Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
|
|
- Βασιλική Καραβίας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1
2 Δομή της Ύλης του Μαθήματος Εισαγωγη στο Χώρο Κατάστασης Μοντελοποίηση στο Χώρο Κατάστασης Ανάλυση Συστημάτων στο Χώρο Κατάστασης Δομικές Ιδιότητες Συστημάτων Ελεγξιμότητα Παρατηρησιμότητα Ευστάθεια Σχεδίαση Συστημάτων Ελέγχου Ανατροφοδότηση Κατάστασης Παρατηρητές και Ανατροφοδότηση Εξόδου Υλοποίηση Συστημάτων Ελέγχου μέσω Μικροϋπολογιστών Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2
3 1. Παράσταση Συστημάτων Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3
4 Παράσταση Συστημάτων Τρόποι παράστασης δυναµικών συστηµάτων κατάλληλοι για ανάλυση και σχεδιασµό συστηµάτων ελέγχου: Εξισώσεις Κατάστασης (State-Space Equations): Συνίστανται από: µία Διανυσµατική Διαφορική Εξίσωση1 ης τάξης που συσχετίζει ανεξάρτητες µεταβλητές (είσοδοι) µε µεταβλητές κατάστασης, και Μία Διανυσµατική Αλγεβρική Εξίσωση που συσχετίζει µεταβλητές εξόδου που εκφράζονται συναρτήσει των εισοδων και των µεταβλητών κατάστασης. Δοµικό Διάγραµµα (Block Diagram): Γραφική παράσταση των εξισώσεων κατάστασης. Μήτρες Μεταφοράς (Transfer Matrices): είναι Πίνακες Συναρτήσεων Μεταφοράς (Matrix Transfer Functions) που συσχετίζουν τους µετασχηµατισµούς Laplace των εισόδων και των εξόδων. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4
5 Γ.Χ.Α.Σ. - Παράδειγμα 1 Η διαφορική εξίσωση που περιγράφει το φυσικο φαινόµενο είναι: Εφόσον είναι 2 ης τάξης, αντιστοιχούν 2 µεταβλητές κατάστασης Προφανώς που οδηγεί την αρχική ΔΕ στην µορφή Εποµένως η αρχική ΔΕ 2 ης τάξης αντιστοιχεί σε 2 ΔΕ 1 ης τάξης Οι µεταβλητές κατάστασης συνδέονται µε τα στοιχεία συσσώρευσης ενέργειας. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 5
6 Γ.Χ.Α.Σ. - Παράδειγμα 1 Η έξοδος είναι ενώ η είσοδος είναι Εποµένως λαµβάνουµε τις µητρωικές εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Έχουµε δηλαδή ένα 2-διάστατο (n=2) σύστηµα µίας εισόδου µίας εξόδου (Single Input Single Output SISO) (m=p=1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 6
7 Εξισώσεις Κατάστασης (State- Space EquaGons) Γενική µορφή παράστασης Γραµµικών Χρονικά Αµετάβλητων Συστηµάτων ΓΧΑ (Linear Time Invariant - LTI) σε µορφή εξισώσεων κατάστασης: Το n-διάστατο διάνυσµα κατάστασης (state vector) αποτελείται από n µεταβλητές κατάστασης (state variables) Τα διανύσµατα εισόδου και εξόδου είναι αντίστοιχα: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 7
8 Το διάνυσµα κατάστασης x εµπεριέχει εκείνες τις (εσωτερικές) µεταβλητές που αποτελούν το ελάχιστο σύνολο µεταβλητων που απαιτείται να παραστήσουν πλήρως την εξέλιξη του συστήµατος µε βάση την επενέργηση της εισόδου και την αρχική κατάσταση Το διάνυσµα εισόδου u εµπεριέχει τις µεταβλητές που επενεργούν στο (δηλ. «οδηγούν» το) σύστηµα. Το διάνυσµα εξόδου y (θα θεωρήσουµε προς το παρόν ότι απλά) περιέχει εκείνες τις µεταβλητές που µπορούν να µετρηθούν. Δεδοµένης της δοµής Εξισώσεις Κατάστασης (State- Space EquaGons) και των διαστάσεων των σχετικών διανυσµάτων, είναι προφανές ότι για τούς παραπάνω πίνακες ισχύει: nn nm pn pm A= a ij R B= b ij R C= c ij R D= d ij R Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 8
