J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Σχετικά έγγραφα
Single-value extension property for anti-diagonal operator matrices and their square

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

The perturbation of the group inverse under the stable perturbation in a unital ring

Prey-Taxis Holling-Tanner

Congruence Classes of Invertible Matrices of Order 3 over F 2

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

On the Galois Group of Linear Difference-Differential Equations

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Heisenberg Uniqueness pairs

A General Note on δ-quasi Monotone and Increasing Sequence

SOME PROPERTIES OF FUZZY REAL NUMBERS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Determinant and inverse of a Gaussian Fibonacci skew-hermitian Toeplitz matrix

Discriminantal arrangement

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Wishart α-determinant, α-hafnian

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

On Generating Relations of Some Triple. Hypergeometric Functions

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

L p approach to free boundary problems of the Navier-Stokes equation

Κβαντικη Θεωρια και Υπολογιστες

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

The k-α-exponential Function

Jordan Form of a Square Matrix

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

A summation formula ramified with hypergeometric function and involving recurrence relation

Example Sheet 3 Solutions

MATRIX INVERSE EIGENVALUE PROBLEM

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

2 Composition. Invertible Mappings

Homomorphism in Intuitionistic Fuzzy Automata

a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4

arxiv:math/ v1 [math.rt] 30 Oct 2006

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Resilient static output feedback robust H control for controlled positive systems

Research on real-time inverse kinematics algorithms for 6R robots

High order interpolation function for surface contact problem

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Probabilistic Approach to Robust Optimization

On Inclusion Relation of Absolute Summability

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Knaster-Reichbach Theorem for 2 κ

Matrices and Determinants

Reminders: linear functions

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Tridiagonal matrices. Gérard MEURANT. October, 2008

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

arxiv: v1 [math.ct] 26 Dec 2016

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

arxiv: v1 [math-ph] 4 Jun 2016

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The k-bessel Function of the First Kind

On a four-dimensional hyperbolic manifold with finite volume

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

EP ELEMENTS IN RINGS AND IN SEMIGROUPS WITH INVOLUTION AND IN C -ALGEBRAS. Sotirios Karanasios

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Approximation Expressions for the Temperature Integral

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Second Order Partial Differential Equations

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

Ανάκτηση Πληροφορίας

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Partial Trace and Partial Transpose

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

SPECIAL FUNCTIONS and POLYNOMIALS

The split variational inequality problem and its algorithm iteration

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

1. Introduction and Preliminaries.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Transcript:

Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2 : A : 0255-7797(2017)05-1013-09 1 X, Y, L(X, Y ) X Y. T L(X, Y ), D(T ), N(T ) R(T ) T,. I. M, N X, M +N M N. X, Y Banach, M N X, M N M N. B(X, Y ), C(X, Y ) X Y Banach. 1.1 [1,2] X, Y, T L(X, Y ). S L(Y, X) R(T ) D(S), R(ST ) D(T ), T ST = T, S T ; S R(S) D(T ), R(T S) D(S), ST S = S, S T. S T, T, S T, T +. [3],. Banach Hilbert,,. 1.2 [3] X, Y Banach, T B(X, Y ). S B(Y, X) T ST = T, S T ; S ST S = S, S T. S T, T, S T, T +. Banach, 1.3 [4] T + B(Y, X) T B(X, Y ) X, Y, X = N(T ) R(T + ), Y = R(T ) N(T + ). : 2017-03-10 : 2017-06-02 (11771378; 11271316); (BK20141271); (2016zqn03). : (1970 ),,,, :. :.

