Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών
|
|
- Αρισταίος Δασκαλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Θεωρούμε το πρόβλημα της εύρεσης ακροτάτων του t συναρτησιακού f F = F(z) = f ( z( t), z ( t),t) dt Θεωρούμε την «γενική» περίπτωση όπου τόσοι οι χρόνοι, όσο και οι οριακές συνθήκες z i = z( ), z f = z( t ) f της συνάρτησης z(t), ΔΕΝ ειναι καθορισμένοι. Θα δούμε βέβαια πως οι συνθήκες ακροτάτου που θα εξαχθούν θα εξειδικεύονται κατάλληλα, αν κάποια από τα παραπάνω είναι καθορισμένα (μικτές συνθήκες) Ο τρόπος προσέγγισης θα είναι παρόμοιoς αλλα όχι ταυτόσημος με αυτόν που χρησιμοποιήθηκε προηγουμένως: Θα είναι απλούστερος (δηλ. χωρίς χρήση Διαφορικών Gateaux) μεν, Αλλά δεν θα επιτρέπει την εύκολη απόδειξη για το τι είδους ακρότατο είναι. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 45
2 ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Αλήθεια ΓΙΑΙ μας ενδιαφέρει κάτι τέτοιο?,x Ντετερμινιστικά Καθορισμένη ροχιά Σελήνης,x ΓΗ Μετάβαση από Γή στη Σελήνη με Ελάχιστη Ενέργεια min P( x( t), x ( t),t) dt Ισχύς Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 46
3 ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Υπενθυμίζουμε την σχέση μεταξύ «ολικής μεταβολής» και «πρώτης μεταβολής» ΔF( z,δ z) = δ F( z,δ z) + g( z,δ z) δ z +δ Προφανώς οπότε δ F = ΔF = f ( z( t), z ( t),t) + δ z + δ z z dt + f ( z( t), z ( t),t) + z δ z + δ z dt + +δ +δ + f ( z( t), z ( t),t) + δ z + δ z z dt f ( z( t), z ( t),t) dt = +δ = f ( z( t), z ( t),t) + δ z + δ z z dt + δ z + δ z z dt + +δ + f ( z( t), z ( t),t) + δ z + δ z z dt = = f z( t), z ( t),t + + f z( t), z ( t),t f ( z( t) + δ z( t), z ( t) + δ z ( t),t) dt f ( z( t), z ( t),t) dt +δ + z z δ z + δ z + δ z δ + δ z + δ z z dt + δ z δ Όροι 2 ας τάξεως. Αμελούνται Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 47
4 ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Οπότε δ F = και επειδή f z( t), z ( t),t δ z dt = δt ti i + δ z + δ z z dt + f z( t), z ( t),t δ z d dt δ z dt δ παίρνουμε δ F = z d dt δ z dt + f z( t), z ( t),t Πρέπει να παρατηρήσουμε ότι για το τελικό σημείο- χρόνο δ + δ z f z( t), z ( t),t δt ti i + δ z δ z f = δ z + z δ δ z( ) = δ z f z δ Οπότε η συνθήκη ακροτάτου γίνεται δ z i = δ z + z δ δ z( ) = δ z i z δ δ F = 0 = z d dt δ z dt + f z( t), z ( t),t f z( t), z ( t),t z δ + t= δ z i t= z Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 48 t= δ + t= δ z f
5 Euler: ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών z d dt = 0 Ανάλυση για τις ΕΛΙΚΕΣ οριακές συνθήκες, z f : ανεξάρτητα μεταξύ τους Ελεύθερο Καθορισμένο z Ελεύθερο Καθορισμένο f z( t), z ( t),t f z( t), z ( t),t z = 0 t= z = 0 t= = 0 z( ) = z f t= = 0 t= z( ) = z f, z f : εξαρτημένα μεταξύ τους z = m( t) δ z = m( t) δt z( ) = m( ) f z( t), z ( t),t H ίδια ανάλυση γίνεται και για τα, z i (ΑΡΧΙΚΕΣ οριακές συνθήκες) z + m t = 0 t= Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 49
6 Παράδειγμα late x d dt x = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 50
7 Παράδειγμα late x t= =2 = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 51
8 Παράδειγμα late f x( t), x ( t),t x x t= = 0 x( ) = z f = 5 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 52