9 Προφανώς οι (µητρωικές) εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Εξισώσεις Κατάστασης (State- Space EquaGons) είναι «συµπτυγµένες» µορφές των n διαφορικών εξισώσεων (i = 1,2,,n) κατάστασης p αλγεβρικών εξισώσεων ( j = 1,2,,p) εξόδου Οι εξισώσεις κατάστασης προκύπτουν από τις βασικές διαφορικές εξισώσεις που περιγράφουν τη «δυναµική» του συστήµατος. Με αυτό το τρόπο αν η δυναµική περιγράφεται από ll ΔΕ, όπου κάθε µία είναι n k = 1, 2, l, τάξεως, τότε η µητρωική µορφή αντιπροσωπεύει έναν αριθµό n= l n εξισώσεων πρώτης τάξεως k = 1 k Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 9
10 Δομικά Διαγράμματα Αποτελούν ουσιαστικά γραφική παράσταση των Δ.Ε. κατάστασης και των αλγεβρικών εξισώσεων εξόδου. Συνίστανται στη διασύνδεση 3 βασικών συναρτησιακών στοιχείων: Ενισχυτή: στοιχείο πολλαπλασιασµού σηµάτων µε πίνακα σταθερών. q e R Κ r z R Αθροιστή: στοιχείο άθροισης (ή και αφαίρεσης) µεταξύ οµοδιάστατων q διανυσµατικών µεταβλητών e R 1 q Ολοκληρωτή: στοιχείο που ολοκληρώνει τις ΔΕ κατάστασης (1 ης τάξης) αποδίδοντας της µεταβλητές κατάστασης δεδοµένων των αρχικών συνθηκών. e = e ( ) 0 0 Σ e R 2 e= e + e R 1 2 q et!( ) ( ) ( τ) et = e+ e dτ 0 t 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 10
11 Δομικά Διαγράμματα Η γενική παράσταση Γραµµικών Χρονικά Αµετάβλητων Συστηµάτων (ΓΧΑΣ) σε µορφή εξισώσεων κατάστασης: παρίσταται σε µορφή Δοµικού Διάγραµµατος. D u(t) B u(t) C x(t) Α x(t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 11
12 Γ.Χ.Α.Σ. - Παράδειγμα 2 Οι µεταβλητές κατάστασης συνδέονται µε τα στοιχεία συσσώρευσης ενέργειας: Οι είσοδοι συσχετίζονται µε τις ανεξάρτητες πηγές Έστω ότι επιλέγουµε ως έξοδο την τάση του πηνίου Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 12
13 Γ.Χ.Α.Σ. - Παράδειγμα 2 Δεδοµένου ότι Λαµβάνουµε Από τον νόµο ρευµάτων του Kirchoff: ( ) = G x( t) + F u( t) M!x t Γράφοντας αυτές τις εξισώσεις σε µητρωική µορφή µε όρους που ξεχωρίζουν τις χρονικές παραγώγους, το διάνυσµα κατάστασης και το διάνυσµα εισόδου παίρνουµε... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 13
14 Γ.Χ.Α.Σ. - Παράδειγμα 2 ( ) = M 1 { G x( t) + F u( t) }!x t... Οπότε κάνοντας τις πράξεις... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 14
15 Γ.Χ.Α.Σ. - Παράδειγμα 2 Δεδοµένου ότι Λαµβάνουµε Έχουµε δηλαδή ένα 3-διάστατο (n=3) σύστηµα, δύο εισόδων (m=2) και µίας εξόδου (p=1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 15
16 Γ.Χ.Α.Σ. - Παράδειγμα 3 Αν η ΔΕ που περιγράφει ένα σύστηµα είναι (n=3): η αντίστοιχη Συνάρτηση Μεταφοράς είναι... Αν ορίσουµε τις 3 µεταβλητές κατάστασης τότε η ΔΕ γίνεται Οπότε λαµβάνουµε τις µητρωικές εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 16
17 Γ.Χ.Α.Σ. - Παράδειγμα 3 Η γενίκευση του προηγούµενου παραδείγµατος για Δίνει προφανώς µε Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 17
18 Μήτρες Μεταφοράς Σε ΓΧΑ συστήµατα µίας εισόδου µίας εξόδου (Single Input Single Output SISO), Συνάρτηση Μεταφοράς (Transfer Function TF) είναι ο λόγος των µετασχηµατισµών Laplace της εξόδου προς την είσοδο, θεωρώντας ότι όλες οι αρχικές συνθήκες είναι µηδενικές. Y ( ) ( s) F s = U U s ( s ) F(s) Y( s) ( ) Παροµοίως σε ΓΧΑ συστήµατα πολλών εισόδων πολλών εξόδων (Multiple Input Multiple Output MIMO) η συσχέτιση των µετασχηµατισµών Laplace των διανυσµάτων εξόδου (p-διάστατο) εισόδου (m-διάστατο), θεωρώντας ότι όλες οι αρχικές συνθήκες είναι µηδενικές, γίνεται από την Μήτρα Μεταφοράς (p m-διάστατη). Y( s) = G( s) U( s) U( s ) Y( s) G(s) Προφανώς το στοιχείο G ij (s) δείχνει την επίδραση του U j (s) στο Y i (s). Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 18
