Generalized Linear Model [GLM]

Σχετικά έγγραφα
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ «ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΣΤΗΝ ΕΠΙΔΗΜΙΟΛΟΓΙΑ»

α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

MATHACHij = γ00 + u0j + rij

ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΚΑΙ ΕΡΜΗΝΕΙΑ ΤΩΝ ΚΑΜΠΥΛΩΝ ΛΕΙΤΟΥΡΓΙΚΟΥ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟΥ ΔΕΚΤΗ ΜΕΣΩ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ

ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ

Multi-dimensional Central Limit Theorem

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

ΠΑΛΙΝΔΡΟΜΙΚΑ ΜΟΝΤΕΛΑ ΓΙΑ ΔΥΑΔΙΚΕΣ ΚΑΙ ΑΠΑΡΙΘΜΗΤΕΣ ΧΡΟΝΟΣΕΙΡΕΣ

Multi-dimensional Central Limit Theorem

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

Multilevel models for analyzing people s daily moving behaviour

Downloaded from hakim.hbi.ir at 17:53 IRST on Thursday October 11th : . C.A.MAN AFP. 1 Acute Flaccid Paralysis (AFP)

Επαναληπτικό μάθημα GLM

Bayesian random effects model for disease mapping of relative risks

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Stochastic Finite Element Analysis for Composite Pressure Vessel

ΑΝΑΛΥΣΗ ΕΠΑΝΑΛΑΜΒΑΝΟΜΕΝΩΝ ΔΙΑΤΑΞΙΜΩΝ ΔΙΑΚΡΙΤΩΝ ΔΕΔΟΜΕΝΩΝ

Γενικευμένα Γραμμικά Μοντέλα Σημειώσεις

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA

Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Exam Statistics 6 th September 2017 Solution

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Συνεχείς συναρτήσεις και συντελεστής µεταβλητότητας: Προσέγγιση µέσα από δειγµατοληψία

ΙΜΕΤΑΒΛΗΤΑ ΜΟΝΤΕΛΑ ΓΙΑ ΙΑΧΡΟΝΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΙΚΤΩΝ ΤΗΣ HIV-1 ΛΟΙΜΩΞΗΣ, ΠΑΡΟΥΣΙΑ ΕΝΟΣ ΜΗ-ΑΓΝΟΗΣΙΜΟΥ ΜΗΧΑΝΙΣΜΟΥ ΠΑΡΑΓΩΓΗΣ ΕΛΛΕΙΠΟΥΣΩΝ ΜΕΤΡΗΣΕΩΝ

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ

LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26

Introduction Introduction

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

Political Science 552


ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

1. Διδιάστατοι πίνακες συνάφειας χωρίς τη χρήση γενικευμένων γραμμικών μοντέλων

Concomitants of generalized order statistics from bivariate Lomax distribution

ΥΨΗΛΟΥ ΣΗΜΕΙΟΥ ΚΑΤΑΡΡΕΥΣΗΣ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ PENALIZED TRIMMED SQUARES

LECTURE 4 : ARMA PROCESSES

ιαφάνειες ιαλέξεων 1-1

HMY 795: Αναγνώριση Προτύπων

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

5.4 The Poisson Distribution.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )

Lecture 7: Overdispersion in Poisson regression

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2


Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Modelling Lifetime Dependence for Older Ages using a Multivariate Pareto Distribution

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

5. Partial Autocorrelation Function of MA(1) Process:

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

Λογιστική Παλινδρόµηση

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

α & β spatial orbitals in

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Constant Elasticity of Substitution in Applied General Equilibrium

