Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Σχετικά έγγραφα
Βέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )

Έλεγχος «Ελάχιστης Ενέργειας»

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου

Έλεγχος «Ελάχιστης Ενέργειας»

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Βέλτιστος Έλεγχος Συστημάτων

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Βέλτιστος Έλεγχος Συστημάτων

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Συστήματα Αυτόματου Ελέγχου

Βέλτιστος Έλεγχος Συστημάτων

Γεωµετρικη Θεωρια Ελεγχου

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί

Θεωρία Βέλτιστου Ελέγχου Ασκήσεις

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

Μοντέρνα Θεωρία Ελέγχου

Συστήματα Αυτόματου Ελέγχου

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (

Κλασικη ιαφορικη Γεωµετρια

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας

Βέλτιστος Έλεγχος Συστημάτων

Σύγχρονος Αυτόματος Έλεγχος. (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι

Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Δυναμική Μηχανών I. Διάλεξη 13. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

Στοχαστικά Σήµατα και Εφαρµογές

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

Γεωµετρικη Θεωρια Ελεγχου

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

Βέλτιστος Έλεγχος Συστημάτων

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς

n! k! (n k)!, = k k 1

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

Επίλυση Γραµµικών Συστηµάτων

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

= k. n! k! (n k)!, k=0

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov)

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

Πολυβάθμια Συστήματα. (συνέχεια)

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

Μοντέρνα Θεωρία Ελέγχου

Μοντελοποίηση προβληµάτων

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

ΜΕΜ251 Αριθμητική Ανάλυση

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή στην Τεχνολογία Αυτοματισμού

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΤΟΠΙΚΟ ΜΟΝΤΕΛΟ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Παράρτημα. Παράρτημα - Ανάλυση Έλεγχος και Προσομοίωση Δυναμικών Συστημάτων

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

ΜΟΝΤΕΛΟΠΟΙΗΣΗ & ΕΛΕΓΧΟΣ ΚΙΝΗΤΗΡΑ ΣΥΝΕΧΟΥΣ

Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Transcript:

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ποιοτικά Κριτήρια Σχεδίασης Ανατροφοδότηση Κατάστασης Εισαγωγή στον Βέλτιστο Έλεγχο Εισαγωγή στην Βελτιστοποίηση σε χώρουν πεπερασμένων και απείρων διαστάσεων. Εισαγωγή στο Λογισμό των Μεταβολών Βέλτιστος Έλεγχος μέσω Λογισμού των Μεταβολών Αναγκαίες Συνθήκες Βελτίστου Ελέγχου Προβληματα τύπου «Γραμμικού Ρυθμιστή» Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2

Βέλτιστος Έλεγχος Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3

Το Πρόβλημα Παρακολούθησης Τροχιάς Από το πρόβληµα του Γραµµικού Τετραγωνικού Ρυθµιστή (Linear Quadratic Regulator LQR) οδηγούµαστε το πρόβληµα Παρακολούθησης Τροχιάς (rajectory racking) θεωρόντας τη περίπτωση : () () () () () Γραμμικού (αλλα Χρονικά Μεταβαλόμενου) Συστήματος x! t = A t x t + B t u t Με κριτήριο απόδωσης + όπου H = H, Q = Q, R = Και x(t0), t0, tf : καθορισμένα. R, H 0, Q 0, R > 0 Μιά φυσική εξήγηση είναι ότι θέλουμε μέσα σε χρόνο tf - t0 να οδηγήσουμε το σύστημα αρκετά κοντά στο r(t), χωρίς σημαντική σπατάλη προσπάθειας ελέγχου Σχηματίζουμε την Χαμιλτονιανή Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 110

