ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν. Καθηγητής

Σχετικά έγγραφα
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3o Μάθημα Τεχνική Γεωλογία Εδάφους

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3o Μάθημα Τεχνική Γεωλογία Εδάφους Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Λέκτορας

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3B) 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν.

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ "Α"

Εδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής

α) Προτού επιβληθεί το φορτίο q οι τάσεις στο σημείο Μ είναι οι γεωστατικές. Κατά συνέπεια θα είναι:

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

ΚΕΦΑΛΑΙΟ 3 ΤΑΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΟΥ Ε ΑΦΟΥΣ

ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ

2. Υπολογισμός Εδαφικών Ωθήσεων

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

.. - : (5.. ) 2. (i) D, ( ).. (ii) ( )

ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A

ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΕΔΑΦΩΝ ΑΣΤΟΧΙΑ ΕΔΑΦΙΚΟΥ ΥΛΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΠΡΟΣΟΜΟΙΩΣΗ

Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

Επίλυση & Αντιμετώπιση προβλημάτων Γεωτεχνικής

ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου

Μηχανική Συμπεριφορά Εδαφών. Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

ΑΣΚΗΣΗ 10 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΑΝΑΛΥΣΗ ΕΥΣΤΑΘΕΙΑΣ EΝΤΟΝΑ ΚΑΤΑΚΕΡΜΑΤΙΣΜΕΝΟΥ ΒΡΑΧΩΔΟΥΣ ΠΡΑΝΟΥΣ EΝΑΝΤΙ ΚΥΚΛΙΚΗΣ ΑΣΤΟΧΙΑΣ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Διδάσκων: Μπελόκας Γεώργιος

ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΝΕΡΟΥ ΣΕ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ

(& επανάληψη Εδαφομηχανικής)

ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ

Ασκήσεις Εδαφοµηχανικής (Capper et al., 1978, Salglerat et al., 1985)

1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb

Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ:

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ

Μικροζωνικές Μελέτες. Κεφάλαιο 24. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

SPC. Soil Pressures Calculation. Εγχειρίδιο Χρήσης. Υπολογισμός Τάσεων Εδάφους. v.1.1. Άγγελος Γάκης

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β.

ΚΑΤΟΛΙΣΘΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ:

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ.

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΕΦΑΛΑΙΟ VΙI. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ. 1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού)

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο )

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων

Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών

ΚΕΦΑΛΑΙΟ IV: ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΤΟ Ε ΑΦΟΣ

v = 1 ρ. (2) website:

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 1:Εισαγωγικές έννοιες της Υδρογεωλογίας. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας

Ιδιότητες των ρευστών Δυνάμεις στα ρευστά Αρχή Αρχιμήδη Πείραμα Torricelli Νόμος Πασκάλ Υδροστατική Αρχή

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

ΚΕΦΑΛΑΙΑ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Ι ΗΛΕΚΤΡΟΝΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΙΑΛΕΞΕΩΝ

Ωθήσεις γαιών στην ανάλυση της κατασκευής Εισαγωγή δεδομένων

Ασκήσεις Τεχνικής Γεωλογίας 8 η Άσκηση

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

Επαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων

8.4.2 Ρευστοποίηση (ΙΙ)

ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7)

ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Επαλήθευση πασσάλου Εισαγωγή δεδομένων

ΕΠΙΛΟΓΗ ΥΛΙΚΩΝ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΡΟΪΟΝΤΩΝ. Δυσκαμψία & βάρος: πυκνότητα και μέτρα ελαστικότητας

Ανάλυση ευστάθειας βράχων Εισαγωγή δεδομένων

Ελαστικά με σταθερά ελαστικότητας k, σε πλευρικές φορτίσεις και άκαμπτα σε κάθετες φορτίσεις. Δυναμικό πρόβλημα..

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΤΙΜΕΤΩΠΙΣΗ ΦΑΙΝΟΜΈΝΟΥ ΚΟΝΤΩΝ ΥΠΟΣΤΗΛΩΜΑΤΩΝ ΜΕ ΕΝΙΣΧΥΣΗ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ 2017

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία»

Transcript:

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας ΑΠΘ

Γιατί μελετάμε τις τάσεις;; Ανάλογα με το πώς κατανέμονται οι τάσεις στο έδαφος ή στο βράχο, όπου κατασκευάζονται τα τεχνικά έργα, εξαρτώνται οι παραμορφώσεις και οι αστοχίες που μπορεί να προκληθούν στα γεωυλικά. Υπολογίζονται είτε αναλυτικά είτε με αριθμητικές μεθόδους (π.χ. πεπερασμένα στοιχεία).