19 Μήτρες Μεταφοράς Αν στη γενική παράσταση Γραµµικών Χρονικά Αµετάβλητων Συστηµάτων (ΓΧΑΣ) σε µορφή εξισώσεων κατάστασης: εφαρµόσουµε το µετασχηµατισµό Laplace (µηδενικές αρχικές συνθήκες) ( ) 0 ( ) ( ) ( ) ( ) ( ) s X s x/ = A X s + B U s Y s = C s I A B+ D U s Y s = C X s + D U s 1 ( s I A) X ( s) = B U( s) X ( s) = ( s I A) B U( s) η Μήτρα Μεταφοράς είναι 0 1 ( ) ( ) ( ) ( ) ( ) 1 Y( s) = G( s) U( s) G s = C s I A B+ D Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 19
20 Γ.Χ.Α.Σ. - Παράδειγμα 4 Θεωρούµε το SISO σύστηµα Αν, όπως και προηγουµένως, ορίσουµε = ( ) ( ) Y s U s επειδη ( s 3 + a 2 s 2 + a 1 s+ a 0 )Y s s 3 Y s ( ) = b 2 s 2 + b 1 s+ b 0 ( ) = a 2 s 2 Y ( s) a 1 sy ( s) a 0 Y s ( )U ( s) ( )+ b 2 s 2 U ( s)+ b 1 su ( s)+ b 0 U s ( ) Τότε Εποµένως οι µεταβλητές κατάστασης πρέπει να ορισθούν αλλοιώς. Θεωρώντας Y( s) = Y ( s) = H U s 2 s ( ) ( ) H ( 1 s) U ( s)!#" # $ ( ) W s όπου οπότε... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 20
21 Γ.Χ.Α.Σ. - Παράδειγμα 4 Και στο πεδίο του χρόνου παίρνουµε Από τη πρώτη ΣΜ... Και από τη δεύτερη... ( s 3 + a 2 s 2 + a 1 s+ a 0 )W ( s) =U ( s)!!! w( t)+ a 2!!w ( t)+ a 1!w ( t)+ a 0 w t y t ( ) = b 2!! u( t)+ b 1!u ( t)+ b 0 u t Οπότε επιλέγοντας αυτή τη φορά µεταβλητές κατάστασης... ( ) ( ) = u( t) Βέβαια αυτές οι μεταβλητές κατάστασης ΔΕΝ έχουν προφανή φυσική σημασία... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 21
22 Γ.Χ.Α.Σ. - Παράδειγμα 4... λαµβάνουµε τις µητρωικές εξισώσεις Κατάστασης (διαφορική) Εξόδου (αλγεβρική) Προφανώς αυτή η µεθολογία είναι φανερό ότι επεκτείνεται άµεσα γιά Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 22
23 Γ.Χ.Α.Σ. - Παράδειγμα 4 Η περαιτέρω επέκταση στην αµέσως γενικότερη περίπτωση γίνεται µέσω πολυωνυµικής διαίρεσης που οδηγεί σε όπου bˆ = b b a i= 1, 2,, n 1 i i n i Σε αυτή τη περίπτωση προχωρούµε όπως και προηγουµένως στην ανάπτυξη του µοντέλλου εξισώσεων κατάστασης που οδηγεί στην ανεύρεση των πινάκων Α, Β, C. Σε αυτή την περίπτωση βεβαίως D= b n Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 23
24 Συμπέρασμα για τα Παραδ. 3 & 4 Οι εξισώσεις κατάστασης είναι «υλοποίηση στο χώρο κατάστασης» (statespace realization) της συµπεριφοράς εισόδου-εξόδου ενός συστήµατος αν «αντιστοιχεί» είτε στη σχέση Y(s)=H(s)!U(s) είτε στη σχετική ΔΕ που σχετίζει τα y(t) και u(t) στο πεδίο του χρόνου (µηδενικές αρχικές συνθήκες). Στα µέχρι τώρα παραδείγµατα (3, 4) που αφορούσαν συστήµατα SISO η συγκρότηση της «υλοποίησης στο χώρο κατάστασης» : έγινε µε µη συστηµατικό (γενικευµένο) τρόπο (κάτι που θα γίνει πιο µετά), και ονοµάζεται «κανονική µορφή µεταβλητών φάσης» (phase-variable canonical form) ή «κανονική µορφή τύπου ελεγκτή» (controller canonical form) Η έννοια της «υλοποίησης στο χώρο κατάστασης» θα αντιµετωπισθεί και σε επόµενη φάση. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 24
25 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Γενική µορφή παράστασης (Μη-Γραµµικών, Χρονικά Μεταβλητών) Συστηµάτων σε µορφή εξισώσεων κατάστασης: όπου οι συναρτήσεις f (!,!,!) και h (!,!,!) είναι συνεχώς παραγωγίσιµες (continuously differentiable) ώς προς τα ορίσµατά τους. Ορισµός: Για ένα ονοµαστικό σήµα εισόδου u! ( t) η αντίστοιχη ονοµαστική τροχιά της κατάστασης xt! ικανοποιεί την ΔΕ και η αντίστοιχη ονοµαστική τροχιά εξόδου είναι Αν υπάρχει (δηλ. σταθερά διανύσµατα) για τα οποία ισχύει (!! ) ( ) ( ), ( ) ut! = uxt!! = x! 0 = f x, u, t t τότε έχουµε την ειδική περίπτωση όπου η ισορροπίας» (equilibrium state). x! είναι «κατάσταση Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 25