An Inventory of Continuous Distributions

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

V. Finite Element Method. 5.1 Introduction to Finite Element Method

6. MAXIMUM LIKELIHOOD ESTIMATION

ΕΚΤΙΜΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΑΣΘΕΝΩΝ ΜΕΤΑ ΑΠO ΕΜΦΥΤΕΥΣΗ ΑΠΙΝΙΔΩΤΗ

Estimators when the Correlation Coefficient. is Negative

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

SECTION II: PROBABILITY MODELS

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Εργασία 6: Συνδυασμός Μαθηματικών με γραφικές παραστάσεις. Ομάδα Β: Επεξεργασία πειραματικών δεδομένων

Exercises to Statistics of Material Fatigue No. 5

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Λέξεις Κλειδιά: Γεωγραφικά Σταθμισμένη Παλινδρόμηση (GWR), Γονιμότητα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Transcript:

Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th

A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher: 1920 s 1935). Lkelhood functon a general approach to nference about any statstcal model (Fsher, 1922). Dluton assays a bnomal dstrbuton wth complementary log-log lnk (Fsher, 1922). Exponental famly class of dstrbutons wth suffcent statstcs for parameters (Fsher, 1934). Probt analyss bnomal dstrbuton & probt lnk (Blss, 1935). Logt for proportons bnomal dstrbuton & logt lnk (Berkson, 1944; Dyke & Patterson, 1952)

A Lttle Hstory (contnued) Item analyss Bernoull dstrbuton & logt lnk (Rasch, 1960). Log lnear models for counts Posson dstrbuton & log lnk (Brch, 1963). Regressons for survval data exponental dstrbuton & recprocal or log lnk (Fegl & Zelen, 1965; Zppn & Armtage, 1966; Glasser, 1967). Inverse polynomals Gamma dstrbuton & recprocal lnk (Nelder, 1966). Nelder & Wedderburn (1972): provded unfcaton. They showed - All the prevously mentoned models are specal cases of general model, Generalzed Lnear Models - The MLE for all these models could be obtaned usng same algorthm. - All of the models lsted have dstrbutons n the Exponental Dsperson Famly

Generalzed Lnear Model (Generalzed Lnear Model: GLM) ก Nelder & Wedderburn (1972) Contnuous data-contnuous data Regresson Contnuous data-categorcal data Anova

Generalzed Lnear Model [GLM] ก 3 ก ก - ก (random component) - ก (systematc component) - ก ก (lnk functon) E(Y)=α + β 1 x 1 + + β k x k

- ก (random component) ก ก ก ก ก ก (response varable) ก ก ก (type of exponental famly) E(Y)=α + β 1 x 1 + + β k x k

- ก (systematc component) ก ก ก ก ก E(Y) = α + β x + + 1 1 β x k k ก ก (lnear combnaton) ก ก ก (lnear predctor)

X ก X 3 = X I X 2 (X 3 ก nteracton X I X 2 ) X 3 = X 2 1

ก ก (lnk functon) ก ก ก ก ก ก µ =E(Y) ก ก (lnear predctor)

µ g(µ) = α + β 1 x 1 + + β k x k ก g(.) ก ก (lnk functon) ก ก ก g(µ) = µ ก ก ก ก (dentty lnk) µ = α + β 1 x 1 + + β k x k

ก ก -loglnear model ก g(µ) = log(µ) log(µ) = α + β 1 x 1 + + β k x k

ก ก -logt model ก µ g(µ) = log 1µ µ log = α+ β x + 1 µ +.. β x 1 1 k k

1 ก ก ก ก Normal Identty Regresson Normal Identty ก Analyss of varance Normal Identty Analyss of covarance Bernoull Logt Logstc regresson Posson Log Log lnear Multnomal Gernalzed logt Multnomal response

STATA lnk functons are Lnk functon glm opton ---------------------------------------- dentty lnk(dentty) log lnk(log) logt lnk(logt) probt lnk(probt) complementary log-log lnk(cloglog) odds power lnk(opower #) power lnk(power #) negatve bnomal lnk(nbnomal) log-log lnk(loglog) log-complment lnk(logc) STATA dstrbuton famles are Famly glm opton ---------------------------------------- Gaussan(normal) famly(gaussan) Inverse Gaussan famly(gaussan) Bernoull/bnomal famly(bnomal) Posson famly(posson) Negatve bnomal famly(nbnomal) Gamma famly(gamma)

