Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Σχετικά έγγραφα
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

On Generating Relations of Some Triple. Hypergeometric Functions

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

1. For each of the following power series, find the interval of convergence and the radius of convergence:

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

Presentation of complex number in Cartesian and polar coordinate system

IIT JEE (2013) (Trigonomtery 1) Solutions

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Uniform Convergence of Fourier Series Michael Taylor

Homework for 1/27 Due 2/5

Solve the difference equation

Ψηφιακή Επεξεργασία Εικόνας


Example Sheet 3 Solutions

Homework 3 Solutions

α β

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

LAD Estimation for Time Series Models With Finite and Infinite Variance

Inverse trigonometric functions & General Solution of Trigonometric Equations

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Second Order RLC Filters

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Outline. Detection Theory. Background. Background (Cont.)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Degenerate Perturbation Theory

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Other Test Constructions: Likelihood Ratio & Bayes Tests

Bessel function for complex variable

A study on generalized absolute summability factors for a triangular matrix

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Heisenberg Uncertainty Principle

p n r

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EN40: Dynamics and Vibrations

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

4.6 Autoregressive Moving Average Model ARMA(1,1)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Fractional Colorings and Zykov Products of graphs

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Solutions: Homework 3

EE512: Error Control Coding

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 3: Asymptotic Normality of M-estimators

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Statistical Inference I Locally most powerful tests

The Neutrix Product of the Distributions r. x λ

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

1. Matrix Algebra and Linear Economic Models

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Every set of first-order formulas is equivalent to an independent set

Trigonometric Formula Sheet

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

The Simply Typed Lambda Calculus

B.A. (PROGRAMME) 1 YEAR

2 Composition. Invertible Mappings

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

On Inclusion Relation of Absolute Summability

Distances in Sierpiński Triangle Graphs

Kummer s Formula for Multiple Gamma Functions

Reminders: linear functions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Data Dependence of New Iterative Schemes

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Commutative Monoids in Intuitionistic Fuzzy Sets

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Matrices and Determinants

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Elements of Information Theory

Section 8.3 Trigonometric Equations

Transcript:

Zeta Notatios Traditioal ame Riema zeta fuctio Traditioal otatio Ζs Mathematica StadardForm otatio Zetas Primary defiitio... Ζs ; Res s k k Specific values Specialized values..3.. Ζ B ;..3.. Ζ ;..3.3. Ζ Π B ;..3.53. Ζ Π k k k r r r k r ;..3.4. Ζ Π E ;

http://fuctios.wolfram.com Values at fixed poits..3.5. Ζ..3.6. Ζ9 3..3.7. Ζ8..3.8. Ζ7 4..3.9. Ζ6..3.. Ζ5 5..3.. Ζ4..3.. Ζ3..3.3. Ζ..3.4. Ζ..3.5. Ζ..3.6. Ζ Ζ Π 6..3.7...3.8. Ζ3 7Π3 8 k k 3 Π k..3.54. k 5 k 6 k 3 k Ζ3 k k 5 k

http://fuctios.wolfram.com 3..3.55. k 5 k 5 k 77 k Ζ3 64 k k 5 As of 3, the values of Ζ3 was computed with a accuracy of approximately decimal digits by usig above formula...3.56. Ζ3 3 Π 6 loga log Π Ψ 4..3.57. Ζ3 9 4 8 F 7,,,,,, Brychkov Yu.A. (6) Ζ4 Π4..3.9. 9 Ζ5 Π5..3.. 94 Ζ5 Π4 Ζ6 Π6 8 48 6, 7 35 k k 5 Π k 35 k k 5 Π k..3.58. 45 log Π Ψ6 6 Ψ 5 Ψ 4..3.. 945..3.. Ζ7 9Π7 56 7 k k 7 Π k Ζ7 Π6 Ζ8 945..3.59. 8 48 6 ; 4 3, 5 3, 3, 3,, 945 log Π 84 7 Ψ8 36 Ψ 7 6 Ψ 6 Ψ 4..3.3. Π8..3.4. Ζ9 5Π9 3 74 778..3.6. Π8 99 495 k k 9 Π k 495 k k 9 Π k 8 6, Ζ9 475 log Π 8 3 4 Ψ 5 Ψ 9 5 Ψ 8 4 Ψ 6 Ψ 4 8 6 ; 7

http://fuctios.wolfram.com 4 Ζ 93 555..3.5. Π..3.6. Ζ 453Π 45 675 5 k k Π k..3.7. 69 Π Ζ 638 5 875..3.8. Ζ3 89Π3 57 43 75..3.9. Π4 Ζ4 8 43 5..3.3. 6 5 855 k k 3 Π k 855 k k 3 Π k 3 687Π5 Ζ5 39 769 879 5 k k 5 Π k..3.3. 367 Π 6 Ζ6 35 64 566 5..3.3. 397 549Π 7 Ζ7 4 59 867 5..3.33. 43 867 Π 8 Ζ8 38 979 95 48 5..3.34. 6 63 3 85 k k 7 Π k 7 78 537Π 9 Ζ9 438 6 54 68 75 k k 9 Π k..3.35. 74 6 Π Ζ 53 39 465 9 65..3.36. 68 59 64 373Π Ζ 88 63 85 76 59 53 5..3.37. 55 366 Π Ζ 3 447 856 94 643 5 4 96 35 98 75 k k Π k 3 85 k k 7 Π k 98 75 k k Π k