26 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Θεωρούµε τις αποκλίσεις απο τις «ονοµαστικές τροχιές»: και τις σχετικές µερικές παραγώγους: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 26
27 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Αναπτύσσοντας κατά Taylor: και ορίζοντας παίρνουµε:... όπου πήραµε: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 27
28 Μη- Γραμμικά Συστήματα & Γραμμικοποίηση Θεωρώντας ότι η κατάσταση, η είσοδος και η έξοδος είναι «κοντά» στις ονοµαστικές τους τιµές, οι «οροι υψηλότερης τάξεως» (higher order terms h.o.t.) αγνοούνται οπότε λαµβάνεται η «γραµµικοποίηση» (linearization) του αρχικού συστήµατος Από τις εξισώσεις της προηγούµενης σελίδας γίνεται φανερό ότι αν: το αρχικό (µη-γραµµικό) σύστηµα δεν εξαρτάται από το χρόνο, και η γραµµικοποίηση γίνει γύρω από τροχιές (κατάσταση, είσοδο, έξοδο) ισορροπίας, τότε το γραµµικοποιηµένο σύστηµα είναι ΓΧΑ. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 28
29 Παράδειγμα 5: Γραμμικοποίηση Οι εξισώσεις της διάταξης «µπάλλας Δοκού» είναι p(t) είναι η θέση της µπάλλας, θ(t) είναι η γωνίας της δοκού, τ(t) είναι η ροπή του άξονα της δοκού (είσοδος) g είναι η επιτάχυνση της βαρύτητας, J είναι η ροπή αδράνειας της δοκού, και m, r, J b είναι οι µάζα, ακτίνα & ροπή αδράνειας της σφαίρας. Ορίζουµε... και... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 29
30 Παράδειγμα 5: Γραμμικοποίηση Οι εξισώσεις Κατάστασης και Εξόδου όπου. Οπότε : (, ) = x ( t) h x u 1 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 30
31 Παράδειγμα 5: Γραμμικοποίηση Θεωρούµε την ονοµαστική τρόχιά όπου η ράβδος είναι οριζόντια & σταθερή x ( t) x ( t) η µπάλλα κινείται µε σταθερή ταχύτητα υ 0 όντας, την χρονική στιγµή t 0, στη θέση p 0 οπότε προκύπτει ότι ( ) ( ) ( ) ( 3 = 4 = 0) Προφανώς δε,! yt = x! 1 t =! pt Για να προχωρήσουµε στη γραµµικοποίηση, θεωρούµε τις µεταβλητές απόκλισης από τις ονοµαστικές και προχωρούµε στον υπολογισµό των Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 31
32 Παράδειγμα 5: Γραμμικοποίηση όπου Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 32
33 Παράδειγμα 5: Γραμμικοποίηση Οι παράµετροι του γραµµικοποιηµένου συστήµατος λαµβάνονται από τις µερικές παραγώγους για τιµές επι των ονοµαστικών τροχιών Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 33
34 Παράδειγμα 5: Γραμμικοποίηση Για µηδενική αρχική ταχύτητα (υ 0 =0), οπότε η θέση της µπάλλας είναι p 0, η γραµµικοποίηση γίνεται γύρω από τη τροχιά... Οπότε οι πίνακες του ΓΧΑΣ είναι: Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 34
35 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 35
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότερα2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1
2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραΟ Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου
Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΑνάλυση υναµικής ιεργασιών
Ανάλυση υναµικής ιεργασιών Αντιπροσώπευση µε το Μοντέλο Κατάστασης- Χώρου (State-Space Space Models) υναµική Γραµµικών Συστηµάτων 1ης και 2ης Τάξης Συστήµατα SISO και MIMO Ο Μετασχηµατισµός Laplace για
Διαβάστε περισσότεραΈλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
Διαβάστε περισσότεραp& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,
Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Διαβάστε περισσότεραΜάθημα: Ρομποτικός Έλεγχος
