ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

Σχετικά έγγραφα
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

/5

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο

Ασκήσεις μελέτης της 19 ης διάλεξης

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Το μοντέλο Perceptron

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΤΑΞΙΝΟΜΗΣΗ ΠΡΟΤΥΠΩΝ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΑΠΟΣΤΑΣΗΣ

4. Μέθοδοι αναγνώρισης ταξινοµητές µε επόπτη

4.3. Γραµµικοί ταξινοµητές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2

Θέματα και Απαντήσεις Προαγωγικών Εξετάσεων Β ΛΥΚΕΙΟΥ στα Μαθηματικά Θετικού Προσανατολισμού

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα,

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Παραδείγματα Διανυσματικοί Χώροι

Ταξινόμηση. Τηλεπισκόπηση Η ΤΑΞΙΝΟΜΗΣΗ ΕΙΚΟΝΑΣ. Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση 24/6/2013. Ταξινομητέ ς. Επιβλεπόμενοι Μη επιβλεπόμενοι

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

Παραδείγματα (2) Διανυσματικοί Χώροι

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

8.1 Διαγωνοποίηση πίνακα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων.

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Παραδείγματα Διανυσματικοί Χώροι (3)

ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ. Διανυσματικός χώρος

Αναγνώριση Προτύπων Ι

ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ασκήσεις μελέτης της 16 ης διάλεξης

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

9. Συστολικές Συστοιχίες Επεξεργαστών

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση.

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Παραδείγματα Γραμμικοί Μετασχηματισμοί

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

( ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ( ) ( ) λx + 2 λ y + λ + 4 = 0. Α Βαθ. Β Βαθ. Μ.Ο. Ενδεικτικές Λύσεις

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Transcript:

ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό ενδεχομένως απορρίψατε) Μια απεικόνιση των αρχικών δεδομένων φαίνεται στην εικόνα που ακολουθεί. x - - x -3-3 - X-axis 3 Υπολογίζουμε τους συντελεστές συσχέτισης ως εξής: Αρχικά εκτιμούμε τις μέσες τιμές: Στη συνέχεια υπολογίζουμε τις τυπικές αποκλίσεις-συνδιασπορές: [( ) ( ) ( ) ( ) ] [( ) ( ) ( ) ( ) ] [( ) ( ) ( ) ( ) ] ( )( )]

ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ ( )( )] ( )( )] Κανονικοποιούμε τις συνδιασπορές ως εξής Γνωρίζουμε ότι οι κανονικοποιημένοι συντελεστές συσχέτισης ρ που υπολογίσαμε λαμβάνουν τιμές στο διάστημα [-,] με τιμές κοντά στο μηδέν να ανταποκρίνονται χαρακτηριστικά που δε συσχετίζονται ενώ με τιμές κοντά στο +/- να φανερώνουν ισχυρή συσχέτιση που είναι ανεπιθύμητη. Έτσι φαίνεται ότι ο συντελεστής συσχέτισης που δείχνει ποια χαρακτηριστικά σχετίζονται περισσότερο είναι ο ρ 3 που σημαίνει ότι ένα από τα δύο χαρακτηριστικά ( ή 3) μπορεί να απορριφθεί. Για να επιλέξουμε πιο από τα δύο απορρίπτουμε εξετάζουμε το καθένα ξεχωριστά ως προς τη συσχέτισή του με το τρίτο χαρακτηριστικό (το ). Όποιο έχει ισχυρότερη συσχέτιση με το τρίτο χαρακτηριστικό (δηλαδή όποιο από τα ρ και ρ 3 είναι μεγαλύτερο) είναι αυτό που επιλέγεται προς απόρριψη. Στη συγκεκριμένη περίπτωση προκύπτει το ρ και συνεπώς επιλέγουμε και απορρίπτουμε το ο χαρακτηριστικό. Τα πρότυπα πλέον είναι τα εξής: [ ] [ ] [ ] [ ] Και η "εικόνα" τους στο χώρο των δύο πλέον διαστάσεων είναι η εξής: x.5.5 -.5 - x -.5-3.5 -.5 - -.5.5.5

ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Άσκηση η (.5 μονάδες) Με βάση την απόσταση city block, διαχωρίστε τα πρότυπα σε κλάσεις με τη μέθοδο της αλυσίδας. (γράψτε τις κλάσεις που προέκυψαν) Υπολογίζουμε αρχικά όλες τις αποστάσεις city block ως εξής: Μετά τον υπολογισμό των αποστάσεων μπορούμε να εκκινήσουμε τον αλγόριθμο της αλυσίδας.. Επιλέγουμε εκκίνηση (τυχαία) από το πρότυπο, και υπολογίζουμε { } { } άρα πιο κοντά στο είναι το πρότυπο 4. Υπολογίζουμε την ελάχιστη απόσταση από το πρότυπο 4 { } { } άρα πιο κοντά στο 4 είναι το πρότυπο 3. Υπολογίζουμε την ελάχιστη απόσταση από το πρότυπο { } άρα πιο κοντά στο είναι το πρότυπο 3 4. Κλείνουμε «κυκλικά» από το πρότυπο 3 στο πρότυπο που ξεκινήσαμε Από τα α 4 κατασκευάζουμε ιστόγραμμα ως εξής: 6 5 4 3 a=d4 a=d4 a3=d3 a4=d3 Από το ιστόγραμμα αναγνωρίζουμε τις κλάσεις όπως ορίζονται από τις τιμές που βρίσκονται μεταξύ τοπικών μεγίστων. Τα τοπικά μέγιστα ορίζονται ως η αριστερή ακμή του ιστογράμματος, η μπάρα α και η μπάρα α 4. Ανάμεσα στα μέγιστα αυτά βρίσκονται τα α και α 3 που αποτελούνται αντίστοιχα από τα πρότυπα {,4} και {,3}, όπως φανερώνουν οι αντίστοιχες αποστάσεις d 4 και d 3. Άρα οι κλάσεις που δημιουργούνται είναι οι ω ={x,x 4} και ω ={x,x 3} x.5 ω.5 -.5 - -.5 x ω -3.5 -.5 - -.5.5.5

ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Άσκηση 3 η (3 μονάδες) Σχεδιάστε νευρωνικό δίκτυο-ταξινομητή που να μπορεί να εκτελεί την ταξινόμηση που προκύπτει στην Άσκηση. Εξηγήστε γιατί επιλέγετε το συγκεκριμένο ταξινομητή και τη συγκεκριμένη μέθοδο εκπαίδευσης. Αν χρησιμοποιήσετε perceptron: w=[ ] Τ και ρ=.5. (σχεδιάστε τον ταξινομητή και γράψτε γιατί τον επιλέξατε) Από την Άσκηση βρέθηκε ότι υπάρχουν δύο κλάσεις (και μάλιστα γραμμικώς διαχωρίσιμες). Άρα μπορούμε να χρησιμοποιήσουμε τον αλγόριθμο perceptron για να σχεδιάσουμε ταξινομητή δύο κλάσεων (νευρωνικό δίκτυο). Για την ορθή λειτουργία του αλγορίθμου εργαζόμαστε στο χώρο των επαυξημένων διανυσμάτων, δηλαδή επαυξάνουμε τη διάσταση των διανυσμάτων με μία ακόμη διάσταση προσθέτοντας σε όλα ένα τρίτο στοιχείο με τιμή μονάδα: Επίσης ορίζουμε αρχικά το διάνυσμα βαρών ως: [ ] [ ] [ ] [ ] Ορίζουμε επίσης ότι η κλάση ω ={x,x 4} έχει θετικό πρόσημο και η κλάση ω ={x,x 3} αρνητικό πρόσημο. Έτσι όταν προκύπτει γινόμενο αρνητικό για την ω ή θετικό πρόσημο για την ω απαιτείται αλλαγή προσήμου. Επίσης έχουμε συντελεστή μάθησης ρ=.5. ΕΠΟΧΗ : [ ] [ ] [ ] Στην Εποχή χρειάστηκαν ενημερώσεις βαρών οπότε απαιτείται και άλλη εποχή. ΕΠΟΧΗ :

ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Στην Εποχή δεν πραγματοποιήθηκε καμία ενημέρωση βάρους οπότε ο αλγόριθμος καταλήγει στα εξής βάρη: [ ] Συνεπώς ο ταξινομητής είναι ένας νευρώνας, όπως φαίνεται στο σχήμα που ακολουθεί. Χ.5 y -.5 Σ - Άσκηση 4 η (.5 μονάδα) Έστω ότι μετά την εκπαίδευση του ταξινομητή παρουσιάζεται το πρότυπο [ ]. Ποια είναι η έξοδος του ταξινομητή και που ταξινομείται το εν λόγω πρότυπο; Για τον έλεγχο σε ποια κλάση ταξινομείται ένα άγνωστο πρότυπο αρκεί να γίνει ο πολλαπλασιασμός του διανύσματός του με το διάνυσμα των βαρών του ταξινομητή. Από το γινόμενο αυτό και το πρόσημο που προκύπτει το διάνυσμα ταξινομείται στη μία ή στην άλλη κλάση. Αρχικά απορρίπτουμε το ο χαρακτηριστικό () όπως κάναμε για όλα τα πρότυπα στο σύστημά μας. Στη συνέχεια επαυξάνουμε το διάνυσμα προσθέτοντας μια μονάδα () ως τρίτη διάσταση και εκτελούμε το εσωτερικό γινόμενο με τα βάρη του ταξινομητή: Το πρότυπο ταξινομείται στην κλάση ω Στο σχήμα που ακολουθεί φαίνονται τα πρότυπα εκπαίδευσης x, x, x 3, x 4, η ευθεία (ε) που χωρίζει το χώρο στα ημιεπίπεδα των δύο κλάσεων (με πράσινο χρώμα) και η θέση του αγνώστου προτύπου x (με κόκκινο χρώμα). x.5 x (ε).5 -.5 ω - x -.5 ω -3.5 -.5 - -.5.5.5