Το Πρόβλημα Παρακολούθησης Τροχιάς Βρήκαμε την Χαμιλτονιανή Οι αναγκαίες συνθήκες βελτιστοποίησης είναι: Εξισώσεις κατάστασης Εξ. «Συγκατάστασης» (Co- state Eq.) Εξισώσεις Ελέγχου Οριακές Εξισώσεις x(t 0 )=x 0, wo Point Boundary Value Problem (PBVP) : Μητρωϊκή ΔΕ όπου: Μη-οµογενης η x(t) εχει οριακή συνθήκη στο t 0 ενώ Η p(t) εχει οριακή συνθήκη στο t f

Το Πρόβλημα Παρακολούθησης Τροχιάς Λύση μέσω Πίνακα Μεταβατικής Κατάστασης Αν ( ) = ϕ t f,t ( ) ϕ 12 ( t f,t) ( ) ϕ 22 ( t f,t) ϕ 11 t f,t ϕ 21 t f,t t f 0 ϕ ( t f,t) dτ = Q( τ ) r( τ ) t f 1 f 2 ( t) ( t) +! K ( t)! s( t) 112

Το Πρόβλημα Παρακολούθησης Τροχιάς F( t) v( t) Πως υπολογίζουμε τα Κ(t), s(t)?!p ( t) = Q( t) x ( t) + A ( t) p ( t) + Q( t) r( t)!p ( t) =!K ( t) x ( t) + K ( t)!x ( t) +!s ( t) Μητρωϊκή Ricca) Δ.Ε. - Κ(t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Μητρωϊκή Ricca) Δ.Ε. - s(t) 113

Το Πρόβλημα Παρακολούθησης Τροχιάς: Επανάληψη Παρακολούθησης Τροχιάς (rajectory racking) : Διάταξη που περιγράφεται από ένα ΓΧΑΣ: Δείκτης Λειτουργικής Απόδωσης: x! (t ) = Ax (t ) + Bu (t ) J H = H, Q = Q, R = R, H 0, Q 0, R > 0 Λειτουργικές προδιαγραφές που απαιτούν x(t0), t0, tf : καθορισμένα. Λύση: Riccati: Εύρεση Βέλτιστης Συνάρτησης Εισόδου: F (t ) v(t ) Εύρεση ΔΕ & Βέλτιστης Συνάρτησης Κατάστασης: x! ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) = A ( t ) x ( t ) + B ( t ) F ( t ) x ( t ) + v ( t ) = A (τ ) d τ = A + B F ( t ) x ( t ) + B ( t ) v ( t ) = A ( t ) B ( t ) R 1 B ( t ) K ( t ) x ( t ) + B ( t ) v ( t ) Φ ( t, τ )! e t τ t x ( t ) = Φ ( t, τ ) x ( t 0 ) + Φ ( t, τ ) B (τ ) u (τ ) dτ t0 A ( t ) 114

Το Πρόβλημα Παρακολούθησης Τροχιάς: Παράδειγμα - 1 Σύστημα: Κριτήριο απόδωσης: Οριακές Συνθήκες: x(t 0 )=0, t 0 =0, t f =15 : καθορισμένα, x(t f ): ελεύθερο «Φυσική» Σημασία: να οδηγηθεί η κατάσταση κοντά στο 0 χωρίς σημαντικο κόστος ενέργειας Λύση: Εφαρμόζουμε τις σχετικές σχέσεις γιά... Riccati: (15) (15) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 115

Το Πρόβλημα Παρακολούθησης Τροχιάς: Παράδειγμα - 1!x ( t) = A( t) x ( t) + B( t) u ( t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 116

Το Πρόβλημα Παρακολούθησης Τροχιάς: Παράδειγμα - 2 Σύστημα: Κριτήριο απόδοσης: Οριακές Συνθήκες: x(t 0 )=[-4 0], t 0 =0, t f =15 : καθορισμένα, x(t f ): ελεύθερο «Φυσική» Σημασία: να οδηγηθεί η κατάσταση κοντά στη συνάρτηση- ράμπα 0.2 t χωρίς σημαντικο κόστος ενέργειας Λύση: Εφαρμόζουμε τις σχετικές σχέσεις γιά... Riccati: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 117

