ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Σχετικά έγγραφα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

II. Τυχαίες Μεταβλητές

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

Διαδικασίες Markov Υπενθύμιση

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ιωνυµική Κατανοµή(Binomial)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Τυχαίες Μεταβλητές. Ορισμός

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

ίκτυα Επικοινωνίας Υπολογιστών

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

Τυχαία μεταβλητή (τ.μ.)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Θεωρία Τηλεπικοινωνιακής Κίνησης

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

P (M = n T = t)µe µt dt. λ+µ

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Τυχαίες Μεταβλητές (τ.µ.)

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

Θεωρητικές Κατανομές Πιθανότητας

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

3. Κατανομές πιθανότητας

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Πανεπιστήμιο Πελοποννήσου

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

p B p I = = = 5

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Θεωρία Πιθανοτήτων & Στατιστική

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

H επίδραση των ουρών στην κίνηση ενός δικτύου

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Επεξεργασία Στοχαστικών Σημάτων

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

h(t τ k ) X (t) = X (t) = (shot noise). 3/28 4/28

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

3. Προσομοίωση ενός Συστήματος Αναμονής.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

E[X n+1 ] = c 6 z z 2. P X (z) =

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

2

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής

Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ.

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Εισαγωγή στην κανονική κατανομή και την χρήση της στην Υδρολογία Σ.Η.Καραλής

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.

Transcript:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1

Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν μια Στοχαστική Ανέλιξη Καταμέτρησης (Coutig Process) N(t) που καταμετρά τυχαία γεγονότα (αφίξεις πελατών) στο διάστημα (0, t). Ο αριθμός εμφανίσεων στο διάστημα t, t + T είναι διακριτή τυχαία μεταβλητή ν = N t + T N(t). Κάτω από συνθήκες απρόβλεπτης εξέλιξης της ανέλιξης (τα γεγονότα εμφανίζονται ανεξάρτητα από το παρελθόν και χωρίς να επηρεάζουν το μέλλον), η ν ακολουθεί την κατανομή Poisso με μέσο αριθμό εμφανίσεων ανάλογο του διαστήματος T: E T ν = λt. Η σταθερά λ ορίζει τον μέσο ρυθμό (rate) εμφανίσεων (γεγονότα ανά μονάδα χρόνου) 2

Η ΚΑΤΑΝΟΜΗ POISSON (1/3) Διακριτή Τυχαία Μεταβλητή ν = N t + T N(t) απαρίθμησης γεγονότων σε χρονικό διάστημα παρατήρησης T που εμφανίζονται τυχαία και ανεξάρτητα από παρελθούσες ή μελλοντικές εμφανίσεις γεγονότων στο δείγμα (υλοποίηση) της Στοχαστικής Ανέλιξης μετρητή N(t) στο οποίο συνεισφέρουν (ιδιότητα έλλειψης μνήμης Markov) Ο μέσος όρος εμφανίσεων γεγονότων στο διάστημα T είναι E T ν = λt Εφαρμογές σε ανεξάρτητες εμφανίσεις τυχαίων γεγονότων: Τυχαίες εκρήξεις που προκαλούν τον ΘΟΡΥΒΟ ΒΟΛΗΣ σε ηλεκτρονικές συσκευές επικοινωνών Ανεξάρτητες τυχαίες αφίξεις πελατών σε ΣΥΣΤΗΜΑΤΑ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ με απαιτήσεις εξυπηρέτησης όπως: Διεκπεραίωση Τηλεφωνικών Κλήσεων Διακίνηση Πακέτων Δεδομένων στο Iteret Κυκλοφορία Αυτοκίνητων σε Οδικά Συστήματα Αγορές και Πληρωμές σε Καταστήματα Επεξεργασία Δεδομένων σε Κοινές Υπολογιστικές Υποδομές 3