http://fuctios.wolfram.com 5..3.38. 36 364 9 Π 4 Ζ4 99 57 963 756 5 875..3.39. 35 86 Π 6 Ζ6 94 48 976 3 578 5..3.4. 6 785 56 94 Π 8 Ζ8 564 653 66 7 76 73 67 875..3.4. 6 89 673 84 Π 3 Ζ3 5 66 878 84 669 8 674 7 5 65..3.4. 7 79 3 4 7 Π 3 Ζ3 6 49 57 34 7 66 46 5..3.43. 5 68 697 55 Π 34 Ζ34 3 454 58 433 748 587 9 89 65..3.44. 6 35 7 553 53 477 373 Π 36 Ζ36 777 977 56 866 588 586 487 68 66 44 9 875..3.45. 38 4 4 983 3 Π 38 Ζ38 43 467 68 49 375 776 343 76 883 984 375..3.46. 6 8 78 496 449 5 Π 4 Ζ4 8 43 7 89 638 86 798 4 8 39 556 64 65..3.47. 3 4 95 87 836 4 65 38 Π 4 Ζ4 37 789 89 88 96 7 7 594 47 864 667 47 734 375..3.48. 5 6 594 468 963 8 588 86 Π 44 Ζ44 37 93 679 547 5 773 56 76 98 457 776 679 69 9 875..3.49. 3 73 68 3 89 7 874 48 Π 46 Ζ46 7 67 4 448 3 53 33 358 48 6 59 46 89 65..3.5. 5 69 43 368 997 87 686 49 7 547 Π 48 Ζ48 4 93 648 63 384 74 996 59 698 9 478 879 58 6 86 669 9 875

http://fuctios.wolfram.com 6..3.5. 39 64 576 49 86 37 856 998 Π 5 Ζ5 85 58 77 457 546 764 463 363 635 5 374 44 83 54 365 34 375 Values at ifiities..3.5. Ζ Geeral characteristics Domai ad aalyticity Ζs is a aalytical fuctio of s, which is defied over the whole complex s-plae...4.. sζs Symmetries ad periodicities Mirror symmetry..4.. Ζs Ζs Periodicity No periodicity Poles ad essetial sigularities The fuctio Ζs has oly two sigular poits: a) s is the simple pole with residue ; b) s is a essetial sigular poit...4.3. ig s Ζs,,,..4.4. res s Ζs Brach poits The fuctio Ζs does ot have brach poits...4.5. s Ζs Brach cuts The fuctio Ζs does ot have brach cuts.

http://fuctios.wolfram.com 7..4.6. s Ζs Series represetatios Geeralized power series Expasios at s s ; s..6.7. Ζs Ζs Ζ s s s Ζ s s s ; s s s..6.8. Ζs Ζs Ζ s s s Ζ s s s Os s 3 ; s..6.9. Ζ k s s s k Ζs k k ; s..6.. Ζs Ζs Os s ; s Expasios at s..6.. Ζs log Π s log logπ..6.3. Ζs log Π s log logπ..6.. Ζs Os Γ Γ Π 4 s ; s Π 4 s Os 3 Expasios at s..6.3. Ζs s Γ s Γ s ; s..6.4. Ζs s Γ s Γ s Os 3..6.. Ζs k Γ s k s k k k

http://fuctios.wolfram.com 8..6.. Ζs Os s..6.5. Ζ s Ζs s Η k s k ; Η k k k k lim x x j log k j j j logk x k ; p e ; p e e a ; a e,e e a p e Krzysztof Maslaka..6.6. Ζ s Ζs s Η k s k ; k k j Η k k j c kj,j ; c,k k c m,k m m k m k i mi Γ mi c i,k j i m i Krzysztof Maslaka Expasios at s..6.3. Ζs 4 Π s Ζ log4 Π Ψ Ζ Ζ O s 3 ; s..6.4. Ζs Ζ Π s Os ; s Expoetial Fourier series..6.5. Ζs Π s s si Π s cos Π k cos Π s k k s si Π k ; Res k k s Asymptotic series expasios..6.6. Ζs Ζs ; s This meas it caot be represeted through other fuctios. Other series represetatios..6.7. Ζs ; Res s k k

http://fuctios.wolfram.com 9..6.8. Ζs k ; Res s s k k s..6.9. Ζs s k ; Res s k..6.. Ζs s k k k k s Ζs..6.7. k s k k s k Ζs..6.. s k..6.. t s k t t ; Res k t Ζs s s k k k k Ζ k Krzysztof Maslaka: Hypergeometric-like Represetatio of the Zeta-Fuctio of Riema math-ph/57 () http://arxiv.org/abs/math-ph/57 Krzysztof Maslaka: {}[[,]] Acta Cosmologica XIII-, {}[[,]] (997) For specialized values..6.6. m Ζ m m k k ; m m k m k..6.8. Ζ5 369 6 65 k 4 k 4 k 4 k 3 5 9 5 64 k 6 6 944 k 496 4 k 5 38 7 64 4 k 8 5 3 96 4 k 4 5 49 696 4 k 5 4 77 8 4 k 9 5 5 6 4 k 5 5 65 7 4 k 5 8 4 k 4 5 4 k 5 33 48 4 7 76 4 k 3 5 4 k 4 5 43 84 4 k 5 385 664 4 k 6 5 6456 4 k 5 3968 4 k 5 496 4 k 7 5 6 4 k 3 5 3 744 5 89 376 4 k 5 5 4 k 6 5 6 33 8 4 k 5 43 584 4 k 8 5 8 5 4 k 4 5 984 4 k 3 5 5 87 4 k 7 5 48 4 k 9 5 6 976 4 k 5