Γιατί μελετάμε τις τάσεις;; Κατά την κατασκευή τεχνικών έργων οι τάσεις μεταβάλλονται δραματικά. Ο βράχος ή έδαφος ο οποίος εκσκάπτεται, περιείχε πριν τάσεις και αυτές οι τάσεις πρέπει να παραληφθούν αλλού. Τα περισσότερα κριτήρια αστοχίας σχετίζονται με τη παραμορφωσιμότητα και την αντοχή του γεωυλικού και η ανάλυση αυτών περιλαμβάνει τις τάσεις.

Τάσεις σε μια τυχαία επιφάνεια F N zz y σ z y S zy τ zy S zx τ zx S zr x x

Τύποι τάσεων Υδροστατική τάση: Οι τάσεις είναι ίδιες σε όλες τις διευθύνσεις Θλιπτική (συμπιεστική) τάση Εφελκυστική τάση Διατμητική τάση

Διατμητικές τάσεις Διατμητική τάση (τ): Η τάση που αναπτύσσεται εφαπτομενικά σε ένα επίπεδο Ορθή τάση (σ n ): Η τάση που αναπτύσσεται κάθετα σε ένα επίπεδο

Από Δημόπουλος Γ., Σημειώσεις Τεχνικής Γεωλογίας από το διαδίκτυο Διατμητικές τάσεις

Παράδειγμα διατμητικής αστοχίας και παραμόρφωσης γεωυλικού σε πρανές Διατμητικές τάσεις τ xy στην οριακή κατάσταση αστοχίας

Παράδειγμα διατμητικής αστοχίας και παραμόρφωσης γεωυλικού Σημεία αστοχίας γεωυλικού στην οριακή κατάσταση αστοχίας Σημεία διατμητικής αστοχίας Σημεία αστοχίας σε εφελκυσμό

Γεωστατικές τάσεις

Γεωστατικές τάσεις Είναι οι τάσεις που αναπτύσσονται στο εσωτερικό του εδάφους λόγω του ιδίου βάρους του υπό στατικές συνθήκες Η διαδικασία που θα μάθουμε ισχύει μόνο για οριζόντια επιφάνεια εδάφους

Γεωστατικές τάσεις Έστω οριζόντια εδαφική επιφάνεια ρ = Πυκνότητα εδάφους g = Επιτάχυνση της βαρύτητας γ = Φαινόμενο βάρος εδάφους γ = ρg h

Γεωστατικές τάσεις h Άρα οι σ v, σ h είναι κύριες τάσεις και μάλιστα αφού συνήθως k o <1 σ v σ 1 σ h = k o σ v τ = 0 σ v =? τ =? σ v = γh τ = 0 σ h σ 3

Γεωστατικές τάσεις Τι γίνεται, όμως, όταν υπάρχει και νερό? Δηλαδή, υπάρχει και υπόγειος υδροφόρος ορίζοντας...

Γεωστατικές τάσεις Έστω οριζόντια επιφάνεια υπόγειου υδροφόρου ορίζοντα Το τμήμα του εδάφους που βρίσκεται εντός του Υ.Υ.Ο. δέχεται άνωση Για τη μελέτη του φαινομένου ορίζουμε το μέγεθος της ενεργού τάσης h h w

As Αtot = As +Aw Aw

As σ =ΣFs/Atot Αtot = As +Aw ΣFs Aw ΣFw

Γεωστατικές τάσεις (Ενεργές τάσεις) σ = σ '+ u σ ' = ΣΝ' Α Ενεργός τάση s ' = s - u σ = P Α Ισχύει: Όπου P η φόρτιση που ασκείται στην επιφάνεια Α, κατά μήκος επιπέδου Χ-Χ. Η δύναμη που ασκείται ανάμεσα στους κόκκους αναλύεται σε ορθή (Ν ) και διατμητική (Τ). P = ΣΝ'+ uα P Α = ΣΝ' Α + u σ = σ '+ u

Γεωστατικές τάσεις 1. Η ολική τάση (σ): Η τάση η οποία ασκείται επί επιπέδου στη μάζα του εδάφους, αν θεωρήσουμε το έδαφος ένα ενιαίο στέρεο υλικό. 2. Η πίεση πόρων (u): Αποτελεί την πίεση του νερού που βρίσκεται μέσα στα κενά, ανάμεσα στα σωματίδια το εδάφους. 3. Η ενεργή τάση (σ ): Αποτελεί τη τάση που μεταδίδεται μόνο στον «σκελετό» - επιφάνεια επαφής των σωματιδίων.