Η ΚΑΤΑΝΟΜΗ POISSON (2/3) Η Κατανομή Poisso σαν Όριο Διωνυμικής Κατανομής Ανεξάρτητες εμφανίσεις {N t = k} γεγονότων (σημείων) Poisso στο διάστημα (0, t) με ρυθμό λ σημεία/sec ορίζουν Διακριτή Τυχαία Μεταβλητή (Discrete Radom Variable) {ν = k} με Κατανομή Μάζας Πιθανότητας k λt P t [ν = k] P N t = k = e λt, k = 0,1,2, k! Απόδειξη Διαιρώ το διάστημα t σε υποδιαστήματα, t = Δt Πραγματοποιώ ανεξάρτητες δοκιμές Berouilli, μια σε κάθε υποδιάστημα, με δύο εναλλακτικές: Εμφάνιση (επιτυχία) με πιθανότητα p = λδt, μη εμφάνιση (αποτυχία) με 1 p Η πιθανότητα k επιτυχιών σε ανεξάρτητες δοκιμές δίνεται από την Διωνυμική Κατανομή: P N t = k = k pk 1 p k, k = 0,1,, P N t = k = k λδt k 1 λδt k = k Στο όριο Δt 0,, t = Δt έχουμε P N t = k =! k! k!! k! k, k λt 1 λt λt 1 λt k k k 1 λt k e λt και λt k k! e λt 4

Η ΚΑΤΑΝΟΜΗ POISSON (3/3) Κατανομή Poisso για Διαφορετικές Τιμές του λt = E N(T) (μέσος αριθμός εμφανίσεων γεγονότων σε διάστημα T) λt Οι συνεχείς καμπύλες στο σχήμα είναι οι περιβάλλουσες των Συναρτήσεων Μάζας Πιθανότητας (Ιστογράμματος) της Διακριτής Τυχαίας Μεταβλητής Poisso P T [ν = k] P N T = k = λt k k! e λt Ιδιότητες της Στοχαστικής Ανέλιξης Poisso 2 Μέση Τιμή & Διασπορά: E N t = σ N t = λt 2 2 Απόδειξη: E N t = lim E N i t = i=1 lim λδt = λt i=1, σ N t = lim σ i=1 Ni t = λt Ο συνολικός αριθμός σημείων Στοχαστική Ανέλιξης Poisso ρυθμού λ σε μη υπερ-καλυπτόμενα χρονικά διαστήματα T 1, T 2 είναι διακριτή τυχαία μεταβλητή Poisso με μέση τιμή λ(t 1 + T 2 ) Υπέρθεση δυο ανεξαρτήτων Ανελίξεων Poisso N 1 t, N 2 t με ρυθμούς λ 1, λ 2 δίνει Ανέλιξη Poisso N t με ρυθμό λ = λ 1 + λ 2 Διάσπαση Ανέλιξης Poisso ρυθμού λ μέσω ανεξαρτήτων τυχαίων επαναλήψεων Beroulli με πιθανότητες p, q = 1 p Παράδειγμα: Τυχαία δρομολόγηση χωρίς μνήμη δημιουργεί ανεξάρτητες ανελίξεις (διαδικασίες) 5 Poisso με μέσους ρυθμούς λ 1 = pλ, λ 2 = q

Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ (1/2) Ορισμοί, Συνάρτηση Αθροιστικής Κατανομής - Cumulative Distributio Fuctio (CDF) & Συνάρτηση Πυκνότητας Πιθανότητας - Probability Desity Fuctio (PDF) Το χρονικό διάστημα τ μεταξύ διαδοχικών εμφανίσεων σημείων Poisso είναι Συνεχής Τυχαία Μεταβλητή (Cotiuous Radom Variable) με Εκθετική Κατανομή (Expoetial Distributio): CDF: F τ t = P τ t = 1 e λt, t 0 0, t < 0 και PDF: f τ t = df τ(t) = λe λt, t 0 dt 0, t < 0 Απόδειξη 1 F τ t 1 = 1 P τ t 1 = P τ > t 1 = P t1 ν = 0 = λt 1 0 e λt 1 = e λt 1 0! https://e.wikipedia.org/wiki/expoetial_distributio CDF: F τ t = P τ t PDF: f t = df τ(t) dt 6

Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ (2/2) Ιδιότητες Εκθετικής Κατανομής E τ = t=0 λte λt dt = 1/λ E τ 2 = λt 2 e λt dt = 2/λ 2, t=0 σ τ 2 = E τ 2 E τ 2 = 1/λ 2 Ιδιότητα έλλειψης μνήμης: P[τ > t + s, τ > s] P τ > t + s τ > s = P[τ > s] = 1 F τ t = P[τ > t + s] P[τ > s] = e λt = P τ > t Η εκθετική κατανομή είναι η μόνη κατανομή συνεχούς μεταβλητής με την ιδιότητα αυτή (Memoryless, Markov Property). Την ίδια ιδιότητα έχει η διακριτή γεωμετρική κατανομή της οποίας το όριο σε συνεχές πεδίο ορισμού είναι η εκθετική κατανομή 7