http://fuctios.wolfram.com G.Huvet (6) Itegral represetatios O the real axis Of the direct fuctio..7.. Ζs s s Ζs Ζs..7.. s t s t s t ; Res t t ; Res t..7.3. s Ζs s t s t..7.4. s t ; Res t t s t cschtt ; Res..7.5. s Ζs t s t sechtt ; Res s s..7.6. Ζs s s t s cschtt ; Res..7.7. Ζs s s t s csch tt ; Res..7.8. s Ζs t s sech tt ; Res s s..7.9. sis ta t Ζs t t s Π t s..7.. s Ζs s..7.. Ζs s t s frac t coss ta t t t s cosh Π t t ; Res

http://fuctios.wolfram.com..7.. Ζs s s s t t t t k s ; Res s k Ζs..7.. s s s B t t t s t..7.3. Ζs Πs ϑ s 3, Π t t s t ; Res k k s k B k ; Res Res s k..7.4. Πt logζs s t ; Res t t s For specific values..7.6. Ζ 3 Π..7.7. Ζ Π..7.8. Ζ Π..7.9. Ζ Π..7.. Ζ Π E x x ; E x ta Π x B x ta Π x E x cot Π x B x cot Π x x ; x ; x ; x ; Multiple itegral represetatios Ζs..7.. s logt Τ s..7.5. t Τ Ζ m m m tτ ; Res 3 t t t ; m m m k t k Product represetatios

http://fuctios.wolfram.com..8.. Ζs k p ; Res p s k primek k..8.. Ζs exp log Π s s k s s Ρ k ; ΖΡ k ImΡ k Ρ k Limit represetatios Ζs lim..9.. k k s s s ; Res s..9.. Ζs lim s k k k k s..9.3. m Ζ lim cot m m k k m ; Ζs Ζs lim z..9.4. lim s..9.5. k k z k ; z s k s k k s k F, k ; k ; This meas the classical series is Abel summable for all s. Differetial equatios Ordiary liear differetial equatios ad wroskias For the direct fuctio itself The zeta fuctio does ot satisfy ay algebraic differetial equatio (D. Hilbert, 9). Trasformatios Trasformatios ad argumet simplificatios Argumet ivolvig basic arithmetic operatios

http://fuctios.wolfram.com 3..6.. Π s s Ζ s Ζs s..6.. Ζ s Π cos Π s s s Ζs Ζ s..6.3. Π s s si Π s Ζs Idetities Fuctioal idetities For the fuctio itself..7.6. Ζs s s Π s si Π s..7.. Π s s Ζs Ζ s s Ζ s Ζs..7.3. s s k k s k j k j k j j Ζ j Krzysztof Maslaka: Hypergeometric-like Represetatio of the Zeta-Fuctio of Riema math-ph/57 () http://arxiv.org/abs/math-ph/57..7.5. Ζ k Ζ k k Ζ ; Icludig derivatives of the fuctio..7.. Ζ s k k exp s log Π Π k Π log Π exp s Π Π log Π log Π k k s Ζs ; s k

http://fuctios.wolfram.com 4..7.4. Ζ z k k z Π log Π k Π log Π z Πlog Π k Π log Π k z Ζz z k ; Differetiatio Low-order differetiatio Geeral case... Ζs logk ; Res s k k s...4. Ζs log k ; Res s k s k Derivatives at zero... Ζ log Π...7. Ζ Γ log Π Π...8. 4 Ζ 3 3 log Π Γ 3 Γ 3 Γ...9. Ζ3 log3 Π 8 Π log Π 3 log Π 3 Ζ 4 4 Π log Π Γ 6 log Π Γ 6 Γ 3 log Π Π 4 6 log Π Γ 6 log Π Γ Γ Γ 3 4 log Π Ζ3 log4 Π 4 3 log Π... 9 Π4 48 3 4 Ζ 5 96 8 3 Γ log Π Π 4 Π Γ 4 3 log Π Γ 3 log Π Γ Γ 3 4 Π 6 log Π Γ 3 Γ Ζ3 log 3 Π 4 6 log Π Γ 3 Γ Ζ3 log 3 Π Π log Π 48 log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 4 Ζ5 log Π Ζ3 log 5 Π 9 Π 4 log Π 7 4 log Π 9 5

