Vectơ và các phép toán
|
|
- Θαΐς Δαμασκηνός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu tố liên quan Định nghĩa: Vectơ là đọan thẳng có hướng, tức là trong hai đầu mút của đoạn thẳng, đã chỉ rõ điểm nào là điểm đầu, điểm nào là điểm cuối Ký hiệu MN, AB hoặc ab, Vectơ có điểm đầu và điểm cuối trùng nhau được gọi là vectơ không Ví dụ: AA, BB, Giá của vectơ AB (khác vectơ không) là đường thẳng đi qua A, B Độ dài của vectơ AB là độ dài đoạn thẳng AB, ký hiệu là AB Ta có AB không bằng 0 13 Hai vectơ cùng phương, cùng hướng và hai vectơ bằng nhau = AB Độ dài vectơ Hai vectơ cùng phương khi giá của chúng song song hoặc trùng nhau Quy ước: Vectơ không cùng phương với mọi vectơ Hai vectơ cùng phương thì cùng hướng hoặc ngược hướng Quy ước: vectơ không cùng hướng với mọi vectơ Hai vectơ bằng nhau khi chúng cùng hướng và cùng độ dài Mọi vectơ - không đều bằng nhau và đuợc ký hiệu là 0 14 Dựng một vectơ bằng vectơ cho trước Cho vectơ a và điểm M Khi đó ta có thể dựng được duy nhất điểm N sao cho MN = a Chú ý: + Chứng minh hai điểm trùng nhau: AM = AM M M + Chứng minh 3 điểm thẳng hàng: AB, AC cùng phương khi và chỉ khi A, B, C thẳng hàng Định nghĩa các phép toán trên vectơ 1 Phép cộng hai vectơ Cho hai vectơ ab, Ta dựng vectơ AB = a, vectơ BC = b Khi đó vectơ AC là vectơ tổng của hai vectơ ab, Ký hiệu AC = a + b Vậy ta có AC = AB + BC Phép trừ hai vectơ Cho vectơ a, khi đó tồn tại vectơ b sao cho a+ b= 0 Ta gọi b là vectơ đối của vectơ a Ta ký hiệu vectơ đối của vectơ a là a Vậy a+ ( a) = 0 Ví dụ vectơ đối của vectơ AC là CA, vì AC + CA = AA = 0 Vậy AC = CA Cho hai vectơ ab, Khi đó vectơ
2 a+ ( b) được gọi là vectơ hiệu của hai vectơ a và b kí hiệu là a b Như vậy ta có: a b= a+ ( b) Từ đó ta có AB AC = AB + CA = CB 3 Phép nhân vectơ với một số Cho số thực k và vectơ a ( 0 ) Khi đó phép nhân vectơ a với số thực k là một vectơ xác định như sau: ka cùng hướng với a nếu k 0 và ngược hướng a khi k < 0 Và ka = k a Đặc biệt: k0 = 0 k k = 0 Chú ý: ka = 0 a = 0 Chú ý quan trọng: không có định nghĩa phép chia hai vectơ, do đó không có b b= ka k= a 3 Các công thức cơ bản 31 Quy tắc 3 điểm, n điểm Cho 3 điểm A, B, C ta luôn có AB + BC = AC (11) Cho n điểm A 1, A,, A n, khi đó ta có AA 1 + AA 3+ + An 1An = AA 1 n (1) Quy tắc hình bình hành Cho hình bình hành ABCD Khi đó ta có AB + AD = AC (13) 3 Mối quan hệ giữa hai vectơ cùng phương Hai vectơ ab, cùng phương khi và chỉ khi tồn tại số thực k sao cho a= kb ( b 0) Từ đây suy ra nếu ab, không cùng phương thì xa + yb = 0 x= y= 0 33 Định lý về biểu diễn một vectơ theo hai vectơ không cùng phương Cho hai vectơ ab, không cùng phương Khi đó với vectơ c bất kì thì tồn tại duy nhất hai số x, y sao cho c= xa + yb Hệ quả: Cho 3 vectơ abc,, không cùng phương Chứng minh rằng tồn tại 3 số thực x, y, z không đồng thời bằng 0 sao cho xa + yb + zc = 0 Bộ số (x, y, z) có phải duy nhất không? Vì sao? 34 Công thức điểm chia và hệ quả Cho hai điểm A, B phân biệt M là điểm thỏa MA = k MB ( k 1) có OA k OB OM = 1 k (14) wwwvnmathcom Hệ quả 1 Khi k = - 1 ta có công thức đường trung tuyến: OM = 1 ( OA + OB) Khi đó với điểm O bất kì ta luôn (15)