9 Βελτιστοποίηση σε Άπειρες Διαστάσεις & Ισοτικοί Περιορισμοί Έστω ότι θελήσουµε να βρούµε την συνάρτηση z*(t) που προκύπτει από την ελαχιστοποίση: 1 min x C 1 0,1 [ ] 0 ( x 2 + u 2 ) dt = 0 x( 1) = 1 x = u x 0 Δηλαδή, στα προβλήµατα βελτιστοποίησης συναρτησιακών F(z) που θεωρήσαµε προηγουµένως (µε ελεύθερες/περιορισµένες αρχικές/τελικές συνθήκες). Μπορούν να συµπεριληφθούν και n ισοτικοί περιορισµοί της µορφής g i (z,z,t)=0 i=1,,n, οπότε το σχετικό µαθηµατικό πρόβληµα βελτιστοποίησης γίνεται: min F( z) = f 1 t, z( t), z( t) dt z C t t st. 0, f t 0 Οριακές συνθήκες σε t 0 ή/και g1 t, z( t), z ( t) g t, z( t), z( t) G( t z z) " gn t, z( t), z( t) 2,, = = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 53
10 Βελτιστοποίηση σε Άπειρες Διαστάσεις & Ισοτικοί Περιορισμοί Έχοντας το πρόβληµα : min,, 1 0, f t0 z C t t st. F z = f t z t z t dt Οριακές συνθήκες σε t 0 ή/και g1 t, z( t), z ( t) g t, z( t), z( t) G( t z z) " gn t, z( t), z( t) 2,, = = 0 1 Εισάγουµε διάνυσµα πολ/στών Lagrange = n διαστάσεως n, ίδιας µε του G(t,z,z), του διανύσµατος ισοτικών περιορισµών. λ t λ t λ t λ t C t t, f Σχηµατίζουµε την επαυξηµένη συνάρτηση ολοκλήρωσης (augmented integrand function) (,, ) = (,, ) + λ (,, ) = (,, ) + λ (,, ) + # λ (,, ) f t z z " f t z z " G t z z " f t z z " g t z z " g t z z " 1 1 n n Και θεωρούµε ένα νέο πρόβληµα ελαχιστοποίησης, της µορφής που έχουµε ήδη θεωρήσει: z ( t) = arg min F ( z) = f t, z( t), z( t) dt 1 " z C t0, tf ορ.συνθ. t0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 54
11 Βελτιστοποίηση σε Άπειρες Διαστάσεις & Ισοτικοί Περιορισμοί Ένεκα ελαχιστοποιήσης, αν z ( t) = arg min F ( z) = f t, z( t), z( t) dt 1 z C t0, tf ορ.συνθ. " ότε t ( ) F z > F z z z 0 Αν z(t) τέτοιο ώστε : Gt, z t, z t = G t, z t, z t t t, τότε 0 = = Αν η συνάρτηση z* ελαχιστοποιεί την F z, τότε ελαχιστοποιεί και την F z από όλες τις 1 συναρτήσεις z C t, 0 t f που: (1) ικανοποιούν τις οριακές συνθήκες και (2) ανήκουν στο σύνολο των συναρτήσεων z(t) όπου ισχύει Gt, z( t), z ( t) = G t, z ( t), z ( t) t t0,. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 55
12 Βελτιστοποίηση σε Άπειρες Διαστάσεις & Ισοτικοί Περιορισμοί Από προηγουµένως γνωρίζουµε ότι αναγκαία συνθήκη για να ελαχιστοποιεί η z * (t) C 1 [t 0, ] την σε σχέση µε ολες τις z(t) C 1 [t 0, ] που ικανοποιούν τις οριακές συνθήκες είναι, για όλα τα αποδεκτά υ(t), να ισχύει δf z ( υ) ; = 0 ο αντίστροφο (αν δηλ. τότε το z* ελαχιστοποιεί την ) ισχύει μόνο άν είναι η κυρτή, κάτι που εξαρτάται από το λ(t). Με βάση σκεπτικό ανάλογο των προηγουµένων παραγραφών, οι συνθήκες λύσης του προβήµατος εύρεσης ακροτάτων γι αυτή τη περίπτωση: Είναι παρόµοια µε αυτές που έχουν ήδη παρουσιασθεί, αναφέρεται όµως στις F ( z), f z Συµπεριλαµβάνει και την ικανοποίηση της συνάρτησης ισοτικών περιορισµών G t,z, z Δηλαδη... = 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 56
13 ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Ανάλυση για τις ΕΛΙΚΕΣ οριακές συνθήκες f d f Euler: = 0 z dt z tf tf, zf : ανεξάρτητα μεταξύ τους z(tf) Ελεύθερο f f ( z ( t ), z" ( t ),t ) z" =0 Ελεύθερο " z t=t f f Καθορισμένο f ( z ( t ), z" ( t ),t ) z" z" = 0 t=t Καθορισμένο z" =0 tf t= z = zf tf z" =0 t= z = zf tf, zf : εξαρτημένα μεταξύ τους z = m ( t ) δ z = m ( t ) δ t f z tf = m tf f f f ( z ( t ), z" ( t ),t ) z" + m ( t ) =0 " " z z t=t f H ίδια ανάλυση γίνεται και για τα ti, zi (ΑΡΧΙΚΕΣ οριακές συνθήκες) Όπως και προηγουμένως αλλά τώρα έχουμε f. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 57