http://fuctios.wolfram.com 5... Ζ 6 9 3 Π4 log Π Γ 5 log 4 Π Γ 5 8 4 8 Γ log Π Π 3 log 3 Π Γ 3 log Π Γ 3 5 log Π Γ 4 3 Γ 5 5 3 log Π Γ 6 Γ 8 Ζ3 4 log 3 Π Π log Π 5 8 Π log Π Γ log Π Γ 4 Γ 3 8 log Π Ζ3 log 4 Π 3 Π Γ log Π 4 log Π Γ log Π Γ 4 Γ 3 8 log Π Ζ3 log 4 Π 9 Π 4 5 Π log Π Γ Γ 4 log 3 Π Ζ3 Γ 6 log Π Γ 4 log Π Γ 3 Γ 4 7 log Π Ζ5 Ζ3 log Π Γ Ζ3 6 Γ Ζ3 log 3 Π Ζ3 75 log6 Π 5 Π6 log Π 688... Ζ 7 384 344 5 6 Γ log Π Π 5 6 53 Π 4 6 log Π Γ 3 Γ Ζ3 log 3 Π 54 4 4 log Π Γ Γ Ζ3 log 3 Π Π log Π 56 3 Π Γ log Π 4 6 log Π Γ 6 log Π Γ Γ 3 8 log Π Ζ3 log 4 Π 9 Π 4 68 9 Π 4 Γ 4 Π 3 log Π Γ 3 log Π Γ Γ 3 48 5 log 4 Π 8 log Π Ζ3 Γ log Π Γ 3 5 log Π Γ 4 Γ 5 Γ log 3 Π Ζ3 336 Π log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 4 Ζ5 log Π Ζ3 log 5 Π 84 4 Π 6 log Π Γ 3 Γ Ζ3 log 3 Π 48 log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 4 Ζ5 log Π Ζ3 log 5 Π 9 Π 4 log Π 9 4 log 5 Π log Π Ζ3 4 Ζ5 Γ 4 log 3 Π Γ 3 5 log Π Γ 4 4 log Π Γ 5 7 Γ 6 7 Ζ7 54 log Π Ζ5 5 Γ log 4 Π 8 log Π Ζ3 8 log Π Ζ3 8 Γ 3 Ζ3 7 log 4 Π Ζ3 log 7 Π 75 Π 6 log Π 67 6 log Π 5 7

http://fuctios.wolfram.com 6...3. Ζ 8 75 96 Π6 log Π Γ 8 log 6 Π Γ 7 6 6 4 Γ 6 log Π 5 Π 84 log 5 Π Γ 4 log 4 Π Γ 3 4 log 3 Π Γ 4 84 log Π Γ 5 8 log Π Γ 6 4 Γ 7 8 5 6 log Π Γ 3 Γ 8 Ζ3 4 log 3 Π Π log Π 33 48 Π4 log Π Γ log Π Γ 4 Γ 3 8 log Π Ζ3 log 4 Π 7 6 4 4 Π Γ 3 log Π 8 log Π Γ log Π Γ 4 Γ 3 4 log Π Ζ3 3 log 4 Π 9 Π 4 7 6 Π 3 log 4 Π 8 log Π Ζ3 Γ 6 log Π Γ 3 3 log Π Γ 4 6 Γ 5 7 44 log Π Ζ5 6 Γ log 3 Π Ζ3 4 Ζ3 4 log 3 Π Ζ3 log 6 Π 6 3 Π 6 log Π Γ 3 Γ 4 Ζ3 log 3 Π 4 log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 48 Ζ5 4 log Π Ζ3 log 5 Π 9 Π 4 log Π 96 596 Π 4 Γ log Π 68 Π log Π Γ log Π Γ 4 Γ 3 8 log Π Ζ3 log 4 Π 7 344 3 log 4 Π 8 log Π Ζ3 Γ 6 log Π Γ 3 3 log Π Γ 4 6 Γ 5 44 log Π Ζ5 6 Γ log 3 Π Ζ3 4 Ζ3 4 log 3 Π Ζ3 log 6 Π 75 Π 6 4 9 Π4 log Π Γ Γ Π 4 log 3 Π Ζ3 Γ 6 log Π Γ 4 log Π Γ 3 Γ 4 6 6 log 5 Π log Π Ζ3 4 Ζ5 Γ log 3 Π Γ 3 5 log Π Γ 4 6 log Π Γ 5 Γ 6 5 Γ log 4 Π 8 log Π Ζ3 4 Γ 3 Ζ3 88 log Π Ζ7 43 log Π Γ Ζ5 6 Γ Ζ5 344 Ζ3 Ζ5 67 log 3 Π Ζ5 Γ Ζ3 56 log Π Ζ3 log 3 Π Γ Ζ3 68 log Π Γ Ζ3 log Π Γ 3 Ζ3 8 Γ 4 Ζ3 56 log 5 Π Ζ3 83 log8 Π 4 7 Π8 log Π 3 4 7 8