1014 Vol. 37 1.4 [3] X, Y Hilbert, 1.3, T Moore-Penrose, T. 1.5 [5] X, Y Banach, T C(X, Y ). S C(Y, X) R(S) D(T ), R(T ) D(S), D(T ) T ST = T ; D(S) ST S = S, S T ( ), T +. 1.6 [3] X, Y Banach, T C(X, Y ), N(T ) R(T ) R(T ) X, Y N(T ) c R(T ) c, X = N(T ) N(T ) c, Y = R(T ) R(T ) c. (1.1) P, Q X N(T ) c N(T ) Y R(T ) c R(T ), S C(Y, X) : 1) D(T ) T ST = T ; 2) D(S) ST S = S; 3) D(T ) ST = I P 4) D(S) T S = Q, D(S) = R(T ) + R(T ) c., S R(T ) Y. 1.6, (1.1), T. X, Y Hilbert, (1.1), T Moore-Penrose, T., [3,4,6 8].,, ;, ( ). Banach Hilbert Moore-Penrose [3,6,7,9 18], 1.7 [7] X, Y Banach, T B(X, Y ) T + B(Y, X), δt B(X, Y ) δt T + < 1. (1) B = T + (I + δt T + ) 1 T = T + δt ; (2) R(T ) N(T + ) = {0}; (3) (I T + T )N(T ) = N(T ); (4) X = N(T ) R(T + ) X = N(T ) + R(T + ); (5) Y = R(T ) N(T + ); (6) (I + δt T + ) 1 T N(T ) R(T ). 1.8 [9] X, Y Hilbert, T B(X, Y ) Moore-Penrose T B(Y, X). δt B(X, Y ) δt T < 1, B = T (I +δt T ) 1 T = T +δt Moore-Penrose R(T ) = R(T ), N(T ) = N(T ). Banach Hilbert, Moore-Penrose,.,. 1974, Nashed Votruba [1,2,3]. Banach,., [3].?

No. 5 : 1015?, [6, 7, 9, 12 16, 18]. 2 2.1 T L(X, Y ), S L(Y, X) R(S) D(T ), R(T ) D(S). S T, (1) S T ; (2) R(T ) = R(T S); (3) D(S) = R(T ) +N(S); (4) R(T ) N(S) = {0}; (5) N(ST ) = N(T ); (6) D(T ) = R(S) +N(T ) D(T ) = R(S) + N(T ). S T, T S, ST, R(S) = R(ST ), N(T S) = N(S), D(T ) = R(ST ) +N(ST ) = R(S) +N(ST ), D(S) = R(T S) +N(T S) = R(T S) +N(S). (1) (2) S T, T ST = T, R(T ) = R(T ST ) R(T S) R(T ). (2) (3) R(T ) = R(T S), D(S) = R(T S) +N(S) = R(T ) +N(S). (3) (4). (4) (1) x D(T ), S(T ST x T x) = ST ST x ST x = ST x ST x = 0, T ST x T x N(S). T ST x T x R(T ), (4), T ST x = T x. T ST = T., S T. (1) (5) S T, T ST = T. ST x = 0, T x = T ST x = 0, N(ST ) N(T ), N(T ) N(ST ). N(ST ) = N(T ). (5) (6) N(ST ) = N(T ), D(T ) = R(S) +N(ST ) = R(S) +N(T ). (6) (1) x D(T ), (6), y D(S) x 1 N(T ), x = Sy + x 1. T ST x = T ST (Sy + x 1 ) = T ST Sy = T Sy = T (Sy + x 1 ) = T x. T ST = T, S T.. 2.2 T + L(Y, X) T L(X, Y ), A L(X, Y ) D(T ) D(A), R(T + ) D(A), R(A) D(T + ). T = T + A, (1) I + AT + : D(T + ) D(T + ) ; (2) I + T + A : D(T ) D(T ) ; (3) N(T ) R(T + ) = {0} D(T + ) = T R(T + ) +N(T + ). (1) (2) I + T + A : D(T ) D(T ). x D(T ), (I + T + A)x = 0, A(I + T + A)x = 0, (I + AT + )Ax = 0. (1), Ax = 0, x = T + Ax = 0. I + T + A : D(T ) D(T ), y D(T ), x D(T ) (I +T + A)x = y., Ay D(T + ), (1), h D(T + ), (I +AT + )h = Ay. x = y T + h, x D(T ), (I + T + A)x = (I + T + A)(y T + h) = y + T + Ay (I + T + A)T + h = y + T + Ay T + (I + AT + )h = y + T + Ay T + Ay = y.