14 Συνθήκες για το Πρόβλημα Ισοτικών Περιορισμών: Παράδειγμα Να ευρεθούν τα ακρότατα της 1 J ( z ) = ( x 2 + u 2 ) dt 0 x ( 0 ) = 0 x (1) = 1 x = u Θεωρούμε τη συνάρτηση- διάνυσμα z = x u και γραφουμε την επαυξημένη συνάρτηση 1 f ( z, z",t ) = ( x 2 + u 2 ) + λ ( x" u ) 2 Άρα πρέπει να ικανοποιούνται οι εξισώσεις Ισοτικών περιορισμών G ( t, z, z ) = x u = 0 και Euler x ( t ) = c1et + c2 e t x x = 0 x u = 0 x λ = 0 d =0 z dt z" " d " =0 x λ =0 x dt x " " f d f =0 u λ =0 u dt u Παρατηρούμε ότι t i = 0, t f = 1 (καθορισμένοι αρχικοί και τελικοί χρόνοι) και. z 1 ( 0 ) = x ( 0 ) = 0 z 1 ( 1 ) = x ( 1 ) = 1 x ( t ) = et e t e e 1 t t e + e. z 2 ( 0 ) = u ( 0 ) = z 2 ( 1 ) = u ( 1 ) = free άρα u t = x t = ( =0 " u Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ t=ti =0 )( u" ) =0 t= =1 () () e e 1 58
15 Βελτιστοποίηση σε Άπειρες Διαστάσεις & Ισοτικοί Περιορισμοί Πώς οµως µπορούµε να είµαστε σίγουροι ότι το ακρότατο (z*(t), λ * (t)) ελαχιστοποιεί και την F(z) σε σχέση µε ολες τις z(t) C 1 [t 0, ] που ικανοποιούν τόσο τις οριακές συνθήκες όσο και τον ισοτικό περιορισµό??? Αυτό ισχύει µόνο αν η είναι αυστηρά κυρτή. Πως ελέγχεται όµως η αυστηρή κυρτότητα της? ο βασικό εργαλείο είναι η χρήση παραγώγων 2 ης τάξης (Hessian). Όµως σε κάποιες περιπτώσεις µπορούµε να δείξουµε απ ευθείας π.χ. Αν οι ισοτικοί περιορισµοί είναι γραµµικοί... Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 59
16 Ισοτικοί Περιορισμοί: Κυρτότητα Η Γραμμική Περίπτωση Αν οι ισοτικοί περιορισµοί είναι γραµµικοί δηλ.: Gtzz,, Gtzz,, Gt, z( t), z ( t) = C( t) z( t) + e( t) D( t) z ( t) = 0 = C( t) = D t z z Για να θεωρήσουµε την µεταβολή Gateaux του συναρτησιακού F(z) z G tzz t z (,, ) λ C ( t) λ ( t) G tzz t (,, ) λ Dt λ D t t λ Προηγουμένως f = f +λ G Υπενθύμιση G = G λ λ D ( t) Dt λ ( t) C t t Dt Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 60
17 Ισοτικοί Περιορισμοί: Κυρτότητα Η Γραμμική Περίπτωση Αναλύοντας την «κυρτότητα» της : Dt Ισότητα µόνο όταν υ(t)=0 t [t 0, ] Dt Dt Προηγουµ. Διαφάνεια Dt Για την περίπτωση γραµµικών ισοτικών περιορισµών η (αυστηρή) κυρτότητα της F(z) συνεπάγεται την (αυστηρή) κυρτότητα της κάθε διάνυσµα πολλαπλασιαστή Lagrange λ(t). Μέχρι στιγµής... Πεπερασμένες Μη- Περιορισμένο Διαστάσεις Ισοτικοί Περιορισμοί ΒΕΛΙΣΟΠΟΙΗΣΗ Μη- Περιορισμένο Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Άπειρες Διαστάσεις για Ισοτικοί Περιορισμοί 61
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί
Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b
Διαβάστε περισσότεραΕισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Όπως είδαµε στα προηγούµενα παραδείγµατα, η εξαγωγή συµπεράσµατος για το είδος του κρίσιµου σηµείου έγινε µέσω της 2 ης παραγώγου
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml2347/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Δομή της
Διαβάστε περισσότεραΈλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραΣυστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Διαβάστε περισσότεραΣυστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΒέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )
Βέλτιστος Έλεγχος μέσω Λογισμού των ( ) Μεταβολών Εστω σύστημα!x ( t) = a x( t),u( t),t με t 0, x(t 0 ) καθορισμένα. Ζητείται η εύρεση κατάλληλης συνάρτησης ελέγχου u*(t) που, παράγοντας τη τροχιά x*(t)
Διαβάστε περισσότεραΟ Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου
Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΈλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
Διαβάστε περισσότεραmin f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Διαβάστε περισσότεραΠανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
Διαβάστε περισσότερα2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1
2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Διαβάστε περισσότεραΑνάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Διαβάστε περισσότερα1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα
Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση
Διαβάστε περισσότεραΑκρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα
KΕΦΑΛΑΙΟ 3 Πλεγµένες συναρτήσεις- Ανάπτυγµα Talor-Aκρότατα 3 Πλεγµένες συναρτήσεις Σε πολλές περιπτώσεις συναντούµε µία (ή και περισσότερες) εξισώσεις µεταξύ διαφόρων µεταβλητών πχ της µορφής e + συν (
Διαβάστε περισσότεραIII.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Μαΐου 9 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη σχολικού
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Διαβάστε περισσότεραΕνότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότερα3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Διαβάστε περισσότεραIII.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y
Διαβάστε περισσότερατη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
Διαβάστε περισσότεραΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι
Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ - Εφικτός χώρος λύσεων - Συνάρτηση Lagrange - Γενικές συνθήκες ECM ΣΥΝΘΗΚΕΣ CONSTRAINED Ιδιαιτερότητες των προβλημάτων
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Διαβάστε περισσότερα(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :
ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)
Διαβάστε περισσότερα1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
Διαβάστε περισσότεραΕισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Διαβάστε περισσότεραΓραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραThanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ
thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >
Διαβάστε περισσότεραΒασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:
KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
Διαβάστε περισσότερα55 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:
ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ: 7647-7679 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΛΥΣΕΙΣ ΘΕΜΑ Α Α Θεωρία, απόδειξη σχολικό σελίδα 36 Α Θεωρία, ορισμός σχολικό σελίδα 73 Α3 Θεωρία, ορισμός
Διαβάστε περισσότεραΠανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός
Πανεπιστήμιο Αιγαίου URL: http://www.aegean.gr Γραμμικός Προγραμματισμός Ευστράτιος Ιωαννίδης Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών 832 Καρλόβασι Σάμος Copyright Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών
Διαβάστε περισσότεραΗ ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.