Γεωστατικές τάσεις (Ενεργές τάσεις) γ w =1000kg/m 3 σ =4,9 kpa σ =4,9 kpa

Γεωστατικές τάσεις h h w Σημείωση: Σε ένα επίπεδο ακόμη και αν η συνολική τ δεν είναι μηδέν ισχύει πάντα τ = τ Γιατι? Γιατί, όπως ξέρετε και από τη Μηχανική των Ρευστών, τα ρευστά δεν παραλαμβάνουν διάτμηση. σ h = k o σ v σ h = σ h +u τ = τ = 0 u = γ w h w σ v = γh σ v = σ v +u τ = τ = 0

Γεωστατικές τάσεις Διαδικασία υπολογισμού τάσεων h hw σ v = γh u = γ w h w σ v = σ v -u σ h = σ h -u σ h = k o σ v

Γεωστατικές τάσεις Παράδειγμα υπολογισμού ολικών (σ ν ) και ενεργών τάσεων (σ ν ) και πιέσεων πόρων (u) Για την άργιλο: γ κορ =19 kn/m 3 Για την άμμο: γ κορ =20kN/m 3 Για την άμμο: γ ξηρ =17 kn/m 3 (πάνω από τον υδροφόρο ορίζοντα Υ.Ο. Άμμος Άργιλος

Άσκηση 1* Σας δίνεται η στρωματογραφία ενός λιμναίου περιβάλλοντος. Στην τομή σημειώνεται η πυκνότητα των εδαφών p κορ, ο συντελεστής ωθήσεως γαιών Κ ο. και η στάθμη της λίμνης. 6.0m Ζητούνται: Για τη γεωστατική εντατική κατάσταση της τομής του σχήματος να συμπληρωθεί ο ακόλουθος πίνακας: 0.0m 6.0m 11.0m Σημείωση: Η επιτάχυνση της βαρύτητας είναι g=9.81m/sec 2. Για ευκολία στις πράξεις θεωρούμε g=10m/sec 2.

Βάθος (m) 6.0 0.0-6.0-11.0 σ v (kpa) u (kpa) σ v (kpa) σ h (kpa) σ h (kpa)

Άσκηση 2 Σας δίνεται η στρωματογραφία σε θέση όπου σχεδιάζεται να γίνει η κατασκευή σταθμού μητροπολητικού σιδηροδρόμου (ΜΕΤΡΟ). Ένα στρώμα αργίλου πάχους 2.5m απαντάται ανάμεσα σε δύο στρώματα άμμου πάχους 6m και 4m (άνω και κάτω αντίστοιχα), όπου το ανώτερο στρώμα βρίσκεται στην επιφάνεια του εδάφους. Η στάθμη του υδροφόρου ορίζοντα είναι 3m υπό την επιφάνεια του εδάφους ενώ το κάτω στρώμα άμμου (κάτω από την άργιλο) βρίσκεται υπό αρτεσιανή πίεση όπου η πιεζομετρική επιφάνεια είναι 1m πάνω από την επιφάνεια του εδάφους. Η πυκνότητα της άμμου πάνω από τον υδροφόρο ορίζοντα ρ είναι 16.5 ΚΝ/m 3. Η πυκνότητα της άμμου κάτω από τον υδροφόρο ορίζοντα p κορ είναι 18.0ΚΝ/m 3 και της αργίλου 21.5 ΚΝ/m 3. ΖΗΤΟΥΝΤΑΙ: Αφού σχεδιάσετε τη στρωματογραφία του προβλήματος, ζητούνται: Υπολογίστε τις ενεργές τάσεις στην οροφή και στο δάπεδο του αργιλικού στρώματος. Ποια τα προβλήματα στη κατασκευή του σταθμού από την ύπαρξη αρτεσιανισμού;; Προτείνετε τρόπους να αντιμετωπίσετε τις ανωστικές πιέσεις από τις πιέσεις πόρων που θα αναπτυχθούν στο δάπεδο του σταθμού (π.χ. και από επιπλέον πιθανές περιπτώσεις αρτεσιανισμού από ορίζοντες άμμου μέσα σε αργιλικό περιβάλλον).

Βιβλιογραφία 1. Craig R.F. (2003). Craig s Soil Mechanics. Spon Press. 2. Καββαδάς Μ. Σημειώσεις μαθήματος Εδαφομηχανική Ι, Σχολή Πολ. Μηχ/κων, Ε.Μ.Π. 3. Φορτσάκης Π. Παρουσιάσεις ασκήσεων Εδαφομηχανική Ι, Σχολή Πολ. Μηχ/κων, Ε.Μ.Π. 4. Χρηστάρας Β., Χατζηαγγέλου Μ. (2011). Απλά βήματα στην εδαφομηχανική. University Studio Press.