Chapter 15 Identifying Failure & Repair Distributions

Σχετικά έγγραφα
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Homework for 1/27 Due 2/5

Solution Series 9. i=1 x i and i=1 x i.

Probability theory. Distributions. Inequalities. Convergence. E, Var, E k k. f[ ] (2 ) k ~ [, ] E[ [ ]( )] E[ [ ]]

Exam Statistics 6 th September 2017 Solution

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

FORMULAE SHEET for STATISTICS II

On Quasi - f -Power Increasing Sequences

LAPLACE TRANSFORM TABLE

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Other Test Constructions: Likelihood Ratio & Bayes Tests

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Homework 8 Model Solution Section

Theorem 8 Let φ be the most powerful size α test of H

Reflection Models. Reflection Models

Example Sheet 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Parts Manual. Trio Mobile Surgery Platform. Model 1033

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +


Ελαχιστοποίηση της Δαπάνης

physicsandmathstutor.com

Multi-dimensional Central Limit Theorem

..,..,.. ! " # $ % #! & %

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΣΤΑΤΙΣΤΙΚΗ ΒΑΡΙΟΓΡΑΜΜΑΤΑ ΚΑΙ ΜΕΘΟΔΟΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ).

Inverse trigonometric functions & General Solution of Trigonometric Equations


Estimators when the Correlation Coefficient. is Negative

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

On Zero-Sum Stochastic Differential Games

The one-dimensional periodic Schrödinger equation

IIT JEE (2013) (Trigonomtery 1) Solutions

Time Series Analysis Final Examination

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Fourier Series. Fourier Series

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

ECE 468: Digital Image Processing. Lecture 8

An Inventory of Continuous Distributions

Solutions: Homework 3

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Some Theorems on Multiple. A-Function Transform

Multi-dimensional Central Limit Theorem

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

ST5224: Advanced Statistical Theory II

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8

5.4 The Poisson Distribution.

Σημειωματάριο Δευτέρας, 6 Νοε. 2017

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

The ε-pseudospectrum of a Matrix

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0


CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Lagrance.

Application of Object Oriented Programming to a Computational Fluid Dynamics

6. MAXIMUM LIKELIHOOD ESTIMATION

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

C.S. 430 Assignment 6, Sample Solutions

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Numerical Analysis FMN011

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

Â. Θέλουμε να βρούμε τη μέση τιμή

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

2 Composition. Invertible Mappings

Electronic Supplementary Information

Tutorial Note - Week 09 - Solution

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

Laplace s Equation in Spherical Polar Coördinates

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ

The Neutrix Product of the Distributions r. x λ

F19MC2 Solutions 9 Complex Analysis

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Exercise 2: The form of the generalized likelihood ratio

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

HONDA. Έτος κατασκευής

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Approximate System Reliability Evaluation

Transcript:

Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00

Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo paamees whch wll maxmze he pobably of obag he obseved sample mes. Max f( ) f( )... f( ) Chape 5

Why MLE s????. MLE s ae vaa:. MLE s ae Cosse: as, y = h( θ) he y = h( θ) θ θ 3. MLE s ae (bes) asympocally omal: σ σ ~ θ θ 4. Requed fo cea ess such as he Ch-Squae GOF es. 5. Has a uve appeal. 6. Ca accommodae cesoed daa Chape 5 3

MLE - Geomec Dsbuo Le X = a dscee adom vaable, he umbe of als ecessay o oba he fs falue. Assume he pobably of a falue emas a cosa p ad each al s depede, he: Pob{X=x} = f(x) = (-p) x- p, x =,,..., f ( x,x,,x ) = f( x )f( x ) f(x ) x,,x = (-p) x- p(- p ) x- p (- p ) x- p = p (- p ) x = ( ) Chape 5 4

Geomec Dsbuo Max 0 p ( ) = g(p) = p (- p) L = + l g( p) l p ( x ) l( p ) = 0 p + ( x ) = p NM = ( ) = 0 p = O QP x + (x -) = = = x Chape 5 5

Example 5.3 The followg daa was colleced o he umbe of poduco us whch esuled a falue whch sopped he poduco le: 5, 8,, 0, 7,,, 5. Theefoe, X = he umbe of poduco us ecessay o oba a falue. p = 8 = x 40 =. = (x-) Pob[X = x] = f(x) =.8 (.) Mea = /p = 40/8 = 5 P{X = 3} =.8 (0.) = 0.8 Chape 5 6

Lkelhood Fuco L( θ,..., θ ) = Π k f( θ,..., θk) = maxmze he log of he lkelhood fuco: l L( θ,..., θk) = 0 ; =,,...k θ fo Type I (gh cesoed) daa: L( θ,..., θ ) = Π k f( θ,..., θk) R( * ) = fo Type II, Chape 5 7

Expoeal MLE - Type II daa f( ) = λ -λ j e, j =,,... j P[T j> fo all j > ] = e - j L(,..., ) = e e R S T c -λ Π λ λ c - λ j= = λ exp λ - λ(-) Σ j= j h h - - U V W Chape 5 8

Expoeal MLE - Type II daa L= λ exp λ - λ(-) l d R S T Σ j= j λ λ j λ j= - (-) L = l - L = l - Σ j dλ λ j= U V W - (-) = 0 λ = Σ j= j + (-) = T Type I, use * Chape 5 9

Toal Tme o Tes - CFR = b o es = b falues k = b mulply cesos = falue me + = ceso me * = es me (Type I) = es m (Type II) MTTF = T / Complee: ; = Type I: Type II: = = = Type I mulply: Type II mulply: ( ) + ( ) = = + + * + Type I eplaceme: Type II eplaceme: * ( ) + k ( ) + k * Chape 5 0

Webull MLE - Type II Daa L F L( θ, ) = f ( ) R( ) = θ H G I θ K J NM = = e θ F H G I K J O L QP N M e θ F H G I K J l L l l θ ( ) l ( ) θ = = = + F H G I K J F H G I K J l L ( ) = + + θ θ θ = = 0 O QP θ l L ( ) l + = = + ( ) = = + l lθ + lθ = 0 Chape 5

Webull MLE - sgly cesoed g( ) = R S T = θ L NM = = l + ( ) = + ( ) +(-) s s O QP U V W s whee = s = R S T l = 0 fo complee daa * fo ype I daa fo ype II daa Chape 5

Newo-Raphso Mehod j+ = j g( ) j g'( ) j whee g(x) = d g(x) dx Chape 5 3

Nomal & Logomal MLEs complee daa σ NORMAL μ = x = ( -) s LOGNORMAL μ = = l = e MED μ ecall: s = ( - MTTF ) = - s = = ( l - μ ) Chape 5 4

Example 5.6 Ex. 5.8: 47., 84.8, 5.9,.5, 8., 99.6, 59.8, 38.8, 3.5, 53.4,0.4, 00.8, 30., 04.6, 6.5,., 86., 498.4, 77.0, 78.7,.3, 44.0, 5.3, 5.3,.8 L-S esmaes: med = 6 ad s =.63 μ = (l 44 + l 47. +... + l 498.4)/5 = 8.8/5 = 4.75 med = e 4.753 = 5.93 s = [(l 44-4.75) + (l 47. - 4.75) + s =.5639.... + (l 498.4-4.75) ]/5 =.3798 Chape 5 5

MLE wh Mulply Cesoed Daa pob of falue occug a me pob of falue occug afe me + L( θ) = f( ; θ) R( ; θ) ε F εc + F = se of dces fo falue mes C = se of dces fo cesoed mes (cludg sgly cesoed mes) Chape 5 6

MLE Expoeal - mulply cesoed daa = - -λ ε F ε C ε F ε C -λ -λ L( ) = e e + λ λ λ λ e e l L( λ) = l λ- λ F ε dl L( λ ) = - dλ λ F ε C ε λ = F ε - λ C ε - + = 0 + C ε + + T Chape 5 7

MLE Webull mulply cesoed daa L F θ L( θ, ) = f ( ) R( ) = e F C F θ H G I θ K J NM F H G I K J QP C L F l L = l l + ( ) l H G I K J NM θ F θ = θ L F + H G I K J NM L θ θ θ P + F C θ θ O P Q L NM F H G I K J O QP = 0 O L NM O QP e θ F H G I K J C O QP F H G I K J θ L l l l θ θ θ θ θ F = + F H G I K J F H G I K J F H G I K J F H G I K J F H G I K J = C 0 Chape 5 8

MLE Webull - mulply cesoed daa l l = F ε all all ( - ) - solve umecally θ = L M N all O P Q mooocally ceasg RHS Chape 5 9

Example 5.7 Ffee us wee placed o es fo 500 hous. The followg falue mes ad ceso mes wee obseved po o cocludg he es: 34 36 45+ 54 89 00+ 86 87 334 353 380+ Fo he expoeal, T = 34+36+45+54+89+00+86+87+334+353+380+4(500) = 4498 ad he MLE fo he MTTF = T/ = 4498/8 = 56.5. Fo he Webull, he 4 us whch had o faled by he ed of he es ae assged cesoed mes of 500 hous. The lef had sde of MLE Eq. equals 5.385. Begg wh =. ad ceasg he gh had sde by.0 ul exceeds 5., esuls =.43. The θ = 49. Chape 5 0

Example 5.7 Gosh! Whch s he coec model? expoeal: R () = Webull: e / 56. 5 F H G I K J R ()= e 49.43 R(00) =.837 R(00) =.90 Chape 5

Nomal Dsbuo - Cesoed Daa + L( μσ, ) = f( ) R( ) εf εc l L( μσ, ) = l e = πσ Maxmze usg a Numecal seach algohm (-μ ) - σ ( μ) σ + l e d' = πσ Chape 5

Mmum Exeme Value Dsbuo Complee o gh cesoed daa Lkelhood fuco: ( ) ( ) ( + s μ ) μ μ e α e α α L( αμ, ) = e e e = α = whee ( αμ) ( μ ) ( μ ) = = ( ) ( + ) s μ α α l L, = lα + e e α s fo complee daa = fo Type I daa * fo Type II daa Chape 5 3

Mmum Exeme Value Dsbuo l L( α, μ) l L( α, μ) = = α μ 0 / α + s / α e + ( ) se = α + = / + = / α s α e + ( ) e = + 0 / α + s / α μ = αl e + e = Chape 5 4

Mmum Exeme Value Dsbuo Complee daa Mehod of Momes: = / ; = / = = m m απ m = μ γα; m = + μ γα 6 solvg: ( ) ( 6 m ) m α = ; μ = m + γα; γ.5775665 π Chape 5 5

Gamma Dsbuo Complee daa, lkelhood fuco: L (, =,..., γα, ) = = γ ( γ ) γ α ( γ) = α = / α γ α Γ( γ) l L= l l l Γ l L( αγ, ) = 0 ad solvg fo α : α = α γ = e Subsug fo α: Maxmze decly l L l l l = γ = ( γ ) = ( γ ) γ γ Γ( γ) Chape 5 6

Gamma Dsbuo Complee daa Mehod of Momes: m = ; m = + ( ) αγ γα γα m ; m m γ = α = m m m Chape 5 7

EXAMPLE 5.0 Twey us beleved o have a gamma dsbuo wee placed o a acceleaed lfe es wh falues days occug a he mes show: 5 5 5 09 37 88 94 77 60 65 5 40 8 3 36 0 6 53 83 69. Usg Excel Solve, l 93.4698 0 0 l 69 Max L γ = γ γ γ 0l Γ γ γ 0γ ( ) ( ) ( ) 8.799 γ =.893 α = The coespodg mehod of momes esmaos ae γ = 0.5773 ad α = 0.758 Chape 5 8

Paamee Esmao fo Ieval Daa j, s he umbe of falues ha occu wh he eval (a j-, a j ) whee j =,,,k. Ay gh cesoed us ae coued he eval (a k, ). The lkelhood fuco ca be saed as k + j j j= L( θ) = R( a θ) R( a θ) j Chape 5 9

EXAMPLE 5. (Webull) Mohly falues of ffy us opeao wee ecoded ove a sx moh peod wh he followg esuls: Moh Uppe boud days Numbe of Falues 30.0 0 60.0 3 90.0 7 4 0.0 4 5 50.0 3 6 80.0 L( θ, ) = e e j= aj aj k + θ θ j l L( θ, ) = l e e aj aj k + θ θ j j= Chape 5 30

EXAMPLE 5. (Webull) Usg Excel Solve, maxmze 30 30 60 60 90 θ θ θ θ θ l L( θ, ) = l L( θ, ) = 0l e + l e e + 7 l e e 90 0 0 50 50 80 80 θ θ θ θ θ θ θ + 4l e e + 3l e e + l e e + 3l e =.9486 ad θ = 5.6 Chape 5 3

Nex Tme Chape 6 Goodess-of-F Tesg The Ch-Squae es Tesg fo Ch-squaes C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 3 00