3 MB MA Hệ quả Nếu M nằm giữa A và B, cho k = -MA/MB ta có công thức OM = OA + OB AB AB (16) Hệ quả 3 Cho tam giác ABC với BC = a, AC = b và AB = c, AD là phân giác trong Khi đó ta có DC DB b c AD = AB + AC = AB + AC (17) BC BC b + c b + c Hệ quả 4* Đưa công thức (16) về dạng diện tích ta sẽ được công thức nào? Hệ quả 5* Cho tam giác ABC M là điểm nằm trong tam giác Đặt Sa = SMBC, Sb = SMAC, Sc = SMAB Chứng minh rằng S MA + S MB + S MC = 0 (18) (Hệ thức Jacobi) a b c Hệ quả 6* Từ hệ thức 5, nếu cho M là các điểm đặc biệt trong tam giác (trọng tâm, trực tâm, tâm nội tiếp, tâm ngoại tiếp), ta sẽ có những hệ thức nào 35 Tâm tỉ cự của một hệ điểm Ta bắt đầu từ bài toán sau: Bài toán 1Với hai điểm A, B phân biệt cho trước, tìm điểm M thỏa MA + MB = 0 (19) 1 Lời giải: Ta có 0 = MA + MB = MA + MA + AB AM = AB, từ đây suy ra điểm M cần tìm chính là trung điểm AB Từ bài toán này, ta có thể nghĩ tới bài toán tổng quát hơn chút Cho hai số thực, Liệu có tồn tại điểm M sao cho α MA + β MB = 0 (110) Theo cách giải bài trên ta có thể biến đổi vế trái của (110) như sau: α MA + β MB = α MA + β MA + β AB = α + β MA + β AB Đến đây ta thấy xảy ra hai trường hợp ( ) Trường hợp 1: Nếu + = 0 thì không tồn tại M để (110) thỏa vì A, B là hai điểm phân biệt β Trường hợp : Nếu + 0, thì (110) thỏa khi và chỉ khi AM = AB, biểu thức này cho α + β ta cách xác định M và hơn nữa M là duy nhất Từ điều trên ta có bài toán wwwvnmathcom Bài toán : Cho hai điểm A, B và các số thực, thỏa + 0 thì tồn tại duy nhất điểm M sao cho α MA + β MB = 0 (110) và không tồn tại M thỏa (110) nếu + = 0 và A, B phân biệt Bài toán 3: Cho 3 điểm A, B, C và các số thực,, không đồng thời bằng 0 có tổng khác 0 Có tồn tại điểm M sao cho α MA + β MB + γ MC = 0 (111)? Lời giải: Ta có thể giả sử, có tổng khác 0, do đó tồn tại điểm I αia + βib = 0 Khi đó vế trái α MA + β MB + γ MC = α + β MI + γmc của (111) có thể viết lại như sau: ( ) Hệ thức trên cùng bài toán cho ta câu trả lời cho bài toán 3
4 Hơn nữa nếu A, B, C không thẳng hàng thì khi + + = 0, không tồn tại M thỏa (111) Trường hợp = = 0 thì (111) tương đương với MA + MB + MC = 0 (11) khi đó M là trọng tâm của tam giác ABC Bằng cách quy nạp ta có bài toán tổng quát sau: Bài toán 4: Cho n điểm A 1, A,,A n và n số thực 1,,, n không đồng thời bằng 0 và có tổng khác 0 Khi đó tồn tại điểm M sao cho α1 MA1+ α MA + + αnman = 0 (113) (Điểm M được gọi là tâm tỉ cự của hệ điểm A 1, A,,A n với các hệ số 1,,, n ) Chứng minh: (dành cho các bạn) 4 Bài tập chương vectơ 41 Các bài toán về phép cộng và phép trừ Bài 1 Cho các điểm phân biệt A, B, C, D Dựng các vectơ tổng sau đây: a) AB + CD b) AB + AC + BD Bài Cho hình vuông ABCD có cạnh bằng 1 Tính độ dài các vectơ: u = AB + AD, v = AC + BD Bài 3 Cho tam giác ABC Gọi A, B, C lần lượt là trung điểm các cạnh BC, CA, AB Chứng minh rằng AA + BB + CC = 0 Bài 4 Gọi G là trọng tâm của tam giác ABC Chứng minh rằng GA + GB + GC = 0 Bài 5 Cho tứ giác MNPQ Chứng minh: a) PQ + MN = PN + MQ b) Gọi A, B, C, D lần lượt là trung điểm của các cạnh MN, NP, PQ, QN Chứng minh 1 MB + NC + PD + QA = 0 Gọi O là giao điểm của AC và BD Chứng minh OA + OB + OC + OD = 0 Bài 6 Cho tứ giác ABCD Gọi M, N lần lượt là trung điểm của các cạnh AB, CD Điểm K là điểm đối xứng của M qua N Chứng minh a) MK = AD + BC b) MK = AC + BD Bài 7 Cho có vectơ abc,, Chứng minh rằng: a) a + b a+ b b) a + b + c a+ b+ c wwwvnmathcom Dấu = xảy ra khi nào?