ก ก ก ก ก ก HD NHD 0 24 1355 1379 2 35 603 638 4 21 192 213 5 30 224 254 µ log 1µ = α + β 1x 1 glm hd1 snore, famly(bnomal n) lnk(logt)

GLM. nput snore hd1 hd0 snore hd1 1. 0 24 1355 2. 2 35 603 3. 4 21 192 4. 5 30 224 5. end hd0. generate n=hd0+hd1

. glm hd1 snore, famly(bnomal n) lnk(logt) Iteraton 0: log lkelhood = -11.539348 Iteraton 1: log lkelhood = -11.530734 Iteraton 2: log lkelhood = -11.530733 Generalzed lnear models No. of obs = 4 Optmzaton : ML: Newton-Raphson Resdual df = 2 Scale param = 1 Devance = 2.808911793 (1/df) Devance = 1.404456 Pearson = 2.874323296 (1/df) Pearson = 1.437162 Varance functon: V(u) = u*(1-u/n) Lnk functon : g(u) = ln(u/(n-u)) Standard errors : OIM [Bnomal] [Logt] Log lkelhood = -11.53073319 AIC = 6.765367 BIC =.0363230709 ------------------------------------------------------------------------------ hd1 Coef. Std. Err. z P> z [95% Conf. Interval] -------------+---------------------------------------------------------------- snore.3973366.0500107 7.95 0.000.2993175.4953557 _cons -3.866248.1662144-23.26 0.000-4.192022-3.540474 ------------------------------------------------------------------------------

Analyss of Ft - Devance Log Lkeldood - ก random component - ก logt Log Lkelhood = n ln(n ) 1 1 + n ln(n 0 0 ) nln(n) Devence = -2[n ln(n ) 1 1 + n ln(n 0 ) 0 nln(n)]

ก ก CHD Age chd Phat l1 20 0 0.043479-0.0444523 23 0 0.059621-0.0614728 24 0 0.066153-0.0684424 69 1 0.912465-0.091606-53.6765477 ก Log Lkelhood, Devance constant - Devance (D) ก Log lkelhood - goodness of ft ก

Log Lkelhood = n ln(n ) 1 1 + n ln(n 0 = 43ln(43) + 57ln(57) 100ln(100) = 161.7316 + 230.45392-460.51702 = -68.331491 0 ) nln(n) Devence = -2[n ln(n ) 1 1 = -2(-68.331491) + n ln(n 0 ) 0 nln(n)] = 136.66298

LogLkelhood πˆ ι = n y ln( πˆ = 1 = 1 ) + (1 y )ln(1 - ε 5.309453+.1109211(20) + ε 5.309453+.1109211(20) πˆ ) = 0.04347874 LogLkelh ood = - 53.6765477 Devence = n 2 = 1 y ln( πˆ ) + (1 y )ln(1 - πˆ ) = -2(-53.67654) = 107.3531

Model Statstcs Akake nformaton crteron (AIC) 2L(M k ) + 2p AIC = n (53.676546) + 2(2) AIC = = 100 1.1135309 AIC better ft model

. glm chd age, famly(bnomal) lnk(logt) Iteraton 0: log lkelhood = -53.710416 Iteraton 1: log lkelhood = -53.676576 Iteraton 2: log lkelhood = -53.676546 Iteraton 3: log lkelhood = -53.676546 Generalzed lnear models No. of obs = 100 Optmzaton : ML: Newton-Raphson Resdual df = 98 Scale param = 1 Devance = 107.3530927 (1/df) Devance = 1.09544 Pearson = 101.9429241 (1/df) Pearson = 1.040234 Varance functon: V(u) = u*(1-u) [Bernoull] Lnk functon : g(u) = ln(u/(1-u)) [Logt] Standard errors : OIM Log lkelhood = -53.67654635 AIC = 1.113531 BIC = 98.14275232 ------------------------------------------------------------------------------ chd Coef. Std. Err. z P> z [95% Conf. Interval] -------------+---------------------------------------------------------------- age.1109211.0240598 4.61 0.000.0637647.1580776 _cons -5.309453 1.133655-4.68 0.000-7.531376-3.087531