Το Πρόβλημα Παρακολούθησης Τροχιάς: Παράδειγμα - 2!x ( t) = A( t) x ( t) + B( t) u ( t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 118

APPENDIX: Τετραγωνικές Μορφές Για το διάνυσµα x ℜn η ευκλίδεια νόρµα είναι x = x x Αν S µη ιδιόµορφος πίνακας τότε η ευκλείδια νόρµα του διανύσµατος Sx P (µετασχηµατισµός του x) ορίζεται ώς η P-νόρµα του διανύσµατος x.! 2 Sx = ( Sx ) Sx = x S S x = x Px " x Γενικά, η (µονόµετρη) µορφή xqx, Q ℜn n λέγεται τετραγωνική και ενδιαφερόµαστε να αναλύσουµε τη συµπεριφορά της ώς προς το πρόσηµό της. Ορίζουµε τους πίνακες Qs! Q + Q 2 =Qs : συµµετρικος Q = Qs + Qa Qa! Q Q 2 = Qa : αντι συµµετρικος µονοµετρο Παρατηρείστε ότι:! x Qa x = x Qa x = x Qa x = x Qa x x Qa x = 0 x 2 ( ( ( ) ( ) 2 P ) ) Οπότε Κατά συνέπεια: όταν θεωρούµε το πρόσηµο της τετραγωνικής µορφής xqx αν ο Q δεν είναι συµµετρικός θεωρούµε τον συµµετρικό παράγοντά του Qs. Εποµένως στην ανάλυση της τετραγωνικής µορφής ο Q θεωρείται πάντα ως συµµετρικός. x Qx = x (Qs + Qa ) x = x Qs x Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 119

APPENDIX: Τετραγωνικές Μορφές Λέµε ότι ο συµµετρικός πίνακας Q είναι: Θετικά ορισµένος (Q > 0) αν x Qx > 0, x 0. Θετικά ηµι-ορισµένος (Q 0) αν x Qx 0, x 0. Αρνητικά ηµι-ορισµένος (Q 0) αν x Qx 0, x 0. Αρνητικά ορισµένος (Q < 0) αν x Qx < 0, x 0. Αόριστος αν x Qx > 0 για κάποια x και x Qx < 0 για άλλα x. Μπορούµε να ελέγξουµε τα παραπάνω ανεξάρτητα από τα x, µέσω των εξής τρόπων: ES-1: ορίζουµε τις ιδιοτιµές λ i i=1 n του πίνακα Q. Αν λ i > 0 γιά όλες τι ιδιοτιµές τότε Q > 0. Αν λ i 0 γιά όλες τι ιδιοτιµές τότε Q 0. Αν λ i 0 γιά όλες τι ιδιοτιµές τότε Q 0. Αν λ i < 0 γιά όλες τι ιδιοτιµές τότε Q < 0. ES-2: Ορίζουµε τις leading minors m i, i = 1 n και principal minors M ij, i,j=1 n Πίσω... Q > 0 αν m i > 0 i=1 n Q 0 αν m i 0 i=1 n και M ij 0 i,j=1 n Q 0 αν - Q 0 Q < 0 αν m i < 0 m i > 0 i :περιττο i :αρτιο m i = q 11! q 1i " # " q i1! q ii M ij = j-στήλη q 11! q 1n " # " i-γραµµή q n1! q nn Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 120

Έστω (διανύσματα) x, y R n 1 και (πίνακας) Q=Q R n n Αν f(x) (βαθμωτή) συνάρτηση, για την παράγωγό της x f (x) R n 1 ισχύει: Αν APPENDIX: Παράγωγοι Τετραγωνικών Μορφών f ( x) = y x f x = x y x ( ) = y R n 1 Αν Αν f ( x) = x y f x = ( x x y) = y R n 1 f ( x) = x Qx f x = ( x x Qx) = = ( x x )Qx + ( x Q) ( x x ) = 2Qx R n 1 Πίσω... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 121