http://fuctios.wolfram.com 7...4. Ζ 9 5 9 Ζ7 Γ 8 44 log Π Ζ5 Γ 8 log Π Ζ3 Γ 5 log 4 Π Ζ3 Γ 36 log 7 Π Γ 9 7 4 Γ 3 log Π Π 6 log 6 Π Γ 5 log 5 Π Γ 3 35 log 4 Π Γ 4 5 log 3 Π Γ 5 6 log Π Γ 6 36 log Π Γ 7 75 9 Γ 8 3 Π6 6 log Π Γ 3 Γ Ζ3 log 3 Π 6 4 6 log Π Γ 3 Γ Ζ3 5 log 3 Π 5 Π log Π 5 6 Π Γ log Π 4 3 log Π Γ 3 log Π Γ Γ 3 8 log Π Ζ3 log 4 Π 9 Π 4 399 8 Π4 log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 4 Ζ5 log Π Ζ3 log 5 Π 63 6 4 4 Π log Π Γ Γ Ζ3 log 3 Π 6 log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 7 Ζ5 6 log Π Ζ3 3 log 5 Π 9 Π 4 log Π 6 3 596 Π 4 Γ log Π 68 Π 6 log Π Γ 6 log Π Γ Γ 3 8 log Π Ζ3 log 4 Π 3 344 5 log 4 Π 8 log Π Ζ3 Γ 3 log Π Γ 3 5 log Π Γ 4 3 Γ 5 44 log Π Ζ5 3 Γ log 3 Π Ζ3 4 Ζ3 4 log 3 Π Ζ3 log 6 Π 75 Π 6 6 75 Π6 Γ 53 Π 4 3 log Π Γ 3 log Π Γ Γ 3 336 Π 3 5 log 4 Π 8 log Π Ζ3 Γ log Π Γ 3 5 log Π Γ 4 Γ 5 Γ log 3 Π Ζ3 9 7 log 6 Π 4 log 3 Π Ζ3 4 Ζ3 44 log Π Ζ5 Γ 35 log 4 Π Γ 3 35 log 3 Π Γ 4 log Π Γ 5 7 log Π Γ 6 Γ 7 Γ log 5 Π log Π Ζ3 4 Ζ5 8 log Π Γ 3 Ζ3 7 Γ 4 Ζ3 Π 4 log 5 Π log Π Ζ3 4 Ζ5 Γ 4 log 3 Π Γ 3 5 log Π Γ 4 4 log Π Γ 5 7 Γ 6 7 Ζ7 54 log Π Ζ5 5 Γ log 4 Π 8 log Π Ζ3 8 log Π Ζ3 8 Γ 3 Ζ3 7 log 4 Π Ζ3 log 7 Π 3 3 53 Π 4 6 log Π Γ 3 Γ Ζ3 log 3 Π 336 Π log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 4 Ζ5 log Π Ζ3 log 5 Π 9 4 log 5 Π log Π Ζ3 4 Ζ5 Γ 4 log 3 Π Γ 3 5 log Π Γ 4 4 log Π Γ 5 7 Γ 6 7 Ζ7 54 log Π Ζ5 5 Γ log 4 Π 8 log Π Ζ3 8 log Π Ζ3 8 Γ 3 Ζ3 7 log 4 Π Ζ3 log 7 Π 75 Π 6 log Π 6 Ζ9 96 log Π Ζ7 8 44 log Π Γ Ζ5 648 Γ 3 Ζ5 96 log Π Ζ3 Ζ5 5 log 4 Π Ζ5 Ζ3 3 54 Γ Ζ3 68 log 3 Π Ζ3 54 log 3 Π Γ Ζ3 54 log Π Γ 3 Ζ3 5 log Π Γ 4 Ζ3 54 Γ 5 Ζ3 84 log 6 Π Ζ3 log9 Π 83 Π 8 log Π 63 56 8 log Π 4 9

http://fuctios.wolfram.com 8...5. 83 Ζ 5 Π8 log Π Γ 45 log 8 Π Γ 5 8 8 4 Γ 84 log Π 7 Π 8 log 7 Π Γ 4 log 6 Π Γ 3 63 log 5 Π Γ 4 63 log 4 Π Γ 5 4 log 3 Π Γ 6 8 log Π Γ 7 45 log Π Γ 8 5 Γ 9 9 7 4 log Π Γ Γ 8 Ζ3 4 log 3 Π Π log Π 375 64 Π6 log Π Γ log Π Γ 4 Γ 3 8 log Π Ζ3 log 4 Π 35 6 6 4 Π Γ 5 log Π 48 log Π Γ log Π Γ 4 Γ 3 4 log Π Ζ3 5 log 4 Π 9 Π 4 33 6 Π4 3 log 4 Π 8 log Π Ζ3 Γ 6 log Π Γ 3 3 log Π Γ 4 6 Γ 5 44 log Π Ζ5 6 Γ log 3 Π Ζ3 4 Ζ3 4 log 3 Π Ζ3 log 6 Π 5 Π 6 log Π Γ 3 Γ 8 Ζ3 4 log 3 Π log 3 Π Ζ3 Γ 3 log Π Γ 5 log Π Γ 3 5 Γ 4 96 Ζ5 8 log Π Ζ3 4 log 5 Π 9 Π 4 log Π 64 4 53 Π 4 Γ 3 log Π 56 Π log Π Γ log Π Γ 4 Γ 3 4 log Π Ζ3 3 log 4 Π 5 344 log 4 Π 8 log Π Ζ3 Γ log Π Γ 3 log Π Γ 4 Γ 5 44 log Π Ζ5 Γ log 3 Π Ζ3 4 Ζ3 4 log 3 Π Ζ3 log 6 Π 75 Π 6 8 Π 56 log 6 Π 4 log 3 Π Ζ3 4 Ζ3 44 log Π Ζ5 Γ 8 log 4 Π Γ 3 8 log 3 Π Γ 4 68 log Π Γ 5 56 log Π Γ 6 8 Γ 7 576 log Π Ζ7 68 Γ log 5 Π log Π Ζ3 4 Ζ5 688 Ζ3 Ζ5 344 log 3 Π Ζ5 log Π Ζ3 4 log Π Γ 3 Ζ3 56 Γ 4 Ζ3 log 5 Π Ζ3 log 8 Π 5 8 3 66 Π 4 6 log Π Γ 3 Γ 4 Ζ3 log 3 Π 68 Π log 3 Π Ζ3 Γ 3 log Π Γ log Π Γ 3 5 Γ 4 48 Ζ5 4 log Π Ζ3 log 5 Π 96 4 log 5 Π log Π Ζ3 4 Ζ5 Γ 4 log 3 Π Γ 3 5 log Π Γ 4 4 log Π Γ 5 7 Γ 6 44 Ζ7 8 log Π Ζ5 5 Γ log 4 Π 8 log Π Ζ3 56 log Π Ζ3 8 Γ 3 Ζ3 4 log 4 Π Ζ3 log 7 Π 75 Π 6 log Π 5 66 Π 6 Γ log Π 63 84 Π 4 log Π Γ log Π Γ 4 Γ 3 8 log Π Ζ3 log 4 Π 5 6 88 Π 3 log 4 Π 8 log Π Ζ3 Γ 6 log Π Γ 3 3 log Π Γ 4 6 Γ 5 44 log Π Ζ5 6 Γ log 3 Π Ζ3 4 Ζ3 4 log 3 Π Ζ3 log 6 Π 5 56 log 6 Π 4 log 3 Π Ζ3 4 Ζ3 44 log Π Ζ5 Γ 8 log 4 Π Γ 3 8 log 3 Π Γ 4 68 log Π Γ 5 56 log Π Γ 6 8 Γ 7 576 log Π Ζ7 68 Γ log 5 Π log Π Ζ3 4 Ζ5 688 Ζ3 Ζ5 344 log 3 Π Ζ5 log Π Ζ3 4 log Π Γ 3 Ζ3 56 Γ 4 Ζ3 log 5 Π Ζ3 log 8 Π 83 Π 8 6 75 Π6 log Π Γ Γ 66 Π 4 4 log 3 Π Ζ3 Γ 6 log Π Γ 4 log Π Γ 3 Γ 4 Π 6 log 5 Π log Π Ζ3 4 Ζ5 Γ log 3 Π Γ 3 5 log Π Γ 4 6 log Π Γ 5 Γ 6 5 Γ log 4 Π 8 log Π Ζ3 4 Γ 3 Ζ3