1016 Vol. 37 (2) (3) I+T + A : D(T ) D(T ). y N(T ) R(T + ), x D(T + ), y = T + x, T T + x = T y = 0. (I + T + A)T + x = T + x + T + AT + x = T + T T + x + T + AT + x = T + T T + x = 0. T + x = 0, y = T + x = 0. N(T ) R(T + ) = {0}. T R(T + ) N(T + ) = {0}. v T R(T + ) N(T + ), u D(T + ), v = T T + u. 0 = T + v = T + T T + u = T + (T + A)T + u = T + T T + u + T + AT + u = T + u + T + AT + u = (I + T + A)T + u. T + u = 0, v = T T + u = 0. D(T + ) = T R(T + ) + N(T + )., T R(T + ) + N(T + ) D(T + )., x D(T + ), T + x D(T ). (2), y D(T ), T + x = (I + T + A)y, T + x = (I T + T )y + T + T y. T + (x T y) = (I T + T )y R(T + ) N(T ) = {0}. y = T + T y R(T + ), T + x = T + T y, x T y N(T + ). x = T y + (x T y) = T T + T y + (x T y) T R(T + ) + N(T + ), D(T + ) = T R(T + ) + N(T + ). (3) (1) I + AT + : D(T + ) D(T + )., x D(T + ) (I +AT + )x = 0, T T + x = T T + x x T R(T + ) N(T + ) = {0}, x = T T + x, T T + x = 0. T + x N(T ) R(T + ), (3), T + x = 0. x = T T + x = 0., I + AT + : D(T + ) D(T + ). y D(T + ), D(T + ) = T R(T + ) + N(T + ), y y = T T + y 1 + y 2, y 1 D(T + ), y 2 N(T + ). (I + AT + )(T T + y 1 + y 2 ) = (T T + y 1 + y 2 ) + (T T )T + T T + y 1 = T T + y 1 + y 2 + T T + y 1 T T + y 1 = y 2 + T T + y 1 = y. I + AT + : D(T + ) D(T + ).. T T + T T +,, T +,. 2.3 T + L(Y, X) T L(X, Y ), A L(X, Y ) D(T ) D(A), R(T + ) D(A), R(A) D(T + ). T = T + A T + L(Y, X), D(T + ) = D(T + ), N(T + ) = N(T + ), R(T + ) = R(T + ), I + AT + : D(T + ) D(T + ), T + = T + (I + AT + ) 1 = (I + T + A) 1 T +.