5 wwwvnmathcom Bài 8 Cho tứ giác ABCD Chứng minh rằng nếu AD + BC = AB + DC thì AC BD Bài 9 Cho 6 điểm A, B, C, D, E, F Chứng minh rằng: AD + BE + CF = AE + BF + CD = AF + BD + CE Bài 10 Cho hai vectơ ab, Chứng minh rằng a b a b Đẳng thức xảy ra khi nào? Bài 11 Tam giác ABC là tam giác gì nếu thỏa mãn: a) AB + AC = AB AC b) AB + AC vuông góc với AB + CA 4 Chứng minh các đẳng thức vectơ Bài 1 Hai tam giác ABC và A B C có trọng tâm lần lượt là G và G Chứng minh rằng AA + BB + CC = 3GG, từ đó suy ra điều kiện để hài tam giác có cùng trọng tâm Bài Cho lục giác ABCDEF Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF và FA Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm Bài 3 Cho tam giác ABC Trên các đường thẳng AB, BC, CA ta lấy các điểm tương ứng C, A, B sao cho AC = k C B, BA = k A C, CB = k B A Chứng minh rằng trọng tâm của hai tam giác ABC và A B C trùng nhau Bài 4* Cho tam giác ABC đều tâm O M là một điểm bất kì trong tam giác Gọi D, E, F lần lượt là 3 hình chiếu của M trên BC, AC và AB Chứng minh rằng: MD + ME + MF = MO Bài 5* Cho tam giác ABC đều M là một điểm bất kì nằm trong tam giác Gọi D, E, F lần lượt là điểm đối xứng của M qua các cạnh BC, AC và AB Chứng minh rằng hai tamg giác ABC và DEF có cùng trọng tâm Bài 6 Cho tam giác ABC Gọi K là điểm đối xứng của B qua trọng tâm G Chứng minh 1 1 AK = AC AB, CK = ( AB + AC ) Bài 7 Cho tam giác ABC Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NC = NA Gọi K là trung điểm của MN a) Chứng minh rằng 1 1 AK = AB + AC 4 6 b) Gọi D là trung điểm của BC Chứng minh 1 1 KD = AB + AC 4 3 Bài 8 Cho tam giác ABC M thuộc cạnh BC sao cho MB = MC Chứng minh rằng 1 AM = AB Các áp dụng đơn giản của tâm tỉ cự Bài 1 Cho tam giác ABC Tìm điểm M thỏa mãn: a) MA + MB + 3MC = 0
6 b) MA MB + 4MC = AC c) MA MB + 5MC = AC wwwvnmathcom Bài Cho tứ giác ABCD Tìm điểm M thỏa mãn hệ thức MA + MB + MC + MD = 0 Bài 3 Cho 3 điểm ABC Chứng minh rằng các hệ thức sau không phụ thuộc vào vị trí của điểm M a) MA + MB 3MC b) MA + 3MB 5MC Bài 4 Cho tam giác ABC Tìm tập hợp các điểm M thỏa mãn: a) MA + MB = MB + MC b) MA MB = MA + MC Bài 5 Cho tam giác ABC Tìm tập hợp các điểm M thỏa MA + MB + MC = AB Bài 6 Cho hai điểm A, B và đường thẳng d Với mổi điểm N trên đường thẳng ta dựng điểm M theo công thức NM = NA + 3NB Điểm M di chuyển trên đường nào khi N di động trên d Bài 7 Cho tam giác ABC Với mỗi điểm M bất kì ta dựng điểm P theo công thức: MP = MA + MB + MC Tìm tập hợp điểm P khi M thay đổi trên: a) Đường thẳng d b) Đường tròn (O; R) Bài 8 Cho hai điểm A, B và đường thẳng d Tìm đi ểm M thuộc d sao cho MA + MB đạt giá trị nhỏ nhất Bài 9 Cho tam giác ABC và đường thẳng d Điểm M thay đổi trên d Tìm giá trị nhỏ nhất của biểu thức: a) MA + MB + MC b) MA MB + MC Bài 10 Cho hai điểm A, B và đường tròn (O) Tìm đi MA + MB đạt giá trị lớn nhất, giá trị nhỏ nhất ểm M trên (O) sao cho biểu thức Bài 11 Cho tam giác ABC và đường thẳng d Điểm M thay đổi trên d Tìm giá trị nhỏ nhất của biểu thức MA + MB + MC 44 Biểu diễn một vectơ theo hai vectơ khác và ứng dụng Bài 1 Cho vectơ ab, c = xa + yb không cùng phương, với mọi vectơ c bất kỳ tồn tại xy, sao cho: Hơn nữa cặp số ( xy, ) là duy nhất Bài Cho ABC, M là trung điểm BC a) Tính AM theo AB, b) Lấy N thỏa NB = k NC ( k 1), tính AN theo AB,