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ε.Μ.Π., Ακαδημαϊκό Έτος 011-1 Μάθημα: Ρομποτικός Έλεγχος Αυτόματος Έλεγχος Ρομπότ (Μη-Γραμμικός Ρομποτικός Έλεγχος Κων/νος Τζαφέστας
Διαβάστε περισσότεραΒέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )
Βέλτιστος Έλεγχος μέσω Λογισμού των ( ) Μεταβολών Εστω σύστημα!x ( t) = a x( t),u( t),t με t 0, x(t 0 ) καθορισμένα. Ζητείται η εύρεση κατάλληλης συνάρτησης ελέγχου u*(t) που, παράγοντας τη τροχιά x*(t)
Διαβάστε περισσότεραΣυστήµατα Ελέγχου µε Μικροϋπολογιστές
ΕΝΕΡΓΕΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Συστήµατα Ελέγχου µε Μικροϋπολογιστές Κων/νος Κυριακόπουλος Καθηγητής ΕΜΠ @ kkyria@central.ntua.gr! http://users.ntua.gr/kkyria ΑΕΡΟΔΙΑΣΤΗΜΙΚΗ ΡΟΜΠΟΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ Δομή
Διαβάστε περισσότεραΜοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Μαθηματικά Μοντέλα Συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης
Διαβάστε περισσότεραΈλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραΣυστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Διαβάστε περισσότεραΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Καταστατικές Εξισώσεις Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν
Διαβάστε περισσότερα2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των
Διαβάστε περισσότεραΔυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος
Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Διαβάστε περισσότεραΌταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Διαβάστε περισσότεραΆσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
Διαβάστε περισσότεραΣυστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα
Διαβάστε περισσότερα9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.
9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)
Διαβάστε περισσότεραΣύστημα και Μαθηματικά μοντέλα συστημάτων
Σύστημα και Μαθηματικά μοντέλα συστημάτων Όταν μελετούμε έναν συγκεκριμένο μηχανισμό η μια φυσική διεργασία επικεντρώνουμε το ενδιαφέρον μας στα φυσικά μεγέθη του μηχανισμού τα οποία μας ενδιαφέρει να
Διαβάστε περισσότερα3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν
Διαβάστε περισσότεραΚεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Διαβάστε περισσότεραΠεριγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
Διαβάστε περισσότεραΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016
ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο
Διαβάστε περισσότεραΔυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink
Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml2347/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Δομή της
Διαβάστε περισσότεραKεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
Διαβάστε περισσότεραΔυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς
Δυναμική Μηχανών I 7 2 Συνάρτηση και Μητρώο Μεταφοράς 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Αναπαραστάσεις
Διαβάστε περισσότεραυναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων
υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Διαβάστε περισσότεραΚεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u Συστήµατα από Δειγµατοληπτικά Δεδοµένα (Επανάληψη Ασκήσεις) u Στο πεδίο Συχνότητας (Συναρτήσεις Μεταφορά) u Στο πεδίο Χρόνου (Εξισώσεις Κατάστασης)
Διαβάστε περισσότερα10. Παραγώγιση διανυσµάτων
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις
Διαβάστε περισσότεραΚαλώς ήλθατε. Καλό ξεκίνημα.