No. 5 : 1017 T + T, N(T ) R(T + ) = {0} D(T + ) = R(T T + ) +N(T T + ) = T R(T + ) +N(T + )., N(T ) R(T + ) = {0}, D(T + ) = T R(T + ) +N(T + ). 2.2, I + AT + : D(T + ) D(T + ) I + T + A : D(T ) D(T ). T + (I + AT + ) 1 (I + T + A) 1 T +, T + (I + AT + ) 1 = (I + T + A) 1 T +. N(T + ) = N(T + ) T + (I T T + ) = 0 R(T + ) = R(T + ) (I T + T )T + = 0, T + = T + T T + T + T T + = T +. T + +T + T T + T + T T + = T +, T + (I +AT + ) = T +., T + = T + (I + AT + ) 1.. T + T + = T + (I + AT + ) 1. 2.4 T + L(Y, X) T L(X, Y ), A L(X, Y ) D(T ) D(A), R(T + ) D(A), R(A) D(T + ). I + AT + : D(T + ) D(T + ), (1) B = T + (I + AT + ) 1 = (I + T + A) 1 T + T = T + A ; (2) R(T ) = R(T T + ); (3) D(T + ) = R(T ) +N(T + ); (4) R(T ) N(T + ) = {0}; (5) N(T + T ) = N(T ); (6) D(T ) = N(T ) +R(T + ) D(T ) = N(T ) + R(T + ); (7) (I + AT + ) 1 R(T ) = R(T ); (8) (I + T + A) 1 N(T ) = N(T ); (9) (I + AT + ) 1 T N(T ) R(T ). B = T + (I + AT + ) 1 = (I + T + A) 1 T +, R(B) = R(T + ), N(B) = N(T + ). BT B = (I + T + A) 1 T + (T + A)T + (I + AT + ) 1 = (I + T + A) 1 (T + + T + AT + )(I + AT + ) 1 = (I + T + A) 1 (I + T + A)T + (I + AT + ) 1 = T + (I + AT + ) 1 = B, B T. R(T B) = R(T T + ) N(BT ) = N(T + T ), 2.1, (1) (6). (1) (7) B T, R(T ) = R(T B) = T R(B) = T R(T + ) = T R(T + T ) = T T + R(T ) = (T T + + I T T + )R(T ) = (I + AT + )R(T ). (7) (8), (I + T + A)N(T ) = [I + T + (T T )]N(T ) = (I T + T )N(T ) N(T )., (7), x N(T ), T x R(T ) (I + AT + )R(T ) = T T + R(T ) = T R(T + T ) = T R(T + ).

1018 Vol. 37 y R(T + ), T y = T x. x y N(T ), (I + T + A)(x y) = (I T + T )(x y) = (I T + T )x = x. N(T ) (I + T + A)N(T ). (8) (4) y R(T ) N(T + ), x D(T ), y = T x T + T x = 0. T (I + T + A)x = T x + T T + Ax = T x + T T + T x T x = 0, (I + T + A)x N(T ). (8), x N(T ), y = T x = 0. (7) (9). (9) (4) y R(T ) N(T + ), x D(T ) = D(T ) y = T x T + T x = 0. D(T ) = N(T ) +R(T + ), x = x 1 + x 2, x 1 N(T ), x 2 R(T + ). (I + AT + )T x 2 = [I + (T T )T + ]T x 2 = T T + T x 2 = T x 2. (I + AT + ) 1 T x 2 = T x 2 R(T ). (9), (I + AT + ) 1 T x 1 R(T ). y N(T + ), (I + AT + )y = y = T x, y = (I + AT + ) 1 T x = (I + AT + ) 1 T (x 1 + x 2 ) R(T ). y R(T ) N(T + ). R(T ) N(T + ) = {0}, y = 0.. 2.5 T L(X, Y ), T + L(Y, X) T, A L(X, Y ) D(T ) D(A), R(T + ) D(A), R(A) D(T + ). I+AT + : D(T + ) D(T + ), B = T + (I + AT + ) 1 = (I + T + A) 1 T + T = T + A Rank T = Rank T < +. 2.4 (1) (7).. (I + AT + )T = T + AT + T = T T + T, T = (I + AT + ) 1 T T + T. Rank T = Rank T, dim R(T ) = dim R(T ) = dim R(T T + T ). R(T ) = R(T T + T ) R(T T + ) R(T ). 2.4 (1) (2), B T.., 2.6 T + L(Y, X) T L(X, Y ), A L(X, Y ) D(T ) D(A), R(T + ) D(A), R(A) D(T + ). dim N(T ) < +, I + AT + : D(T + ) D(T + ), B = T + (I + AT + ) 1 = (I + T + A) 1 T + T = T + A, dim N(T ) = dim N(T ) < +. 3, Banach Hilbert Moore-Penrose. 2.4,