http://fuctios.wolfram.com 9 4 5 6 3 48 8 log 7 Π 7 log 4 Π Ζ3 8 log Π Ζ3 54 log Π Ζ5 7 Ζ7 Γ 56 log 5 Π Γ 3 7 log 4 Π Γ 4 56 log 3 Π Γ 5 8 log Π Γ 6 8 log Π Γ 7 Γ 8 8 Γ log 6 Π 4 log 3 Π Ζ3 4 Ζ3 44 log Π Ζ5 344 Γ 3 Ζ5 log Π Γ 3 Ζ3 56 log Π Γ 4 Ζ3 Γ 5 Ζ3 6 log Π Ζ9 59 log Π Γ Ζ7 9 6 Γ Ζ7 86 4 Ζ3 Ζ7 43 log 3 Π Ζ7 36 88 Ζ5 6 48 log 3 Π Γ Ζ5 9 7 log Π Γ Ζ5 6 48 log Π Γ 3 Ζ5 5 Γ 4 Ζ5 96 Γ Ζ3 Ζ5 6 48 log Π Ζ3 Ζ5 34 log 5 Π Ζ5 log Π Ζ3 3 5 4 log Π Γ Ζ3 5 4 log Π Γ Ζ3 6 8 Γ 3 Ζ3 4 log 4 Π Ζ3 54 log 5 Π Γ Ζ3 6 log 4 Π Γ Ζ3 6 8 log 3 Π Γ 3 Ζ3 6 log Π Γ 4 Ζ3 54 log Π Γ 5 Ζ3 84 Γ 6 Ζ3 log 7 Π Ζ3 log Π 95 65 4 9 Π log Π 58...6. 9 3 4 5

http://fuctios.wolfram.com 3 4 5 3

http://fuctios.wolfram.com 3 8 7 log 7 Π 7 log 4 Π Ζ3 8 log Π Ζ3 54 log Π Ζ5 7 Ζ7 Γ 54 log 5 Π Γ 3 63 log 4 Π Γ 4 54 log 3 Π Γ 5 5 log Π Γ 6 7 log Π Γ 7 9 Γ 8 4 3 Ζ9 5 9 log Π Ζ7 5 Γ log 6 Π 4 log 3 Π Ζ3 4 Ζ3 44 log Π Ζ5 96 Γ 3 Ζ5 4 9 log Π Ζ3 Ζ5 34 log 4 Π Ζ5 4 Ζ3 3 336 log 3 Π Ζ3 8 log Π Γ 3 Ζ3 54 log Π Γ 4 Ζ3 8 Γ 5 Ζ3 68 log 6 Π Ζ3 log 9 Π 83 Π 8 log Π 84 4 Ζ 8 8 log Π Ζ9 45 6 log Π Γ Ζ7 475 Γ 3 Ζ7 95 4 log Π Ζ3 Ζ7 8 8 log 4 Π Ζ7 399 68 log Π Ζ5 33 64 log 3 Π Γ Ζ5 33 64 log Π Γ 3 Ζ5 66 3 log Π Γ 4 Ζ5 33 64 Γ 5 Ζ5 76 Ζ3 Ζ5 665 8 Γ Ζ3 Ζ5 76 log 3 Π Ζ3 Ζ5 5544 log 6 Π Ζ5 6 6 log Π Ζ3 3 77 log Π Γ Ζ3 84 8 log Π Γ 3 Ζ3 46 Γ 4 Ζ3 94 log 5 Π Ζ3 7 7 log 5 Π Γ Ζ3 46 log 4 Π Γ 3 Ζ3 46 log 3 Π Γ 4 Ζ3 7 7 log Π Γ 5 Ζ3 94 log Π Γ 6 Ζ3 3 Γ 7 Ζ3 65 log 8 Π Ζ3 log Π 95 65 Π log Π 48 99 log Π 5...7.