7 Bài 3 Cho AC sao cho ABC AE =, trọng tâm G, gọi D là điểm đối xứng của A qua B và E là điểm trên cạnh 5 AC a) Tính DE, DG theo AB, b) Chứng minh DGE,, thẳng hàng c) Gọi K thỏa KA + KB + 3KC = KD Chứng minh KG, CD song song Bài 4 Cho ABC, I, J thỏa wwwvnmathcom 1 IA + IB = 0; JC = JB Tìm F AC sao cho IFJ,, thẳng hàng Bài 5 Cho tam giác ABC Gọi D là điểm định bởi thỏa: BM = xbc ( x ) AD = 3 4 AC, I là trung điểm của DB M là điểm a) Tính AI theo AB, b) Tính AM theo x và AB, c) Tìm x sao cho A, I, M thẳng hàng Bài 6 Cho hình thang ABCD (AB // CD) Gọi O là giao điểm của hai cạnh xiên AD và BC Gọi I, J lần lượt là trung điểm của AB và CD a) Tính OI theo OA, OB OD b) Đặt k = Tính OI theo k, OA, OB Suy ra O, I, J thẳng hàng OA Bài 7 Cho hình bình hành ABCD M, N là đi ểm lần lượt trên đoạn AB và CD sao cho AB = 3 AM, CD = CN a) Tính AN theo AB, AC b) Gọi G là trọng tâm của tam giác MNB, tính AG theo AB, AC c) AG cắt đường thẳng BC tại I Tính BC BI Bài 8 Cho tam giác ABC Trên các đường thẳng BC, CA, AB ta lấy các điểm M, N, P sao cho ( k, k, k 0, ± 1 ) MB = k MC, NC = k NA, PA = k PB 1 3 a) Tính PM theo AB, b) Tính PN theo AB, 1 3 c) Chứng minh rằng M, N, P thẳng hàng khi và chỉ khi kkk 1 3= 1 45 Chứng minh 3 điểm thẳng hàng và 3 đường thẳng đồng quy Bài 1: Cho tứ giác ABCD, M và N lần lượt là trung điểm của AD và BC Chứng minh rằng trung điểm các đoạn thẳng AB, CD và MN thẳng hàng Nếu điểm M, N thỏa AM/DM = BN/CN điều đó còn đúng không? Vì sao? Bài *: Cho lục giác đều ABCDEF Gọi M, N lần lượt trên các đoạn AC và AE sao cho AM/CM = EN/AN = k Tìm k để B, M, N thẳng hàng Bài 3: Cho tứ giác ABCD Gọi A 1, B 1, C 1, D 1 là trọng tâm các tam giác BCD, ACD, ABD và ABC Chứng minh các đường thẳng AA 1, BB 1, CC 1, DD 1 đồng quy tại G và G là trọng tâm của tứ giác
8 wwwvnmathcom Bài 4 Chứng minh rằng trong một tứ giác ngoại tiếp Trung điểm hai đường chéo và tâm đường tròn nội tiếp cùng thuộc một đường thẳng (Đường thằng Newtơn) Bài 5 Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với BC tại D Chứng minh rằng trung điểm BC, trung điểm AD và I thẳng hàng 46 Định lý Ceva, định lý Menelaus và ứng dụng Bài 1 (Định lý Menelaus và Ceva) Cho tam giác ABC Các điểm M, N, P lần lượt chia các đoạn thẳng AB, BC, CA theo các tỉ số lần lượt là là m, n, p (đều khác 1) Chứng minh rằng: a) M, N, P thẳng hàng khi và chỉ khi mnp = 1 (Menelaus) b) AN, CM, BP đồng qui hoặc song song khi và chỉ khi mnp = 1 (Ceva) Sử dụng định lý Ceva và Menelaus giải các bài toán sau: Bài 1 Cho tam giác ABC và các điểm A 1, B 1, C 1 lần lượt nằm trên các đường thẳng BC, CA, AB Gọi A, B, C lần lượt là các điểm đối xứng với A 1, B 1, C 1 qua trung điểm của BC, CA, AB Chứng minh rằng: a) Nếu 3 điểm A 1, B 1, C 1 thẳng hàng thì A, B, C cũng thẳng hàng b) Nếu 3 đường thẳng AA 1, BB 1, CC 1 đồng qui hoặc song song thì 3 đư ờng thẳng AA, BB, CC cũng đồng qui hoặc song song Bài Cho tam giác ABC, I là trung điểm của đoạn thẳng AB Một đường thẳng d thay đổi luôn qua I, lần lượt cắt hai đường thẳng CA và CB tại A và B Chứng minh rằng giao điểm M của AB và A B nằm trên đường thẳng cố định Bài 3 Cho điểm O nằm trong hình bình hành ABCD Các đư ờng thẳng đi qua O và song song với các cạnh của hình bình hành lần lượt cắt AB, BC, CD, DA tại M, N, P, Q Gọi E là giao điểm của BQ và DM, F là giao điểm của BP và DN Tìm điều kiện của điểm O để E, F, O thẳng hàng Hết Chúc các em làm bài tốt Bài kế tiếp: Trục tọa độ và hệ trục tọa độ
Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b
huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,
Διαβάστε περισσότεραO 2 I = 1 suy ra II 2 O 1 B.
ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến
Διαβάστε περισσότεραNăm Chứng minh Y N
Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.