No. 5 : 1019 3.1 X, Y Banach, T C(X, Y ) T + C(Y, X), δt B(X, Y ) R(δT ) D(T + ). T + δt < 1, (1) B = T + (I + δt T + ) 1 = (I + T + δt ) 1 T + T = T + δt ; (2) R(T ) = R(T T + ); (3) R(T ) N(T + ) = {0}; (4) N(T + T ) = N(T ); (5) (I + δt T + ) 1 R(T ) = R(T ); (6) (I + T + δt ) 1 N(T ) = N(T ); (7) (I + δt T + ) 1 T N(T ) R(T ). T C(X, Y ) δt B(X, Y ), T = T + δt. T + δt < 1, Banach, I + T + δt : X X, (I + T + δt ) 1. T +, B = (I + T + δt ) 1 T +. 2.4,.. 3.2 X, Y Banach, T C(X, Y ) T + B(Y, X). δt B(X, Y ) δt T + < 1, (1) B = T + (I + δt T + ) 1 = (I + T + δt ) 1 T + : Y D(T ) T = T + δt ; (2) R(T ) = R(T T + ); (3) R(T ) N(T + ) = {0}; (4) N(T + T ) = N(T ); (5) (I + δt T + ) 1 R(T ) = R(T ); (6) (I + T + δt ) 1 N(T ) = N(T ); (7) (I + δt T + ) 1 T N(T ) R(T ); (8) X = N(T ) R(T + ) X = N(T ) + R(T + ); (9) Y = R(T ) N(T + ). δt T + < 1, I + δt T + : Y Y, (I + δt T + ) 1. B = T + (I + δt T + ) 1. B T, 1.6 2.4, (2) (9)., (2) (7), (1). (9), (3). X = N(T ) + R(T + ), x N(T ), x 1 N(T ), x 2 R(T + ), x = x 1 + x 2. x 2 = x x 1 D(T ), x 2 T + T x 2 R(T + ) N(T ) = {0}, x 2 = T + T x 2. (I + δt T + ) 1 T x = (I + δt T + ) 1 T x 2 = (I + δt T + ) 1 T T + T x 2 = (I + δt T + ) 1 (I + δt T + )T T + T x 2 = T x 2 R(T ). (7).. T B(X, Y ), T + B(Y, X), R(T + ). 3.2, 3.3 X, Y Banach, T B(X, Y ) T + B(Y, X). δt B(X, Y ) δt T + < 1. (1) B = (I + T + δt ) 1 T + = T + (I + δt T + ) 1 T = T + δt ; (2) R(T ) = R(T T + ); (3) R(T ) N(T + ) = {0};

1020 Vol. 37 (4) N(T + T ) = N(T ); (5) X = N(T ) R(T + ) X = N(T ) + R(T + ); (6) (I + δt T + ) 1 R(T ) = R(T ); (7) (I + T + δt ) 1 N(T ) = N(T ); (8) (I + δt T + ) 1 T N(T ) R(T ); (9) Y = R(T ) N(T + ). 3.2 3.3 [6, 7, 13 16, 18]. 3.4 X, Y Hilbert, T C(X, Y ) Moore-Penrose T B(Y, X). δt B(X, Y ) δt T < 1, B = T (I +δt T ) 1 = (I +T δt ) 1 T T = T +δt Moore-Penrose R(T ) = R(T ), N(T ) = N(T ). R(T ) = R(T ), N(T ) = N(T ), 3.2, B T. X = N(T ) R(B), Y = R(T ) N(B). (3.1) Moore-Penrose, X Y X = N(T ) R(T ), Y = R(T ) N(T ). R(T ) = R(B), N(T ) = N(B), X = N(T ) R(B), Y = R(T ) N(B), (3.1). B T Moore-Penrose., B T Moore-Penrose, X = N(T ) R(B), Y = R(T ) N(B). N(T ) = R(B), R(T ) = N(B). N(T ) = R(T ), R(T ) = N(T ), R(T ) = R(B) N(T ) = N(B), R(T ) = R(T ) N(T ) = N(T ).. 3.4 [9, 14 16]. [1] Nashed M Z, Votruba G F. A unified approach to generalized inverses of linear operators: I. Algebraic, topological, and projectional properties [J]. Bull. Amer. Math. Soc., 1974, 80(5): 825 830. [2] Nashed M Z, Votruba G F. A unified approach to generalized inverses of linear operators: II. Extremal and proximal properties [J]. Bull. Amer. Math. Soc., 1974, 80(5): 831 834. [3] Nashed M Z. Generalized inverses and applications [M]. New York: Academic Press, 1976. [4]. [M]. :, 2005. [5] Ben-Israel A, Greville T N E. Generalized inverses: theory and applications (2nd ed.)[m]. New York: Wiley, 2003. [6] Chen G L, Xue Y F. Perturbation analysis for the operator equation T x = b in Banach spaces [J]. J. Math. Anal. Appl., 1997, 212 (1): 107 125. [7] Ma J P. Complete rank theorem of advanced calculus and singularities of bounded linear operators [J]. Front. Math. China, 2008, 3(2): 305 316. [8] Nashed M Z. Inner, outer, and generalized inverses in Banach and Hilbert spaces [J]. Numer. Funct. Anal. Optim., 1987, 9(3): 261 325.