Διαβάστε περισσότεραΕνότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότερα) ( ) Μάθηµα 3 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 4.18). είναι ορθοκανονικά
Γραµµική Άλγεβρα ΙΙ Σελίδα από Μάθηµα ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 48) Λυµένες Ασκήσεις Άσκηση Αν {,,, } και {,,, } σύνολα διανυσµάτων του p p p ν q q q
Διαβάστε περισσότεραΒασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Διαβάστε περισσότεραx=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).
3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα
Διαβάστε περισσότεραKεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
Διαβάστε περισσότεραΚεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη
Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος
Διαβάστε περισσότερα( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:
ΘΕΜΑ ο Γ' ΤΑΞΗ ΓΕΝΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ Α Έστω f µία συνεχής συνάρτηση σ ένα διάστηµα [α, β] Αν G είναι µία β παράγουσα της f στο [α, β], τότε f ( t) dt = G( β )
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι
Διαβάστε περισσότερα6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ
6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. Διανυσματικοί χώροι παραμέτρων και μετρήσεων. Θα δανειστούµε για µία ακόµη φορά έννοιες της Γραµµικής Άλγεβρας προκειµένου να δούµε πως µπορούµε να χειριστούµε
Διαβάστε περισσότεραΗ έννοια του συναρτησιακού (functional).
ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΛΟΓΙΣΜΟΥ ΤΩΝ ΜΕΤΑΒΟΛΩΝ (CALCULUS OF VARIATIONS) Η έννοια του συναρτησιακού (fnctionl). Ορισµός : Εάν σε κάθε συνάρτηση που ανήκει σε κάποιο χώρο συναρτήσεων A, αντιστοιχεί µέσω κάποιου
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΜηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000
Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επαναληπτικές ασκήσεις - Μέθοδος Lagrange - Γενικές συνθήκες (EC) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Θα
Διαβάστε περισσότεραΘεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότερα4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο
Διαβάστε περισσότεραΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ. φυσικό σύστηµα; Πρόκειται για κίνηση σε συντηρητικό πεδίο δυνάµεων;
ΠΟΤΕ ΙΣΧΥΕΙ Η ΑΡΧΗ ΤΗΣ ΕΛΑΧΙΣΤΗΣ ΔΡΑΣΕΩΣ Είδαµε ότι η φυσική κίνηση ενός σωµατιδίου σε συντηρητικό πεδίο ικανοποιεί την αρχή ελάχιστης δράσης του Hamilton µε Λαγκρανζιανή, όπου η κινητική ενέργεια του
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ
ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ ρ. Α. Μαγουλάς Οκτώβριος 4 Η συνάρτηση δ ( και η παράγωγός της Ορίζεται ως εξής: δ ( ανωµαλο
Διαβάστε περισσότεραΓεωµετρικη Θεωρια Ελεγχου
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο
Διαβάστε περισσότεραΒασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία
Διαβάστε περισσότεραA = x x 1 + 2x 2 + 4
Επιχειρησιακή Ερευνα η Σειρά Ασκήσεων Ενδεικτικές Λύσεις 1. (α ) Η συνάρτηση f(x 1, x ) = x 1 + x x 1 x + x μπορεί να γραφεί ως f( x) = x A x + b x όπου x = x 1 A = 1 1 1 x b = 0 Θα χρειαστούμε το διάνυσμα
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Διαβάστε περισσότεραa 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1
Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,
Διαβάστε περισσότεραΟι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ
Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()
Διαβάστε περισσότεραΘέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΜηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ
ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:
Διαβάστε περισσότεραΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ
ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ρ. Α. Μαγουλάς Οκτώβριος 4 Παράδειγµα ίδεται το ακόλουθο δίκτυο: E Είσοδος:
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Διαβάστε περισσότεραx 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
Διαβάστε περισσότεραΗ ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω
Διαβάστε περισσότεραI.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Επιμέλεια: Ι. Λυχναρόπουλος. Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f b) f : R R f y, ( +, y
Διαβάστε περισσότερα