Διαβάστε περισσότερα1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n
Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma
Διαβάστε περισσότεραBatigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
Διαβάστε περισσότεραCÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG
CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng
Διαβάστε περισσότεραM c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).
ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng
Διαβάστε περισσότεραPHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1- Độ dài đoạn thẳng Ax ( ; y; z ), Bx ( ; y ; z ) thì Nếu 1 1 1 1. Một Số Công Thức Cần Nhớ AB = ( x x ) + ( y y ) + ( z z ). 1 1 1 - Khoảng cách từ điểm đến mặt phẳng
Διαβάστε περισσότεραQ B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3
ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung
Διαβάστε περισσότεραSuy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA
ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác
Διαβάστε περισσότεραNăm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.
Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không
Διαβάστε περισσότεραI 2 Z I 1 Y O 2 I A O 1 T Q Z N
ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện
Διαβάστε περισσότεραNăm 2017 Q 1 Q 2 P 2 P P 1
Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động
Διαβάστε περισσότεραL P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).
ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm
Διαβάστε περισσότεραĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
Διαβάστε περισσότεραĐường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
Διαβάστε περισσότεραSỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1
SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ
Διαβάστε περισσότεραO C I O. I a. I b P P. 2 Chứng minh
ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường
Διαβάστε περισσότεραhttps://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56
TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ
Διαβάστε περισσότεραSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết
Διαβάστε περισσότεραKinh tế học vĩ mô Bài đọc
Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng
Διαβάστε περισσότεραTuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.
wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân
Διαβάστε περισσότεραTính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)
Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )
Διαβάστε περισσότεραTruy cập website: hoc360.net để tải tài liệu đề thi miễn phí
Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân
Διαβάστε περισσότεραMôn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)
Διαβάστε περισσότεραNăm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).
Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí
Διαβάστε περισσότεραHÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:
. Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm
Διαβάστε περισσότεραBỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết
Διαβάστε περισσότεραChứng minh. Cách 1. EO EB = EA. hay OC = AE
ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các
Διαβάστε περισσότερα5. Phương trình vi phân
5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài
Διαβάστε περισσότεραTUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG
TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG hieuchuoi@ Tháng 7.006 GIỚI THIỆU Tuyển tập đề thi này gồm tất cả 0 đề thi tuyển sinh vào trường THPT chuyên Nguyễn Trãi Tỉnh Hải Dương (môn Toán chuyên) và
Διαβάστε περισσότεραTứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên
MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn
Διαβάστε περισσότεραx y y
ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng
Διαβάστε περισσότεραtâm O. CMR OA1 5 HD. Tính qua các véc tơ chung điểm đầu A Bài 19. Cho tam giác ABC, gọi G là trọng tâm và H là điểm đối xứng của B qua G.
Phần I. Véc tơ. hứng minh hệ thức véc tơ Véc tơ - Toạ độ hú ý + ho Với mọi điểm O, t có: = O O. + Tứ giác là hbh =. + Để cm = b. = b i) b ii) Nếu = ;b =. T cm là hbh. iii) Tính chất bắc cầu + Để cm = t
Διαβάστε περισσότεραPHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG
PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG KIẾN THỨC CẦN NHỚ : 1. Phép tịnh tiến : a. Định nghĩa :Cho cố định. Với mỗi điểm M, ta dựng điểm M sao cho MM ' = T (M) = M sao cho : MM ' = b. Biể thức
Διαβάστε περισσότεραA E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.
Đường tròn mixtilinear Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Đường tròn mixtilinear nội tiếp (bàng tiếp) là đường tròn tiếp xúc với hai cạnh tam giác và tiếp xúc trong (ngoài)
Διαβάστε περισσότεραBài Tập Môn: NGÔN NGỮ LẬP TRÌNH
Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn
Διαβάστε περισσότερα* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:
Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:
Διαβάστε περισσότεραChương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA
I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố
Διαβάστε περισσότεραShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4.
ShaMO 30 A1. Cho các số thực a, b, c, d thỏa mãn a + b + c + d = 6 và a 2 + b 2 + c 2 + d 2 = 12. Chứng minh rằng 36 4 ( a 3 + b 3 + c 3 + d 3) ( a 4 + b 4 + c 4 + d 4) 48. A2. Cho tam giác ABC, với I
Διαβάστε περισσότεραTHỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần
Διαβάστε περισσότεραA 2 B 1 C 1 C 2 B B 2 A 1
Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng
Διαβάστε περισσότεραTối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.
Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)
Διαβάστε περισσότεραBIÊN SOẠN: THẦY ĐẶNG THÀNH NAM Website: 1
Website: wwwvtedvn ĐỀ THI ONLINE TỶ Ố THỂ TÍCH (ĐỀ Ố 0) *Biên soạn: Thầy Đặng Thành Nam website: wwwvtedvn ideo bài giảng và lời giải chi tiết chỉ có tại website: wwwvtedvn Câu Cho khối hộp ABCDA' B'C
Διαβάστε περισσότεραA. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN
. ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ
Διαβάστε περισσότεραKỸ THUẬT ĐIỆN CHƯƠNG IV
KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính
Διαβάστε περισσότεραĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)
THẦY: ĐẶNG THÀNH NAM Website: wwwvtedvn ĐỀ SỐ 6 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 7 Thời gian làm bài: phút; không kể thời gian giao đề (5 câu trắc nghiệm) Mã đề thi 65 Họ, tên thí sinh:trường: Điểm mong muốn:
Διαβάστε περισσότεραx i x k = e = x j x k x i = x j (luật giản ước).
