ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1
Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν μια Στοχαστική Ανέλιξη Καταμέτρησης (Coutig Process) N(t) που καταμετρά τυχαία γεγονότα (αφίξεις πελατών) στο διάστημα (0, t). Ο αριθμός εμφανίσεων στο διάστημα t, t + T είναι διακριτή τυχαία μεταβλητή ν = N t + T N(t). Κάτω από συνθήκες απρόβλεπτης εξέλιξης της ανέλιξης (τα γεγονότα εμφανίζονται ανεξάρτητα από το παρελθόν και χωρίς να επηρεάζουν το μέλλον), η ν ακολουθεί την κατανομή Poisso με μέσο αριθμό εμφανίσεων ανάλογο του διαστήματος T: E T ν = λt. Η σταθερά λ ορίζει τον μέσο ρυθμό (rate) εμφανίσεων (γεγονότα ανά μονάδα χρόνου) 2
Η ΚΑΤΑΝΟΜΗ POISSON (1/3) Διακριτή Τυχαία Μεταβλητή ν = N t + T N(t) απαρίθμησης γεγονότων σε χρονικό διάστημα παρατήρησης T που εμφανίζονται τυχαία και ανεξάρτητα από παρελθούσες ή μελλοντικές εμφανίσεις γεγονότων στο δείγμα (υλοποίηση) της Στοχαστικής Ανέλιξης μετρητή N(t) στο οποίο συνεισφέρουν (ιδιότητα έλλειψης μνήμης Markov) Ο μέσος όρος εμφανίσεων γεγονότων στο διάστημα T είναι E T ν = λt Εφαρμογές σε ανεξάρτητες εμφανίσεις τυχαίων γεγονότων: Τυχαίες εκρήξεις που προκαλούν τον ΘΟΡΥΒΟ ΒΟΛΗΣ σε ηλεκτρονικές συσκευές επικοινωνών Ανεξάρτητες τυχαίες αφίξεις πελατών σε ΣΥΣΤΗΜΑΤΑ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ με απαιτήσεις εξυπηρέτησης όπως: Διεκπεραίωση Τηλεφωνικών Κλήσεων Διακίνηση Πακέτων Δεδομένων στο Iteret Κυκλοφορία Αυτοκίνητων σε Οδικά Συστήματα Αγορές και Πληρωμές σε Καταστήματα Επεξεργασία Δεδομένων σε Κοινές Υπολογιστικές Υποδομές 3
Η ΚΑΤΑΝΟΜΗ POISSON (2/3) Η Κατανομή Poisso σαν Όριο Διωνυμικής Κατανομής Ανεξάρτητες εμφανίσεις {N t = k} γεγονότων (σημείων) Poisso στο διάστημα (0, t) με ρυθμό λ σημεία/sec ορίζουν Διακριτή Τυχαία Μεταβλητή (Discrete Radom Variable) {ν = k} με Κατανομή Μάζας Πιθανότητας k λt P t [ν = k] P N t = k = e λt, k = 0,1,2, k! Απόδειξη Διαιρώ το διάστημα t σε υποδιαστήματα, t = Δt Πραγματοποιώ ανεξάρτητες δοκιμές Berouilli, μια σε κάθε υποδιάστημα, με δύο εναλλακτικές: Εμφάνιση (επιτυχία) με πιθανότητα p = λδt, μη εμφάνιση (αποτυχία) με 1 p Η πιθανότητα k επιτυχιών σε ανεξάρτητες δοκιμές δίνεται από την Διωνυμική Κατανομή: P N t = k = k pk 1 p k, k = 0,1,, P N t = k = k λδt k 1 λδt k = k Στο όριο Δt 0,, t = Δt έχουμε P N t = k =! k! k!! k! k, k λt 1 λt λt 1 λt k k k 1 λt k e λt και λt k k! e λt 4
Η ΚΑΤΑΝΟΜΗ POISSON (3/3) Κατανομή Poisso για Διαφορετικές Τιμές του λt = E N(T) (μέσος αριθμός εμφανίσεων γεγονότων σε διάστημα T) λt Οι συνεχείς καμπύλες στο σχήμα είναι οι περιβάλλουσες των Συναρτήσεων Μάζας Πιθανότητας (Ιστογράμματος) της Διακριτής Τυχαίας Μεταβλητής Poisso P T [ν = k] P N T = k = λt k k! e λt Ιδιότητες της Στοχαστικής Ανέλιξης Poisso 2 Μέση Τιμή & Διασπορά: E N t = σ N t = λt 2 2 Απόδειξη: E N t = lim E N i t = i=1 lim λδt = λt i=1, σ N t = lim σ i=1 Ni t = λt Ο συνολικός αριθμός σημείων Στοχαστική Ανέλιξης Poisso ρυθμού λ σε μη υπερ-καλυπτόμενα χρονικά διαστήματα T 1, T 2 είναι διακριτή τυχαία μεταβλητή Poisso με μέση τιμή λ(t 1 + T 2 ) Υπέρθεση δυο ανεξαρτήτων Ανελίξεων Poisso N 1 t, N 2 t με ρυθμούς λ 1, λ 2 δίνει Ανέλιξη Poisso N t με ρυθμό λ = λ 1 + λ 2 Διάσπαση Ανέλιξης Poisso ρυθμού λ μέσω ανεξαρτήτων τυχαίων επαναλήψεων Beroulli με πιθανότητες p, q = 1 p Παράδειγμα: Τυχαία δρομολόγηση χωρίς μνήμη δημιουργεί ανεξάρτητες ανελίξεις (διαδικασίες) 5 Poisso με μέσους ρυθμούς λ 1 = pλ, λ 2 = q
Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ (1/2) Ορισμοί, Συνάρτηση Αθροιστικής Κατανομής - Cumulative Distributio Fuctio (CDF) & Συνάρτηση Πυκνότητας Πιθανότητας - Probability Desity Fuctio (PDF) Το χρονικό διάστημα τ μεταξύ διαδοχικών εμφανίσεων σημείων Poisso είναι Συνεχής Τυχαία Μεταβλητή (Cotiuous Radom Variable) με Εκθετική Κατανομή (Expoetial Distributio): CDF: F τ t = P τ t = 1 e λt, t 0 0, t < 0 και PDF: f τ t = df τ(t) = λe λt, t 0 dt 0, t < 0 Απόδειξη 1 F τ t 1 = 1 P τ t 1 = P τ > t 1 = P t1 ν = 0 = λt 1 0 e λt 1 = e λt 1 0! https://e.wikipedia.org/wiki/expoetial_distributio CDF: F τ t = P τ t PDF: f t = df τ(t) dt 6
Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ (2/2) Ιδιότητες Εκθετικής Κατανομής E τ = t=0 λte λt dt = 1/λ E τ 2 = λt 2 e λt dt = 2/λ 2, t=0 σ τ 2 = E τ 2 E τ 2 = 1/λ 2 Ιδιότητα έλλειψης μνήμης: P[τ > t + s, τ > s] P τ > t + s τ > s = P[τ > s] = 1 F τ t = P[τ > t + s] P[τ > s] = e λt = P τ > t Η εκθετική κατανομή είναι η μόνη κατανομή συνεχούς μεταβλητής με την ιδιότητα αυτή (Memoryless, Markov Property). Την ίδια ιδιότητα έχει η διακριτή γεωμετρική κατανομή της οποίας το όριο σε συνεχές πεδίο ορισμού είναι η εκθετική κατανομή 7