c + di) = ( + c) + (b + d)i. 2. Phép trừ: ( + bi) (c + di) = ( c) + (b d)i. 3. Phép nhân: ( + bi)(c + di) = c + di + cbi + bdi 2 = (c bd) + (d + bc)i. 4. Phép chi: ( + bi) ( + bi)(c di) = (c + di) (c + di)(c di) ( + bi)(c di) = (c 2 + d 2. ) 7.3 Phương trình bậc hi với hệ số thực 1. Số thực < 0 vẫn có các căn bậc hi là i và i. 2. Xét phương trình bậc hi x 2 + bx + c = 0 trong đó, b, c R, 0. Đặt = b 2 4c () Nếu = 0 thì phương trình có nghiệm kép (thực) x = b 2. (b) Nếu > 0 thì phương trình có 2 nghiệm thực x 1,2 = b ±. 2 (c) Nếu < 0 thì phương trình có 2 nghiệm phức x 1,2 = b ± i. 2 14
15 15
16 16
SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1
SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ
HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:
. Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm
5. Phương trình vi phân
5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài
1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n
Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma
7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế
TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.
https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56
TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ
Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.
wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân
Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)
Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )
Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA
ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác
Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3
ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung
ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2
ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH
Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b
huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết
O 2 I = 1 suy ra II 2 O 1 B.
ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến
c) y = c) y = arctan(sin x) d) y = arctan(e x ).
Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết
Năm Chứng minh Y N
Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.
Kinh tế học vĩ mô Bài đọc
Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng
x y y
ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng
Năm 2017 Q 1 Q 2 P 2 P P 1
Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động
có nghiệm là:. Mệnh đề nào sau đây đúng?
SỞ GD & ĐT TỈNH HƯNG YÊN TRƯỜNG THPT MINH CHÂU (Đề có 6 trng) ĐỀ THI THỬ THPT QG MÔN TOÁN LẦN NĂM HỌC 7-8 MÔN TOÁN Thời gin làm bài : 9 Phút; (Đề có câu) Họ tên : Số báo dnh : Mã đề 84 Câu : Bất phương
I 2 Z I 1 Y O 2 I A O 1 T Q Z N
ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện
Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.
Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không
ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)
THẦY: ĐẶNG THÀNH NAM Website: wwwvtedvn ĐỀ SỐ 6 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 7 Thời gian làm bài: phút; không kể thời gian giao đề (5 câu trắc nghiệm) Mã đề thi 65 Họ, tên thí sinh:trường: Điểm mong muốn:
Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí
Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết
M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).
ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng
O C I O. I a. I b P P. 2 Chứng minh
ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường
L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).
ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm
ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
Ngày 26 tháng 12 năm 2015
Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ
Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH
Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn
tâm O. CMR OA1 5 HD. Tính qua các véc tơ chung điểm đầu A Bài 19. Cho tam giác ABC, gọi G là trọng tâm và H là điểm đối xứng của B qua G.
Phần I. Véc tơ. hứng minh hệ thức véc tơ Véc tơ - Toạ độ hú ý + ho Với mọi điểm O, t có: = O O. + Tứ giác là hbh =. + Để cm = b. = b i) b ii) Nếu = ;b =. T cm là hbh. iii) Tính chất bắc cầu + Để cm = t
TỨ DIỆN VẤN ĐỀ I: CÁC BÀI TOÁN CHỌN LỌC VỀ CHÓP TAM GIÁC
TỨ DIỆN VẤN ĐỀ I: Á ÀI TOÁN HỌN LỌ VỀ HÓP TM GIÁ Ví dụ 1: ho tứ diện D có D (, D 4cm, cm, 5cm. Tính khoảng cách từ đến ( D. Giải: vuông tại họn hệ trục tọ độ so cho: ( ;;, ( ;;, ( ;4;, D( ;;4 Phương trình
Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)
Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA
I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố
CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG
CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng
A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN
. ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ
Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên
MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1- Độ dài đoạn thẳng Ax ( ; y; z ), Bx ( ; y ; z ) thì Nếu 1 1 1 1. Một Số Công Thức Cần Nhớ AB = ( x x ) + ( y y ) + ( z z ). 1 1 1 - Khoảng cách từ điểm đến mặt phẳng
Câu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10
ĐỀ THAM KHẢO THPT QUỐC GIA 8 MÔN TOÁN (ĐỀ SỐ ) *Biên soạn: Thầy Đặng Thành Nam website: wwwvtedvn Video bài giảng và lời giải chi tiết chỉ có tại wwwvtedvn Thời gian làm bài: 9 phút (không kể thời gian
Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.
Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)
* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:
Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:
Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).
Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí
Vectơ và các phép toán
wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu
Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace
Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...
Batigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
Chứng minh. Cách 1. EO EB = EA. hay OC = AE
ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các
ShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4.
ShaMO 30 A1. Cho các số thực a, b, c, d thỏa mãn a + b + c + d = 6 và a 2 + b 2 + c 2 + d 2 = 12. Chứng minh rằng 36 4 ( a 3 + b 3 + c 3 + d 3) ( a 4 + b 4 + c 4 + d 4) 48. A2. Cho tam giác ABC, với I
x + 1? A. x = 1. B. y = 1. C. y = 2. D. x = 1. x = 1.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI THỬ NGHIỆM Đề thi gồm có 6 trang) KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 7 Bài thi : TOÁN Thời gian làm ài : 9 phút, không kể thời gian phát đề HƯỚNG DẪN GIẢI CHI TIẾT Soạn ởi
Tự tương quan (Autocorrelation)
Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?
PHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: Nguyễn Trung Kiên
huyên đề luyện thi đại học PHƯƠNG PHÁP GIẢI Á ÀI TẬP HÌNH KHÔNG GIN TRONG KỲ THI TĐH iên soạn: Nguyễn Trung Kiên Hình không gin là bài toán không khó trong đề thi TĐH nhưng luôn làm cho rất nhiều học sinh
Tự tương quan (Autoregression)
Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan
KỸ THUẬT ĐIỆN CHƯƠNG II
KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở
Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần.
GVLê Văn Dũng - NC: Nguyễn Khuyến Bình Dương Dao Động Cơ 0946045410 (Nhắn tin) DAO ĐỘNG ĐIỀU HÒA rong thời gian t giây vật thực hiện được N dao động toàn phần Chu kì dao động của vật là = t N rong thời
Sử dụngụ Minitab trong thống kê môi trường
Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều
Ví dụ 2 Giải phương trình 3 " + = 0. Lời giải. Giải phương trình đặc trưng chúng ta nhận được
CHƯƠNG 6. PHƯƠNG TRÌNH VI PHÂN CẤP CAO Những ý tưởng cơ bản của phương trình vi phân đã được giải thích trong Chương 9, ở đó chúng ta đã tập trung vào phương trình cấp một. Trong chương này, chúng ta nghiên
BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY
Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình
Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan
CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành
THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần
có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]
1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán
ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)
ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp
Liên hệ:
Giáo trình Vi tích phân 2 Bộ môn Giải tích (Kho Toán Tin học, Đại học Kho học Tự nhiên Thành phố Hồ Chí Minh) Bản ngày 19 tháng 1 năm 218 2 Đây là giáo trình cho các môn toán Vi tích phân 2 cho khối B
ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011)
Đề cương chi tiết Toán cao cấp 2 1 TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP. HCM KHOA CÔNG NGHỆ THÔNG TIN CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập Tự do Hạnh phúc 1. Thông tin chung về môn học ĐỀ CƯƠNG CHI TIẾT HỌC
Ngày 18 tháng 3 năm 2015
Giải Tích Phần Tử Hữu Hạn Đại Học Khoa Học Tự Nhiên, Tp. HCM Ngày 18 tháng 3 năm 2015 Giới thiệu Giới thiệu Phương trình đạo hàm riêng-ptđhr (Partial Differential Equations-PDE) được sử dụng mô tả các
HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.
HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau
2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r
Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN
HỘI NGHỊ NCKH KHOA SP TOÁN-TIN THÁNG 5/5 MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN ThS. Võ Xuân Mi Kho Sư phạm Toán-Tin, Trường Đại học Đồng Tháp Emil: vxmi@dthu.edu.vn
Viết phương trình dao động điều hòa. Xác định các đặc trưng của DĐĐH.