Καλώς ήλθατε. Καλό ξεκίνημα. Αν. Καθηγητής Γεώργιος Παύλος ( Φυσικός) - ρ.καρκάνης Αναστάσιος (Μηχανολόγος Μηχανικός) Με τι θα ασχοληθούμε στα πλαίσια του μαθήματος: Α. Μαθηματική θεωρία ιανυσματικά μεγέθη,
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας
ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Διαβάστε περισσότεραΚεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u u u u Ευστάθεια Ευστάθεια κατά Lyapunov Ασυµπτωτική Ευστάθεια Κριτήρια Ευστάθειας Ελεγξιµότητα Παρατηρησιµότητα Επίδραση της Δειγµατοληψίας στην Ελεγξιµότητα
Διαβάστε περισσότεραΚεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Διαβάστε περισσότερα( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Διαβάστε περισσότεραΚεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Διαβάστε περισσότεραΜετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις
ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών
Διαβάστε περισσότερα= x. = x1. math60.nb
MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από
Διαβάστε περισσότεραΑνάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Διαβάστε περισσότεραΕνότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Διαβάστε περισσότεραwebsite:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαβάστε περισσότερα5. (Λειτουργικά) Δομικά Διαγράμματα
5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες
Διαβάστε περισσότεραy 1 Output Input y 2 Σχήµα 1.1 Βασική δοµή ενός συστήµατος ελέγχου κλειστού βρόγχου
Τ.Ε.Ι. ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜHΜΑ ΗΛΕΚΤΡΟΛΟΓIΑΣ Σηµειώσεις για το εργαστήριο του µαθήµατος ΣΥΣΤΗΜΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ I ΓΑΥΡΟΣ ΚΩΝ/ΝΟΣ ΚΟΖΑΝΗ 2008 Κεφάλαιο 1 ο Ορισµός Συστηµάτων
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης
Διαβάστε περισσότεραΗ Βασική Δομή Συστημάτων Ελέγχου Κίνησης
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία
Διαβάστε περισσότεραΔυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων
Δυναμική Μηχανών I Εισαγωγική Ανάλυση και Γραμμικοποίηση 4 5 Μη-Γραμμικών Δυναμικών Εξισώσεων 25 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε
Διαβάστε περισσότεραM m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br
ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.tua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Βασικές Έννοιες
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραΠροσομoίωση Απόκρισης Συστήματος στο MATLAB
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη
Διαβάστε περισσότεραii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.
Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο
Διαβάστε περισσότεραΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Συστήματα Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠαραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
Διαβάστε περισσότεραΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα
Διαβάστε περισσότεραΣεµινάριο Αυτοµάτου Ελέγχου
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση
Διαβάστε περισσότεραΓεωµετρικη Θεωρια Ελεγχου
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο
Διαβάστε περισσότεραΣ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1
Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Διαβάστε περισσότεραΕισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς
Διαβάστε περισσότεραx(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
Διαβάστε περισσότεραΤυπική µορφή συστήµατος 2 ας τάξης
Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής ver. 0.2 10/2012 Εισαγωγή στο Simulink Το SIMULINK είναι ένα λογισµικό πακέτο που επιτρέπει τη µοντελοποίηση, προσοµοίωση οίωση
Διαβάστε περισσότεραΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes
ΣΑΕ Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Οκτώβριος-Ιανουάριος 207 Τελευταία ενημέρωση: 3 Οκτωβρίου 207 Συστήματα
Διαβάστε περισσότεραΔιαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου Επιμέλεια Θεμάτων Σ.Π.Μαμαλάκης Ζήτημα 1 ον 1.. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο μέσων. Όταν η διαθλώμενη ακτίνα κινείται παράλληλα
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή
Διαβάστε περισσότεραόπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!
Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της
Διαβάστε περισσότεραΛύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραΛύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία
Διαβάστε περισσότεραΘεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο
ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται
Διαβάστε περισσότερα