1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG
Διαβάστε περισσότερα2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r
Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác
Διαβάστε περισσότεραĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2
ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH
Διαβάστε περισσότεραHOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.
HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau
Διαβάστε περισσότεραNgày 26 tháng 12 năm 2015
Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ
Διαβάστε περισσότεραTRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ
TRƯỜNG THT HUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓ: 2011-2012 * * HUYÊN ĐỀ ỘT SỐ ÀI TOÁN HÌNH HỌ HẲNG LIÊN QUN ĐẾN TỨ GIÁ TOÀN HẦN Người thực hiện han Hồng Hạnh Trinh Nhóm chuyên toán lớp 111 Kon Tum, ngày 26
Διαβάστε περισσότεραTỨ DIỆN VẤN ĐỀ I: CÁC BÀI TOÁN CHỌN LỌC VỀ CHÓP TAM GIÁC
TỨ DIỆN VẤN ĐỀ I: Á ÀI TOÁN HỌN LỌ VỀ HÓP TM GIÁ Ví dụ 1: ho tứ diện D có D (, D 4cm, cm, 5cm. Tính khoảng cách từ đến ( D. Giải: vuông tại họn hệ trục tọ độ so cho: ( ;;, ( ;;, ( ;4;, D( ;;4 Phương trình
Διαβάστε περισσότερα7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế
TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.
Διαβάστε περισσότερα- Toán học Việt Nam
- Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc
Διαβάστε περισσότερα1.6 Công thức tính theo t = tan x 2
TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = 1 1 + tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos
Διαβάστε περισσότεραỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH
ỨNG DỤNG PHƯƠNG TÍH, TRỤ ĐẲNG PHƯƠNG TRNG ÀI TÁN YẾU TỐ Ố ĐỊNH. PHẦN Ở ĐẦU I. Lý do chọn đề tài ác bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá
Διαβάστε περισσότεραKỸ THUẬT ĐIỆN CHƯƠNG II
KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở
Διαβάστε περισσότεραNội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan
CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành
Διαβάστε περισσότεραMATHSCOPE.ORG. Seeking the Unification of Math. Phan Đức Minh Trương Tấn Sang Nguyễn Thị Nguyên Khoa Lê Tuấn Linh Phạm Huy Hoàng Nguyễn Hiền Trang
MTHSOPE.ORG Seeking the Unification of Math Phan Đức Minh Trương Tấn Sang Nguyễn Thị Nguyên Khoa Lê Tuấn Linh Phạm Huy Hoàng Nguyễn Hiền Trang Tuyển tập các bài toán HÌNH HỌ PHẲNG ác bài toán ôn tập tuyển
Διαβάστε περισσότερα+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7)
Nhớm 3 Bài 1.3 1. (X,.) là nhóm => a X; ax= Xa= X Ta chứng minh ax=x Với mọi b thuộc ax thì b có dạng ak với k thuộc X nên b thuộc X => Với mọi k thuộc X thì k = a( a -1 k) nên k thuộc ax. Vậy ax=x Tương
Διαβάστε περισσότεραx = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2)
65 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 53, 2009 HỆ PHÂN HOẠCH HOÀN TOÀN KHÔNG GIAN R N Huỳnh Thế Phùng Trường Đại học Khoa học, Đại học Huế TÓM TẮT Một phân hoạch hoàn toàn của R n là một hệ gồm 2n vec-tơ
Διαβάστε περισσότεραH ng d n gi i m t s bài t p t a trong không gian nâng cao. là góc nhọn. Chọn. Câu 1: Tìm m để góc giữa hai vectơ: u phương án đúng và đầy đủ nhất.
Hng dn gii mt s bài tp ta trong không gian nâng cao Câu : Tìm m để góc giữa hai vectơ: u ; ;log 5;log, v ;log ;4 phương án đúng và đầy đủ nhất. m 5 là góc nhọn. Chọn A. C. m, m B. m hoặc m D. m m Ta có
Διαβάστε περισσότεραLUẬN VĂN THẠC SĨ KHOA HỌC
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------- ----------- Lê Đình Trƣờng MỘT SỐ CHUYÊN ĐỀ VỀ ĐƢỜNG THẲNG VÀ ĐƢỜNG TRÒN TRONG HÌNH HỌC PHẲNG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội 1/2015
Διαβάστε περισσότεραcó thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]
1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán
Διαβάστε περισσότεραBài 5. Cho chóp S.ABCD có đáy là hình bình
THPT BÀI TẬP HÌNH HỌC KHÔNG GIAN 11 Trang 1 1 TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNG Bài 1. Cho hình chóp S.ABCD có đáy là tứ giác có các cặp cạnh đối không song song. Tìm giao tuyến của: a) (SAC) và (SBD) b)
Διαβάστε περισσότεραChương 12: Chu trình máy lạnh và bơm nhiệt
/009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng
Διαβάστε περισσότεραPHƯƠNG PHÁP GIẢI CÁC BÀI TẬP HÌNH KHÔNG GIAN TRONG KỲ THI TSĐH Biên soạn: Nguyễn Trung Kiên
huyên đề luyện thi đại học PHƯƠNG PHÁP GIẢI Á ÀI TẬP HÌNH KHÔNG GIN TRONG KỲ THI TĐH iên soạn: Nguyễn Trung Kiên Hình không gin là bài toán không khó trong đề thi TĐH nhưng luôn làm cho rất nhiều học sinh
Διαβάστε περισσότεραLecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace
Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...
Διαβάστε περισσότεραc) y = c) y = arctan(sin x) d) y = arctan(e x ).
Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết
Διαβάστε περισσότεραBài giảng PHƯƠNG PHÁP TRẢI HÌNH TRÊN MẶT PHẲNG Người soạn :Trần Thị Hiền Tổ toán trường THPT Chuyên Hạ Long
Bài giảng PHƯƠNG PHÁP TRẢI HÌNH TRÊN MẶT PHẲNG Người soạn :Trần Thị Hiền Tổ toán trường THPT Chuyên Hạ Long Khi giải một bài toán về tứ diện mà các dữ kiện của nó liên quan đến tổng các góc phẳng, hoặc
Διαβάστε περισσότεραCâu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10
ĐỀ THAM KHẢO THPT QUỐC GIA 8 MÔN TOÁN (ĐỀ SỐ ) *Biên soạn: Thầy Đặng Thành Nam website: wwwvtedvn Video bài giảng và lời giải chi tiết chỉ có tại wwwvtedvn Thời gian làm bài: 9 phút (không kể thời gian
Διαβάστε περισσότεραSử dụngụ Minitab trong thống kê môi trường
Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều
Διαβάστε περισσότεραTôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα
- Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει
Διαβάστε περισσότεραĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)
ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp
Διαβάστε περισσότεραCÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU
Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì
Διαβάστε περισσότεραBÀI TẬP ÔN THI HOC KỲ 1
ÀI TẬP ÔN THI HOC KỲ 1 ài 1: Hai quả cầu nhỏ có điện tích q 1 =-4µC và q 2 =8µC đặt cách nhau 6mm trong môi trường có hằng số điện môi là 2. Tính độ lớn lực tương tác giữa 2 điện tích. ài 2: Hai điện tích
Διαβάστε περισσότεραCÁC ĐỊNH LÝ HÌNH PHẲNG (tt)
CÁC ĐỊNH LÝ HÌNH PHẲNG (tt) 1.7 Định lý Ptolemy và Bất đẳng thức Ptolemy Định lý Ptolemy và bất đẳng thức Ptolemy là một trong những định lý hay và thú vị nhất của hình học phẳng sơ cấp. Có nhiều bài viết
Διαβάστε περισσότεραBÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.
BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.
Διαβάστε περισσότεραCƠ HỌC LÝ THUYẾT: TĨNH HỌC
2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại
Διαβάστε περισσότεραBÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY
Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình
Διαβάστε περισσότεραDao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần.
GVLê Văn Dũng - NC: Nguyễn Khuyến Bình Dương Dao Động Cơ 0946045410 (Nhắn tin) DAO ĐỘNG ĐIỀU HÒA rong thời gian t giây vật thực hiện được N dao động toàn phần Chu kì dao động của vật là = t N rong thời
Διαβάστε περισσότεραPhần 3: ĐỘNG LỰC HỌC
ài giảng ơ Học Lý Thuết - Tuần 7 4/8/011 Phần : ĐỘNG LỰ HỌ Vấn đề chính cần giải quết là: Lập phương trình vi phân chuển động Xác định vận tốc vàgiatốc hi có lực tácđộng vào hệ hương 10: Phương trình vi
Διαβάστε περισσότεραPhụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm
Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn
Διαβάστε περισσότερα( ) 01. GÓC GIỮA HAI ĐƯỜNG THẲNG. Thầy Đặng Việt Hùng. Tài liệu tham khảo: LUYỆN THI ĐẠI HỌC MÔN TOÁN Thầy Hùng. Chuyên đề Hình học không gian
Thầy Đặng Việt Hùng I. TÍCH VÔ HƯỚNG CỦA HAI VÉC TƠ TRONG KHÔNG GIAN 1) Góc giữa hai véc tơ AB = u Giả sử ta có ( ) ( ; = ; ) = u v AB AC BAC, với BAC 18. AC = v ) Tích vô hướng của hai véc tơ AB = u Giả
Διαβάστε περισσότεραChương 2: Đại cương về transistor
Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR
Διαβάστε περισσότεραcó nghiệm là:. Mệnh đề nào sau đây đúng?