Viết phương trình dao động điều hòa Xác định các đặc trưng của DĐĐH I Phương pháp 1:(Phương pháp truyền thống) * Chọn hệ quy chiếu: - Trục Ox - Gốc tọa độ tại VTCB - Chiều dương - Gốc thời gian * Phương
+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7)
Nhớm 3 Bài 1.3 1. (X,.) là nhóm => a X; ax= Xa= X Ta chứng minh ax=x Với mọi b thuộc ax thì b có dạng ak với k thuộc X nên b thuộc X => Với mọi k thuộc X thì k = a( a -1 k) nên k thuộc ax. Vậy ax=x Tương
Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm
Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn
A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.
Đường tròn mixtilinear Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Đường tròn mixtilinear nội tiếp (bàng tiếp) là đường tròn tiếp xúc với hai cạnh tam giác và tiếp xúc trong (ngoài)
KHOA TOÁN - CƠ - TIN HỌC (MAT 2036)
KHOA TOÁN - CƠ - TIN HỌC BỘ MÔN GIẢI TÍCH Bài giảng Phương trình đạo hàm riêng nâng cao (MAT 2036) Dư Đức Thắng Hà Nội, ngày 11 tháng 9 năm 2017 Mục lục Chu. o. ng 1 Mở đầu 1 Mở đầu 1 1.1 Một số khái
Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.
Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ Khoa Toán-Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. E-mail: hqvu@hcmus.edu.vn e d c f 1 b a 1 TÓM
MỘT SỐ BÀI TOÁN VẬT LÍ ỨNG DỤNG TÍCH PHÂN
MỘT SỐ BÀI TOÁN VẬT LÍ ỨNG DỤNG TÍCH PHÂN I. CƠ BẢN VỀ TÍCH PHÂN 1. Một số công thức cơ tính đạo hàm [c] = [] = 1 [ α ] = α α 1 [sin] = cos [cos] = sin 1 [tan] = cos -1 [cot] = sin [ln] = 1 [log a ] =
PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG
PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG KIẾN THỨC CẦN NHỚ : 1. Phép tịnh tiến : a. Định nghĩa :Cho cố định. Với mỗi điểm M, ta dựng điểm M sao cho MM ' = T (M) = M sao cho : MM ' = b. Biể thức
A 2 B 1 C 1 C 2 B B 2 A 1
Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng
(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên
Chương V PHẢN ỨNG TẠO T O PHỨC C & CHUẨN N ĐỘĐ (Complexometric Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên ptnnguyen@hcmus.edu.vn 1. Phức chất vàhằng số bền 2. Phương pháp chuẩn độ phức 3. Cân
g(0, 1) = g(1, 0) = 0 g( x) = g(x)
Phép tính vi phân trên R n 1 BÀI TẬP CHƯƠNG 1 Bài tập 1.1. Cho hàm f : R R, (x, y) sin x. Dùng định nghĩa chứng minh Df(a, b) = α, với α xác định bởi α(x, y) = (cos a)x. Bài tập 1.. Cho hàm f : R n R thỏa
KỸ THUẬT ĐIỆN CHƯƠNG IV
KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính
TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG
TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG hieuchuoi@ Tháng 7.006 GIỚI THIỆU Tuyển tập đề thi này gồm tất cả 0 đề thi tuyển sinh vào trường THPT chuyên Nguyễn Trãi Tỉnh Hải Dương (môn Toán chuyên) và
Nhưng... Resultant, Discriminant, Galois resolvent, Tschirnhaus s transformations, Bring and Jerrard s
Một số lớp phương trình bậc co giải được nhờ phương trình bậc và phương trình bậc 3 Nguyễn Quản Bá Hồng Sinh viên kho toán tin, Trường Kho Học Tự Nhiên TP HCM Emil: Nguyenqunbhong@gmil.com 09.05.015 Tóm
Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN
Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG Sau khi học xong chương này, người
x i x k = e = x j x k x i = x j (luật giản ước).