No. 5 : 1021 [9] Ding J. On the expression of generalized inverses of perturbed bounded linear operators [J]. Missouri J. Math. Sci., 2003, 15(1): 40 47. [10] Du N L. The basic principles for stable approximations to orthogonal generalized inverses of linear operators in Hilbert spaces [J]. Numer. Funct. Anal. Optim., 2005, 26(6): 675 708. [11] Du N L. Finite-dimensional approximation settings for infinite-dimensional Moore-Penrose inverses [J]. SIAM J. Numer. Anal., 2008, 46(3): 1454 1482. [12],,. Banach [J]., 2011, 32A(5): 635 646. [13] Huang Q L, Zhai W X. Perturbations and expressions for generalized inverses in Banach spaces and Moore-Penrose inverses in Hilbert spaces of closed linear operators [J]. Linear Algebra Appl., 2011, 435(1): 117 127. [14] Huang Q L, Zhu L P, Geng W H, Yu J N. Perturbation and expression for inner inverses in Banach spaces and its applications [J]. Linear Algebra Appl., 2012, 436(9): 3715 3729. [15] Huang Q L, Zhu L P, Jiang Y Y. On the stable perturbation of outer inverses of linear operators in Banach spaces [J]. Linear Algebra Appl., 2012, 437(7): 1942 1954. [16] Wang Y W, Zhang H. Perturbation analysis for oblique projection generalized inverses of closed linear operators in Banach spaces [J]. Linear Algebra Appl., 2007, 426(1): 1 11. [17] Xu Q X, Song C N, Wei Y M. The stable perturbation of the Drazin inverse of the square matrices [J]. SIAM J. Matrix Anal. Appl., 2009, 31(3): 1507 1520. [18] Yang X D, Wang Y W. Some new perturbation theorems for generalized inverses of linear operators in Banach spaces [J]. Linear Algebra Appl., 2010, 433(11): 1939 1949. THE SIMPLEST EXPRESSION OF THE ALGEBRAIC GENERALIZED INVERSES IN LINEAR SPACES GUO Zhi-rong 1,2, HUANG Qiang-lian 1, ZHANG Li 1 (1. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002 China) (2. College of Mathematics, Yangzhou Vocational University, Yangzhou 225009 China) Abstract: In this paper, the authors study the additivity and expression of algebraic generalized inverses from the view of pure algebra in the framework of linear space. Utilizing the algebraic direct sum decomposition of linear space, we first give the necessary and sufficient condition of the invertibility of I + AT + and T + = T + (I + AT + ) 1. We also provide some necessary and sufficient conditions for T + to have the simplest expression. As applications, we discuss the perturbation problem of generalized inverse in Banach space and Moore-Penrose inverse in Hilbert space, which extend and improve many recent results in this topic. Keywords: algebraic generalized inverse; generalized inverse; Moore-Penrose inverse; the simplest expression; linear space 2010 MR Subject Classification: 47L05; 46A32