Log lkelhood rato ft ก constant. glm chd, f(b) l(l) Iteraton 0: log lkelhood = -68.373484 Iteraton 1: log lkelhood = -68.331492 Iteraton 2: log lkelhood = -68.331491 Generalzed lnear models No. of obs = 100 Optmzaton : ML: Newton-Raphson Resdual df = 99 Scale param = 1 Devance = 136.6629827 (1/df) Devance = 1.380434 Pearson = 99.99999993 (1/df) Pearson = 1.010101 Varance functon: V(u) = u*(1-u) [Bernoull] Lnk functon : g(u) = ln(u/(1-u)) [Logt] Standard errors : OIM Log lkelhood = -68.33149136 AIC = 1.38663 BIC = 132.0578125 ------------------------------------------------------------------------------ chd Coef. Std. Err. z P> z [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons -.2818511.2019893-1.40 0.163 -.6777429.1140406 ------------------------------------------------------------------------------ log lkelhood ก 68.331491 Devence = -2(-68.331491) = 136.6629827

ft ก constant age. glm chd age, f(b) l(l) Iteraton 0: log lkelhood = -53.710416 Iteraton 1: log lkelhood = -53.676576 Iteraton 2: log lkelhood = -53.676546 Iteraton 3: log lkelhood = -53.676546 Generalzed lnear models No. of obs = 100 Optmzaton : ML: Newton-Raphson Resdual df = 98 Scale param = 1 Devance = 107.3530927 (1/df) Devance = 1.09544 Pearson = 101.9429241 (1/df) Pearson = 1.040234 Varance functon: V(u) = u*(1-u) [Bernoull] Lnk functon : g(u) = ln(u/(1-u)) [Logt] Standard errors : OIM Log lkelhood = -53.67654635 AIC = 1.113531 BIC = 98.14275232 ------------------------------------------------------------------------------ chd Coef. Std. Err. z P> z [95% Conf. Interval] -------------+---------------------------------------------------------------- age.1109211.0240598 4.61 0.000.0637647.1580776 _cons -5.309453 1.133655-4.68 0.000-7.531376-3.087531 ------------------------------------------------------------------------------

= varable the wthg lkelhood varable the wthout lkelhood 2ln G = = n 1 ) y (1 ) (1 y 0 n n 0 n 1 n n 1 n 2ln G πˆ πˆ [ ] [ ] = + + = n 1 nln(n) ) 0 )ln(n 0 (n ) 1 ln(n 1 n ) )ln(1 y (1 ) ln( y 2 G πˆ πˆ [ ] { } 31 29 100ln(100) 57ln(57) 43ln(43) 53.677 2 G. = + =

. logt chd age Iteraton 0: log lkelhood = -68.331491 Iteraton 1: log lkelhood = -54.170558 Iteraton 2: log lkelhood = -53.681645 Iteraton 3: log lkelhood = -53.676547 Iteraton 4: log lkelhood = -53.676546 Logt estmates Number of obs = 100 LR ch2(1) = 29.31 Prob > ch2 = 0.0000 Log lkelhood = -53.676546 Pseudo R2 = 0.2145 ------------------------------------------------------------------------------ chd Coef. Std. Err. z P> z [95% Conf. Interval] -------------+---------------------------------------------------------------- age.1109211.0240598 4.61 0.000.0637647.1580776 _cons -5.309453 1.133655-4.68 0.000-7.531376-3.087531