1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG
B. chiều dài dây treo C.vĩ độ địa lý
ĐỀ THI THỬ LẦN 1 TRƯỜNG THPT CHUYÊN HẠ LONG QUẢNG NINH MÔN VẬT LÝ LỜI GIẢI: LẠI ĐẮC HỢP FACEBOOK: www.fb.com/laidachop Group: https://www.facebook.com/groups/dethivatly.moon/ Câu 1 [316487]: Đặt điện áp
- Toán học Việt Nam
- Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc
Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα
- Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει
TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ
TRƯỜNG THT HUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓ: 2011-2012 * * HUYÊN ĐỀ ỘT SỐ ÀI TOÁN HÌNH HỌ HẲNG LIÊN QUN ĐẾN TỨ GIÁ TOÀN HẦN Người thực hiện han Hồng Hạnh Trinh Nhóm chuyên toán lớp 111 Kon Tum, ngày 26
x = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2)
65 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 53, 2009 HỆ PHÂN HOẠCH HOÀN TOÀN KHÔNG GIAN R N Huỳnh Thế Phùng Trường Đại học Khoa học, Đại học Huế TÓM TẮT Một phân hoạch hoàn toàn của R n là một hệ gồm 2n vec-tơ
HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng
1 HỒI QUY TUYẾN TÍNH ĐƠN GV : Đnh Công Khả FETP Môn: Các Phương Pháp Định Lượng Knh tế lượng là gì? Knh tế lượng được quan tâm vớ vệc xác định các qu luật knh tế bằng thực nghệm (Thel, 1971) Knh tế lượng
TRANSISTOR MỐI NỐI LƯỠNG CỰC
hương 4: Transistor mối nối lưỡng cực hương 4 TANSISTO MỐI NỐI LƯỠNG Ự Transistor mối nối lưỡng cực (JT) được phát minh vào năm 1948 bởi John ardeen và Walter rittain tại phòng thí nghiệm ell (ở Mỹ). Một
Phần 3: ĐỘNG LỰC HỌC
ài giảng ơ Học Lý Thuết - Tuần 7 4/8/011 Phần : ĐỘNG LỰ HỌ Vấn đề chính cần giải quết là: Lập phương trình vi phân chuển động Xác định vận tốc vàgiatốc hi có lực tácđộng vào hệ hương 10: Phương trình vi
ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là.
Hocmai.n Học chủ động - Sống tích cực ĐỀ PEN-CUP SỐ 0 Môn: Vật Lí Câu. Một chất điểm có khối lượng m, dao động điều hòa ới biên độ A à tần số góc. Cơ năng dao động của chất điểm là. A. m A 4 B. m A C.
1.3.2 L 2 đánh giá Nghiệm yếu Nghiệm tích phân, điều kiện Rankine-Hugoniot... 25
Giáo trình Phương trình vi phân đạo hàm riêng Đặng Anh Tuấn Ngày 30 tháng 3 năm 2016 Mục lục 1 Phương trình đạo hàm riêng cấp 1 1 1.1 Siêu mặt không đặc trưng......................... 1 1.1.1 Một số ký
CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC
CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC I. Nguyên lý 1 nhiệt động học: Q= U + A hay U = Q A a) Quy ước dấu công và nhiệt: - Hệ thu nhiệt: Q > 0 ; Hệ phát nhiệt: Q < 0 - Hệ nhận công: A < 0 ; Hệ sinh công ( thực hiện
Thuật toán Cực đại hóa Kì vọng (EM)
Thuật toán Cực đại hóa Kì vọng (EM) Trần Quốc Long 1 1 Bộ môn Khoa học Máy tính Khoa Công nghệ Thông tin Trường Đại học Công nghệ Thứ Tư, 30/03/2016 Long (Đại học Công nghệ) Thuật toán EM 30/03/2016 1
Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm
Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm 1. Giới thiệu Ống bê tông dự ứng lực có nòng thép D2400 là sản phẩm cung cấp cho các tuyến ống cấp nước sạch. Đây là sản phẩm
Chương 12: Chu trình máy lạnh và bơm nhiệt
/009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng
1.1.2 Hàm Green Công thức tích phân Poisson Tính chính quy... 8
Giáo trình Phương trình vi phân đạo hàm riêng Đặng Anh Tuấn Ngày 18 tháng 1 năm 2017 Mục lục 1 Phương trình Laplace 1 1.1 Nghiệm cơ bản............................... 1 1.1.1 Đồng nhất thức Green.......................
CƠ HỌC LÝ THUYẾT: TĨNH HỌC
2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại