Probability theory. Distributions. Inequalities. Convergence. E, Var, E k k. f[ ] (2 ) k ~ [, ] E[ [ ]( )] E[ [ ]]

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Probability theory. Distributions. Inequalities. Convergence. E, Var, E k k. f[ ] (2 ) k ~ [, ] E[ [ ]( )] E[ [ ]]"

Transcript

1 Pobably heoy Mgf of s [ E M e h: E M [ If Y eee he M + Y[ M[ MY[ Chaacesc fuco: φ [ E e fomaos: Y g If scee he fy[ y f[ x I[ g[ x y If couous v he ao Ξ A A ( P[ A ) efe g[ x g[ x x A so ha each g s moooous he fy[ y f [ { : } g y y g y y Ψ y x A y g x If co s veco v a Y g[ he efe ao Ξ A A ( P[ A ) so ha g [ x g[ x x A a each g s oe-o-oe he fy[ y f [ g y J whee J s a Jacoba of vese fomao: J g y y Covoluo: f Y eee he f ± Y[ z f[ w fy[ ± ( zw) w [ z f Y z f w fy[ w w f w / Y[ z f[ zw fy[ w w w If ~ [ µ Y ~ ν [ τ eee he Y µ ν τ LIE: E[ Y E[E[ Y Va[ Y E[Va[ Y + Va[E[ Y Dsbuos + ~ [ + + If ~ [ Po Y ~ P Bomal: P[ C ( ) E Va ( ) M ( e + ) Posso: P[ e λ λ! E λ Va λ M e λ Ufom: f [ x ( ba) x [ a; b α x α Γ[ α α E ( b+ a) Va ( b a) ( e ) α o λ eee he + Y ~ Po [ + λ Gamma: f x x e x > > > E α Va α M ( ) < Ces: γ[ χ γ[ ex[ Ch-squae: z Σ z ~ χ [g Σ x f[ x Γ [ e x x> E Va If z ~ [ I A emoe he zaz ~ χ [g A If z ~ [ Σ he x λ Exoeal: f[ x e x> λ > E Va E λ λ λ! omal: Bea: Logomal: λ f[ x e E Va E[ µ µ ()!! π ( xµ ) ( ) α f x x x x > > E Va E Γ [ α+ α Γ[ α Γ[ (;) α Exoeal famly: Mulomal omal: Iequales f x e x > E e Va e e (l ) ( xµ ) πx α Γ [ α+ Γ [ α+ α+ ( α+ ) ( α+ + ) Γ[ a Γ [ α+ + µ + ( + ) + f [ x h[ x cex w x w w he E l Va l E c c w ( x µ Σ ( x µ ) x π Σ e If ~ [ he y µ Σ Σ f Chebychev: P[ g ε ε E g[ x µ Σ Σ y x ~ [ µ + Σ Σ x µ Σ Σ Σ Σ ξ 9 ε ε ξ 8 3 Vysochĭ-Peu: ~ f umoal efe ξ E[( α) fo ay α he P[ α > ε ξ 9 ε 3 ε ξ 8 3 Se s lemma: Höle: f µ g µ g ~ [ E[ E[ q q + q he E Y (E ) (EY ) Cauchy-Schwaz: E Y E E Y Mows: E[ + Y E[ + E[ Y (?): E[ + Y max[ (E + E Y ) Jese: f g[ x covex he E g g[e s Laouov: Covaace equaly-ii: f g h boh o-ceg o o-eceg he E[ g[ h E[ g E[ h Covegece { } coveges almos suely o v f P ω lm [ ω [ ω { } coveges L o v f lm E[ { } coveges obably o v f fo ε > lm P[ > ε { } coveges sbuo o v f lm P[ x P[ x fo all x whee F [ x s couous L L E E < s elaosh: q fo q L h: f fo λ sequece of scala v s λ λ he Couous mag heoem: f a h[ s couous he h [ h Ma&Wal: If g : l s couous he g[ g[ ; g[ g[ ; g[ g Slusy: f Y α he + Y + α ; Y α Y α ; Y α Y α whe P[e Y Dela-meho: f cos [ l Σ g : s coff a he ( g[ g) [ GΣG whee G g[ x WLL (wea law of lage umbes): Le be wh E µ < he µ LL Kolmogoov (): Le { } be a E[ exss he E[

2 LL Kolmogoov (): Le { } be e wh Va a < he E LL Bhoff-Khch (egoc): Le { } be saoay a egoc he E[ CL Lebeg-Lévy: Le { } be wh E[ µ a Va[ he ( µ ) [ CL Laouov: Le { } be e wh E[ µ Va[ CL Lebeg-Felle: Le { } be e wh E[ µ ( ) ( µ ) [ a E[ µ ν Va[ CL Bllgsley: If { } saoay & egoc magale ffeece sequece he 3 3 If ( ) ( ν) lm Defe C ( ) If fo ε > E[ < he CL Aeso: Le { } be saoay & egoc wh w Cov[ < he Daa euco [ + z ( ) wz E [ ( µ ) ( ) [ x µ F x lm C xµ εc Paamec moel: P { : Θ} Paamee: ay mag ν : P (aual aameezao: ν ) Paamee ν s efable f P P P ν[ P ν[ P Paamee s efable f P P o equvalely P P P Sc ay meuable fuco of he aa [ Sc s suffce fo f [ oes o ee o Sc S s acllay fo f fs[ oes o ee o Sc S s oe acllay fo f E S oes o ee o Sc s mmal suffce f fo ay ohe suffce sc S we ca f fuco such ha [ S[ Sc [ s comlee f! g such ha g [ s fs-oe acllay Facozao h: sc : Τ s suffce fo f g : Θ a h : such ha f [ x g[ [ x h[ x fo x Θ h: f [ s such ha xy ao f[ x f[ y oes o ee o ff [ x [ y he s mmal suffce fo h: fo ex famly f[ x h[ xex h sc x B [ s comlee f η[ Θ co a oe se Bu h: f s comlee a mmal suffce he s eee of ay acllay sc h: f mmal suffce sc exss he ay comlee sc wll also be mmal suffce f ( ) Esmao oees Esmao ay meuable fuco of he aa φ [ Esmao φ[ s ube fo aamee g[ f fo Θ E[ g[ Ube esmao φ[ s a UMVUE (ufomly mmum vaace ube esmao) f Va [ φ < a fo ay ohe ube δ [ we have Va φ[ Va δ[ Camé-ao eq: Le { } ~ f[ x a φ[ be ube fo g[ s E[ φ oe of eg & ff s echageable he I CLB whee l f[ x l f[ x l f[ x I[ E [ E [ (Fshe Ifomao max) ψ ψ Va [ φ CLB aame: Le { } ~ a W s ube fo τ[ he a CLB ff a W[ x τ l L[ x fo some a[ Hausma cle: W s UMVUE of τ[ ff W s ucoelae wh all ube esmaos of ao-blacwell h: Le W be ube es of τ[ a W be suffce sc fo he φ E[ W s UMVUE of τ[ Lehma-Scheffé h: Le be a comlee suffce sc fo he φ [ be oly o s he uque UMVUE of E φ [ Hyoheses esg Hyohess ay saeme abou moel aamee ull hyohess: Θ aleave hyohess: Θ whee φ P he Θ Θ Aco sace A {} whee s eeco of ull Loss fuco: l[ a I [ Θ es fuco: δ : {} Ccal ego: C { x : δ[ x } ye-i eo o a eec H whe Θ ye-ii eo o acce H whe Θ Powe fuco: P [ δ[ Θ (obably o coecly eec whe Θ ) Sze of es: sze su Θ δ Level of es s α f su Θ δ α P-value of es: ˆ[ fα (;): C α If es s δ I [ c he efe α[ c su Θ P[[ c a -value s α[ [ x es φ s ube of level α f φ α Θ a es φ α Θ c C s ufomly mos oweful cls C f c fo c C Θ Famly { P Θ } s moooe lelhoo ao famly f fo > P P f[ x a f[ x s a moooe fuco of some [ x es φ s α-smla o Θ Θ f φ α Θ Mag S : s ( α) cofece ego fo aamee ν[ f P [ S[ { ν} α eyma-peo h: cose H: vs H : a lelhoo-ao es fuco [ [ [ { f f x f f x [; f f x φ x > < } he ) φ s MP cls of all level δ f [ x f[ x f[ x α E φ[ x ess; ) fo α exss MP level α of he fom φ ; 3) f a es φ s MP he h fom of φ Kal-ub h: suose { P Θ } s ML ceg [ x Defe δ [ x I [ [ x > he ) b δ [ s ceg ; ) δ s UMP level α E [ δ[ x fo esg H : ag H: > h: cose a ex famly f[ x e [ x A a a es level α fo esg H: vs H: ff E [ φ α a E [ φ αe φ [ x { f x < c x > c f x ( c c) γ [ xf x c} he hs es s UMPU Dualy h: Le δ be level α es of : a A[ { x : δ [ x } Defe S[ x { Θ: x A[ } he S[ s ( α) cofece se H Covesely f S[ s ( α) cofece se he A [ { x : S[ x} s acceace ego of a level α es of H: α H

3 Dualy h fo ML: suose { P Θ } s ML ceg [ x a F [ s co s If F [ α h soluo l[ α Θ a F [ α h soluo u[ α Θ he α α: α+ α < eval [ l[ α u[ α s a ( α α) cofece eval fo OLS Moel: y x + ε ; sace fom: y + ε Assumos: E[ ε (sc exogeey); E[ εε I (homoscecy); P[g (o mulcolleay) OLS esmaos: ˆ ( ) y ˆ εε ˆ ˆ s ˆˆ εε whee yˆ ˆ Py εˆ y ˆ My P ( ) M IP Paoe egesso: y + + ε he ˆ M M y ˆ ( M ) My Fsch-Waugh h: ˆ fom y s he same fom egesso y whee y ae esuals y a ae esuals Coollay: f egesso co ece you ca fs emea a he cay ou egesso h: f z s oe of egessos he aal coelao zy zz yy + #f sg[ whee z s -sc fo z yz z z SSegesso sum of squaes SSoal --"-- ESSeos --"-- If co ι he L I ιι a ( ) Whe z s ae o egesso he z + ( ) yz Fe samle oees E[ ˆ ˆ Va[ ( ) x x x a SS SS > wll cee oly f z y My Ause y Ly : E[ s Cov[ ε Gauss-Maov h: ˆ s BLUE (bes lea ube esmao) Ue omaly sumo: ˆ ~ [ s ~ χ [ ( Va[ s ) a ˆ s ae eee es H : b usg ( ) ~ [ ˆ b s es H : (exce ece) usg SS F ( ) ~ F[ es H : q usg ESSESS ( ) q ESS q qs ~ [ ESS F ˆ ˆ Fq Cosae esmao: + ( ) λ λ ( ( ) ) ( ˆ) Peco: bes eco: BP[ y x E[ y x bes lea eco: BLP[ y x x E[ E[ x y Lage samle oees Deoe Q E[ > m E[ ε he ysbuos: ( ) ( ) [ ˆ [ Q ( ˆ ) [ m es H : b usg ˆ b ˆ es : H g q usg Wal s es: ˆ W ˆ g[ ( G[ ( ) G ) g[ χ [ q Lelhoo ao es: L L L χ q Lagage mulle es: ˆ ˆ g[ LM λ ( G[ ( ) G ) λ χ [ q whee G (l l ) ˆ ˆ q Heeoscecy ce: eoe Q E[ ε he ˆ [ Q e Q Q e If E[( ) exss a fe fo he HCSE (heeoscecy-cosse saa eos): AVa[ QQ Q e Qˆ x x ˆ ˆ ε Q ε x x ε e x x x x o ( x ( ) x ) Whe s heeoscecy es: egess ˆ ε ψ whee ψ co uque o-cosa elemes of ; he χ [m ψ ue H GLS WLS Moel: y + ε whee E[ ε E[ εε Σ (ow) OLS esmao h oees E[ ˆ OLS a ˆ Va[ OLS ( ) Σ ( ) Geealze le squaes (GLS) esmao: ˆ ( Σ ) Σ y wh E[ ˆ Va[ ˆ ( Σ ) ; hs esmao s BLUE fo hs moel h: OLS ~ GLS f ( ) Σ B fo some o-sgula B ; ( ) ΣZ fo Z: Z ; ( ) Σ Γ + ZΘZ + I fo some ΓΘΖ : Z Cooal heeoscecy Assumo: Σ ag[ [ x [ x ; E[ > Q x x x he ˆ ( ) ( xy GLS [ x ) x ˆ [ Q Feble GLS: ehe esmae [ x o-aamecally o u auxlay egesso ˆε Z a he use ˆ [ x z γˆ : xy IV GLS ˆ ( ˆ ) ( FGLS x ˆ ) x Moel: y x + ε whee { y x z } s saoay&egoc E[ z ε Q zx E[ z x a coo fo ID: g Qzx oe coo fo ID: l l Esmao woul be yomal whe { z ε} s ms a Q E[ ε zz > zzε GMM Moel: Secal ces: OLS: E[ x ε WLS: E[ x [ x ε SU Moel: y + u whee E[ u E[ uu ; sace fom: y + u whee ag[ K + + K K GLS esmao: ˆ ( ( Σ I) ) ( Σ I) y (f Σ ow) FGLS esmao buls uo uˆ y ˆ (hee ˆ ( ) y ) ˆ ˆ uu ˆ ˆ ˆ Ω Σ I ( ) Asymoc sbuo: h: OLS ~ GLS f ( ) Σ s agoal; ( ) ( ˆ ) ( ˆ ) [ lm ( Σ I ) GLS FGLS

4 SEM Moel: y() Γ x() B + u() K K ; sace fom: Y Γ Β + U ; sumos: ~ [ u() Σ P[g K lm > e Γ Γ K K euce fom: Y Π + V whee Π ΒΓ V UΓ Λ Γ ΣΓ Deoe γ ge{ : } Γ Γ Y ge{ : } y Γ ge{ : } K K Β Β ge{ x : Β } Z Y ( ) α γ L + K y ( y y α ( α α Z ag[ Z Z Coveoal fom: y Y γ + + u Z α + u ; sace fom: Iefcao K K L L ΣL Σ L y Z α + u whee Ω E[ uu Σ I (/) K (/) We ΠΓ Β π Π γ π Π γ whee π ge{ Π : Β ( / )} Π ge{ Π : ( / ) } K Β Γ K K K K K K( ) I wos Π cosss les eseco of hose colums of Π whch coeso o clue ( h equao) eogeous vaables a hose ows whch coeso o exclue exogeous vaables Oe coo: K a coo: Π () Full Ifomao Moel g l L l[ π + l Γ l Σ Σ ( YΓ Β) ( YΓ Β) coceae log-l: ll ˆ l ( YΒΓ )( YΒΓ ) αfiml 3SLS: ) oba α fo esmae ˆ uû ˆ whee ˆ 3) f ˆ αˆ Z ( Σ IZ ) Z ( Σ Iy ) αˆ ˆ SLS Lme Ifomao Moel ˆ SLS u y Zα Moel: y Yγ + + u Zα + u Y Π + V whee ( u V )~ [ Σ { Σ Σ} a gπ αˆ Z ( IλM) Z Z ( IλM) y whee ( ) M I M I ( ) W ( y Y M( y Y ) LIML esmao: LIML W ( y Y M ( y Y ) a λ s smalles chaacesc oo of WW Π Deoe A lm[ he I Π ( ) Π y Y αsls ( )( AVa[ α ˆ ) SLS ( y Zα )( y Zα ) ZPZ LLS Moel: Bay choce moels Moel: P[ y F [ x whee F [ x f[ x > x f x F[ x [ x e π Π I 3SLS A SLS esmao: αˆ ( ZPZ ) ZPy whee P ( ) SLS α α α α A Ieeao of SLS: ) Y Yˆ ) LIML SLS [ x ~ E[ > Secal ces: lea obably moel: F [ x x ob moel: FIML x Φ log moel: Fx Λ [ x ( + e ) Log-lelhoo: l L ( y l l[ ) F x + y F x hs fuco s globally cocave fo log a ob secfcaos ob ˆ l [ I whee L[ lm E lm f I x F[ x ( F[ x) ye-i moel: { y x + u y max[ y} ; sumos: u ~ [ obseve: { y x } x ~ E[ > Lelhoo fuco: L ( Φ[ x ) [ φ y x ucae moel: aa fo y < uobseve [ [ φ y φ[ z L Φ x x Deoe λ[ z Φ[ z Hecma wo-se: ) esmae α ob P[ y > Φ[ x α by MLE ) egess y [ ˆ x λ xα usg samle y > Seos mus be comue wh Whe s HSCE fomula LS: aly o y x + λ[ x + ε LWLS: aly o same eq wh Va[ ε x xα λ[ x α λ[ x α log-lelhoo globally cocave ems of α a All esmaos ae cosse f aa seally coelae bu cosse ue heeoscecy o o-omaly eo em ye-ii moel: { y x + u y y >? x + u : } ; sumos: ( u u)~ [ ( ρ) obseve: { y sg y x x} Lelhoo fuco: L Φ[ x Φ x + ρ( y x ) φ ( y x ) y If hee ae o cos o y ρ aamees he s uefe α Hecma wo-se: y x + ρλ[ x α + ε ( y ) Vaε ρ x αλ[ x α ρ λ[ x α ye-iii moel: { y x + u y max[ y y y >? x + u : } L P[ y f[ y y y y> MLE: ye-iv moel: { y x + u y max[ y y y >? x + u : y y? x + u :} L f [ y y y f [ y y y 3 3 y> ye-v moel: { y x + u y y >? x + u : y y? x + u : } L f [ y y y f [ y y y me sees y y3 3 3 Pocess { z } s scly saoay f f [ z z ees oly o bu o o I s wealy saoay (o -oe saoay) f E z µ cos a Cov[ z z s Γ Γ s s fo s Fo scala ocesses auocoelao fuco: ρ γ γ Seco-oe saoay ocess s whe ose f µ a Γ fo s s Pocess { z } s calle magale f E[ z z z z Saoay ocess { z } s egoc f m l g lm E [ f[ g[ E [ f[ E [ g[ fo f : : : z z z z z z z z + m l + m + l

5 Samle auocovaace: ˆ γ ( z )( z z z) samle ACF: ˆ ρ + γ γ h: If z µ + ε whee ε s saoay ms wh E[ ε ε ε he: γˆ [ I ρˆ [ I whee γ ˆ ( ˆ γ ˆ γ ρ ˆ ( ˆ ρ ˆ ρ Box-Pece Q: ˆ ρ Lug-Box Q: χ + ˆ ρ χ Suose y + ε εε + ˆ γ ˆ ρ γ γ he x { y x} s saosy&egoc ε ε x ~ v [ a E[ > If we calculae: γ I Φ ρˆ [ I Φ whee Φ E[ xε Q E[ x ε ˆ [ ( )

Chapter 15 Identifying Failure & Repair Distributions

Chapter 15 Identifying Failure & Repair Distributions Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

FORMULAE SHEET for STATISTICS II

FORMULAE SHEET for STATISTICS II Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

LAPLACE TRANSFORM TABLE

LAPLACE TRANSFORM TABLE LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1. Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&

Διαβάστε περισσότερα

On Zero-Sum Stochastic Differential Games

On Zero-Sum Stochastic Differential Games O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg

Διαβάστε περισσότερα

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Probabilistic Image Processing by Extended Gauss-Markov Random Fields Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe

Διαβάστε περισσότερα

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Perturbation Series in Light-Cone Diagrams of Green Function of String Field Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct

Διαβάστε περισσότερα

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8 4.9.. HM-..,,.... :, HM-,,,,.... " " - ",.. " ".,,,,,,.,,.,,..,.,. Byfy, Zaa..,,.. W-F-,, (W-F -. :,,, -,,,,,.,, :, (, W-F, (Byfy, Zaa, GSM,..,.,, (...,,,. HM(Howad-Maays- [5, 6, 9, ],. S S 5 S 9 S S 6

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

arxiv: v1 [math.pr] 13 Jul 2010

arxiv: v1 [math.pr] 13 Jul 2010 L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo.

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations.

( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations. Basic Eqaions ME 9 Fomla Shee R µ F F A A ηv V el η η A Vssem ( ) V el A F F V A ( ) S B XYZ XYZ el g F F a V V A S B / XYZ el M M A V ( ) S B el ( ) Q W ev e A hee V e g ino on el V consan (o invisci

Διαβάστε περισσότερα

Reflection Models. Reflection Models

Reflection Models. Reflection Models Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

x E[x] x xµº λx. E[x] λx. x 2 3x +2

x E[x] x xµº λx. E[x] λx. x 2 3x +2 ¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ. Αρτέμιος Αποστόλου Στρογγύλης

ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ. Αρτέμιος Αποστόλου Στρογγύλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Αρτέμιος Αποστόλου Στρογγύλης ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΑΜΟΣ 3 Στους γονείς μου Ελένη και Αποστόλη

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371, E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities 6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1 ! " " #$%&'(&) *+,-. /01 34 564784 37964 :4 ; ?@ 34 E156F57E1 GHE H567JF4 H5F:7H4 K06 LF37:4 M4N45F415 30 6PG34 0F EK0 F17JF4415 R465071 K6ES3P4 :4 E156F57E1 3M07:4 :4 4 4F3 7156F415 4 E15 6H9H3H 7KE7S34

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

tel , version 1-7 Feb 2013

tel , version 1-7 Feb 2013 !"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 &#89% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ K.AJI. 75/2004 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 906 της 0ής ΣΕΠΤΕΜΒΡΙΥ 2004 ΑΙΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΣ Ι Κννιστικές Διικητικές Πράξεις Αριθμός 75 Ι ΠΕΡΙ ΦΑΡΜΑΚΩ ΑΘΡΩΠΙΗΣ ΡΗΣΗΣ (ΕΛΕΓΣ

Διαβάστε περισσότερα

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION

UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION UVERSÀ DEG SUD D BOOGA DPAREO D GEGERA EERCA Vl Rogo - 36 BOOGA (AA AAYCA SOUOS FOR HE CURRE DSRBUO A RUHERFORD CABE WH SRADS. F. Bch Ac h gocl o of h ol co coffc og h of Rhfo cl vg. h olo fo h gl l c

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -

Διαβάστε περισσότερα

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871, E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) και (z ) Αν f() ( z )( z )( z )( z

Διαβάστε περισσότερα

Refined Hyers-Ulam approximation for Jensen and Euler-Lagrange Mappings

Refined Hyers-Ulam approximation for Jensen and Euler-Lagrange Mappings Reed Hyes-Ul oo o Jese d Eule-Lgge Mgs Joh Mchel Rsss d M (Sk Joh Rsss Pedgogcl Dee E E Seco o Mhecs d Iocs Nol d Cods Uvesy o Ahes 0 Hocous S. Ahes GREECE e-l: jsss@edu.uo.g URL:h://www.edu.uo.g/~jsss/

Διαβάστε περισσότερα

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I  CD β U3 I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r

Διαβάστε περισσότερα

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Ρομποτικός Έλεγχος Δύναμης / Μηχανικής Αντίστασης

Ρομποτικός Έλεγχος Δύναμης / Μηχανικής Αντίστασης Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 7ο Εξάμηνο Μάθημα: Ρομποτική Ι Αυτόματος Έλεγχος Ρομπότ 3 (Έλεγχος Δύναμης) Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου &

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Στοχαστικές διαδικασίες. Γραµµικά συστήµατα. Αλυσίδες Markov. Θεωρία πληροφοριών. Γιάννης Α. Φίλης

Στοχαστικές διαδικασίες. Γραµµικά συστήµατα. Αλυσίδες Markov. Θεωρία πληροφοριών. Γιάννης Α. Φίλης ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Στοχαστικές διαδικασίες Γραµµικά συστήµατα Αλυσίδες Markov Θεωρία πληροφοριών Γιάννης Α Φίλης Πολυτεχνείο Κρήτης - Σεπτέµβριος 6 ΠΕΡΙΕΧΟΜΕΝΑ I ΟΡΙΣΜΟΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΧΑΣΤΙΚΩΝ

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example

Διαβάστε περισσότερα