http://fuctios.wolfram.com 5 6

http://fuctios.wolfram.com 3 5 6 log Π

http://fuctios.wolfram.com 4 log Π Π Ζ

http://fuctios.wolfram.com 5 log Π 6 log Π 93 84 93 Π 3 77 36 Derivatives at other poits...3. Ζ logglaisher...8. Ζ 3 loga 8 log Π 6 Ψ5 3 Ψ 4 7...9. Ζ 5 loga 6 4 log Π Ψ7 6 Ψ 6 Ψ 5 37 5... Ζ 7 loga 6 4 log Π 54 Ψ9 5 Ψ 8 4 Ψ 7 7 Ψ 5... Ζ 9 3 loga 3 4 log Π 36 88 Ψ 8 44 Ψ 3 4 Ψ 9 54 Ψ 7 Ψ 5 79 33 64... Ζ Π Ζ ;...3. Ζ 4 6 log logπ Π Ζ...4. Ζ...5. Ζ 6 Π loga log Π...6. Ζ Π log Π Ψ Ζ Ζ ; Symbolic differetiatio Geeral case...5. Ζs log k ; Res s k k s

http://fuctios.wolfram.com 6 Derivatives at special poits...7. Imz Ζ Π a k Imz k Π k k ; z log Π Π a k s k s Ζs s...8. Ζ ; Fractioal itegro-differetiatio...6. Α Ζs sα s Α Α s Α s logk Α QΑ,, s logk ; Res k k s Itegratio Idefiite itegratio Ivolvig oly oe direct fuctio... k s Ζss s ; Res k logk Ivolvig oe direct fuctio ad elemetary fuctios Ivolvig power fuctio... s Α Ζss sα Α Α, s logk sα k s logk Α Defiite itegratio...3. tσ Ζ t Σ t Σ Π Σ Ζ Σ t Σ ; Σ t A. Ivi : Some Idetities for the Riema Zeta Fuctio math.nt/359 (3) http://arxiv.org/abs/math.nt/359 3...4. 8 coslog t Ζ t t Π log t 4 A. Ivi : Some Idetities for the Riema Zeta Fuctio math.nt/359 (3) http://arxiv.org/abs/math.nt/359

http://fuctios.wolfram.com 7 Summatio Ifiite summatio..3.4. s k k Ζk s zk Ζs, z ; z k..3.5. Ψ z Ζk z k ; z z k..3.6. Ψ z k Ζk z k Ψ z ; z z k..3.7. Ζ k k k C k 4 k Π G.Huvet (6)..3.. k s k Ζk s k k..3.. s k Ζk s s Ζs k k k..3.3. s k Ζk s Ζ s, a k k k Ζs, a..3.8. k Ζk z k a Ψ a z z a a a z a logz a Ψa ; z a k k z k z k..3.9. k Ζk z j Ψ Ζ, Ζ z ; z j j j Ψ j Ζj, z Ζ, j, z Operatios Limit operatio

http://fuctios.wolfram.com 8 lim s..5.. Ζs s Represetatios through more geeral fuctios Through hypergeometric fuctios Ivolvig p F q..6.. Ζ F, a, a,, a ; a, a,, a ; ; a a a..6.. Ζ F, a, a,, a ; a, a,, a ; ; a a a Through Meijer G Classical cases for the direct fuctio itself..6.3., Ζ G,,,,,,, ;..6.4. Ζ G,,,,,,,, ; Through other fuctios..6.5. Ζs, s,..6.6. Ζs, s, s..6.7. Ζs s, s, Ζs S s..6.8...6.9. Ζs Li s ; Res..6.. Ζs Li s s..6.. Ζs Ζs,

http://fuctios.wolfram.com 9..6.. Ζs s Ζ s,..6.3. Ζs Ζs, k ; s k..6.4. q Ζs q s Ζ s, k ; q q k..6.5. Ζs H s Ζs, Represetatios through equivalet fuctios With related fuctios..7.. Ζz Z z exp ϑ z Zeros Sums over zeros Modulo the Riema hypothesis the followig the followig sums over the otrivial zeros of the Zeta fuctio hold:..3.. log4 Π ; lim T Ρ k ΖΡ k ReΡ k Ρ k..3.. Γ Π 8 ; lim T Ρ k Ρ k ΖΡ k ReΡ k..3.3. 3 3 Γ 3 3 Γ 7 Ζ3 8 ; 3 lim T 3 Ρ k Ρ k ΖΡ k ReΡ k..3.4. Γ 4 Γ 4 Γ 4 3 Γ 3 Π4 96 ; 4 lim T 4 Ρ k Ρ k ΖΡ k ReΡ k..3.5. 5 5 3 Γ 5 Γ Γ 5 5 Γ 5 6 6 Γ Γ 3 5 Γ 4 4 3 Ζ5 3 ; 5 lim T 5 Ρ k Ρ k ΖΡ k ReΡ k