SỞ GD & ĐT TỈNH HƯNG YÊN TRƯỜNG THPT MINH CHÂU (Đề có 6 trng) ĐỀ THI THỬ THPT QG MÔN TOÁN LẦN NĂM HỌC 7-8 MÔN TOÁN Thời gin làm bài : 9 Phút; (Đề có câu) Họ tên : Số báo dnh : Mã đề 84 Câu : Bất phương
Διαβάστε περισσότεραB. chiều dài dây treo C.vĩ độ địa lý
ĐỀ THI THỬ LẦN 1 TRƯỜNG THPT CHUYÊN HẠ LONG QUẢNG NINH MÔN VẬT LÝ LỜI GIẢI: LẠI ĐẮC HỢP FACEBOOK: www.fb.com/laidachop Group: https://www.facebook.com/groups/dethivatly.moon/ Câu 1 [316487]: Đặt điện áp
Διαβάστε περισσότεραTS. Nguyễn Văn Lợi (chủ biên)-ths. Hoàng Văn Tựu 108 BÀI TOÁN CHỌN LỌC LỚP 7 Draft
TS. Nguyễn Văn Lợi (chủ biên)-ths. Hoàng Văn Tựu 108 BÀI TOÁN CHỌN LỌC LỚP 7 Draft 1 Đôi lời với các bạn đọc Tài liệu này được biên soạn bao gồm những bài toán được sưu tầm và lựa chọn từ những tài liệu,
Διαβάστε περισσότεραTrần Quang Hùng - THPT chuyên KHTN 4
Trần Quang Hùng - THPT chuyên KHTN 4 Bài tập Lê Quý Đôn Bài 68. Cho tam giác ABC tâm nội tiếp I, trực tâm H. d là một đường thẳng bất kỳ. d a,d b,d c đối xứng với d qua IA,IB,IC. l a,l b,l c đối xứng HA,HB,HC
Διαβάστε περισσότεραChuyên đề7 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Trong không gian với hệ tọa độ Oxyz.
Chuyên đề7 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I TỌA ĐỘ ĐIỂM VÀ VECTƠ A. CÁC KIẾN THỨC CƠ BẢN: I. Tọa độ điểm : Tong không gian với hệ tọa độ Oxyz: uuuu. M ( xm ; ym ; zm ) OM = xm i + ym j + zm k uuu.
Διαβάστε περισσότεραBài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.
Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ Khoa Toán-Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. E-mail: hqvu@hcmus.edu.vn e d c f 1 b a 1 TÓM
Διαβάστε περισσότεραTự tương quan (Autocorrelation)
Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?
Διαβάστε περισσότεραMỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN
HỘI NGHỊ NCKH KHOA SP TOÁN-TIN THÁNG 5/5 MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN VỀ TÍNH GÓC GIỮA HAI MẶT PHẲNG TRONG HÌNH HỌC KHÔNG GIAN ThS. Võ Xuân Mi Kho Sư phạm Toán-Tin, Trường Đại học Đồng Tháp Emil: vxmi@dthu.edu.vn
Διαβάστε περισσότεραDữ liệu bảng (Panel Data)
5/6/0 ữ lệu bảng (Panel ata) Đnh Công Khả Tháng 5/0 Nộ dung. Gớ thệu chung về dữ lệu bảng. Những lợ thế kh sử dụng dữ lệu bảng. Ước lượng mô hình hồ qu dữ lệu bảng Mô hình những ảnh hưởng cố định (FEM)
Διαβάστε περισσότεραTự tương quan (Autoregression)
Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan
Διαβάστε περισσότεραĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là.
Hocmai.n Học chủ động - Sống tích cực ĐỀ PEN-CUP SỐ 0 Môn: Vật Lí Câu. Một chất điểm có khối lượng m, dao động điều hòa ới biên độ A à tần số góc. Cơ năng dao động của chất điểm là. A. m A 4 B. m A C.
Διαβάστε περισσότεραDANH SÁCH NHÓM 8. Hình học sơ cấp : Phép quay
DANH SÁCH NHÓM 8. Phạm Nhơn Quý. Đỗ Công Sơn 3. Cửu Hiếu Thảo 4. Hoàng Thanh Thủy 5. Hoàng Thị Thu Thủy 6. Lê Thị Thủy Tiên 7. Nguyễn Sĩ Trung 8. Nguyễn Ngọc Mạnh Tuân 9. Nguyễn Thị Minh Yến. Võ Ngọc Thiệu
Διαβάστε περισσότεραx + 1? A. x = 1. B. y = 1. C. y = 2. D. x = 1. x = 1.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI THỬ NGHIỆM Đề thi gồm có 6 trang) KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA 7 Bài thi : TOÁN Thời gian làm ài : 9 phút, không kể thời gian phát đề HƯỚNG DẪN GIẢI CHI TIẾT Soạn ởi
Διαβάστε περισσότερα