http://fuctios.wolfram.com 3..3.6. 6 Γ 3 6 4 Γ Γ 3 Γ 6 3 Γ 4 3 3 Γ 9 Γ Γ 3 4 4 Γ Γ Γ 4 Γ 5 Π6 ; 96 6 lim T 6 Ρ k Ρ k ΖΡ k ReΡ k..3.7. 7 7 5 Γ 7 7 4 Γ 7 6 3 Γ Γ 3 7 4 36 Γ Γ Γ 4 7 4 Γ 6 Γ Γ 3 Γ Γ 4 7 7 Γ 3 Γ 4 Γ 3 Γ 6 Γ 3 Γ 5 7 7 Ζ7 8 ; 7 lim T 7 Ρ k Ρ k ΖΡ k ReΡ k..3.8. 8 Γ 4 4 Γ 3 Γ 3 Γ 8 6 Γ Γ 5 Γ Γ Γ 5 8 6 Γ 3 4 Γ 3 Γ 3 Γ 5 5 9 4 5 Γ 4 3 4 5 Γ Γ 3 Γ Γ 4 6 3 3 48 Γ Γ Γ 4 9 6 Γ 9 Γ Γ 3 Γ Γ 4 Γ 6 Γ 7 Γ 3 63 7 Π8 ; 6 8 8 lim T 8 Ρ k Ρ k ΖΡ k ReΡ k..3.9. Η j log4 Π j j j j j j Ζj ; lim T Ρ k Ρ k Η k s k ΖΡ k ReΡ k logs Ζs k k Theorems The Riema hypothesis o the zeros of the zeta-fuctio All otrivial zeros of Ζ(s) lie o the straight lie Res. The equivalet versio of the Riema hypothesis The Riema hypothesis is equivalet to Ρ A geeralizatio of this result due to Li, Bombieri, Lagarias is: Ρ Γ log4π ; ΖΡ ImΡ. s s l ss Πs s Ζs s Ρ Ρ A. Weil's "explicit formula"

http://fuctios.wolfram.com 3 Let Α be ay fuctio from C, s Αtexps tt. The the followig idetity holds (the Ρ -sum rus over all otrivial zeros of Ζz) Ρ Ρ logp j Αk logp j logp j p k j Αk logp j ΑlogΠ j k j k Αt t Αt Α et t t t The distributio of the zeros The sequece of zeros of Ζz alog the critical lie t is homogeeously distributed mod. Zeta fuctio regularizatio If k a kz is defied for Rez ad ca be aalytically cotiued to a domai cotaiig z, the lim z k a k a kz lim s a k s k Oe map with zeta fuctio The map h : defied by ht ΖΣ t, Ζ Σ t, Ζ Σ t,, Ζ Σ t with costat / < Σ < is dese i. Oe max-property If f z is ay ovaishig cotious aalytic fuctio i the disk z 4, the there exists a real tε such that max Ζz 3 tε f z ε. z4 4 Motgomery cojecture The two-poit correlatio fuctio R r for the zeros of Ζz o the critical lie is R r siπ r Π r. Keatig Saith cojecture For k, k the followig is cojectured: T lim Ζ k T t t Gk ak log T Gk Π k Here Gz is the Bares G fuctio ad ak p k j j k jk j p. Hughes Keatig O Coel cojecture For k, k 3 the followig is cojectured:

http://fuctios.wolfram.com 3 lim T s T Ζ s Gk kt ak log T Gk 3 Π kk Here the sum exteds over all zeros o the critical lie ad Gz is the Bares G fuctio ad ak p k j j k jk j p. GUE hypothesis A fixed set of otrivial zeros of Ζz behaves asymptotically like the eigevalues of a Gaussia uitary esemble. Asymptotical behaviour of zeros The umber Nt of zeros Γ of Ζ t t behaves asymptotically as Nt Π log t Ologt. Π The lattice-packig desity for ay covex symmetrical body The lattice-packig desity for ay covex symmetrical body i dimesios satisfies the iequality Ζ. The probability of a lattice poit to be visible The probability of a lattice poit from d beig visible from the origi (i.e., a d tuple of itegers is relatively prime) is Ζd. The scatterig matrix The scatterig matrix of the Laplace Beltrami operator i the modular domai has the form Ω Ω Ω Ζ Ω Ζ Ω. History L. Euler (737) P. G. L. Dirichlet P. L. Chebyshev B. Riema (859) J. Hadamard (893) H. vo Magoldt (894) Ch. J. de la Vallee Poussi (896) Applicatios iclude umber theory, Bose Eistei ad Fermi Dirac statistics, aalytic approximatio ad evaluatio of itegrals ad products, regularizatio techiques i quatum field theory, Scharhorst effect of quatum electrodyamics, Browia motio.

http://fuctios.wolfram.com 33 Copyright This documet was dowloaded from fuctios.wolfram.com, a comprehesive olie compedium of formulas ivolvig the special fuctios of mathematics. For a key to the otatios used here, see http://fuctios.wolfram.com/notatios/. Please cite this documet by referrig to the fuctios.wolfram.com page from which it was dowloaded, for example: http://fuctios.wolfram.com/costats/e/ To refer to a particular formula, cite fuctios.wolfram.com followed by the citatio umber. e.g.: http://fuctios.wolfram.com/.3.3.. This documet is curretly i a prelimiary form. If you have commets or suggestios, please email commets@fuctios.wolfram.com. -8, Wolfram Research, Ic.