Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων



Σχετικά έγγραφα
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Μαρκοβιανές Αλυσίδες

Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Διαδικασίες Markov Υπενθύμιση

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

p q 0 P =

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος. 532 Στοχαστικές Διαδικασίες. Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 3: Μαρκοβιανές Αλυσίδες

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

P (M = n T = t)µe µt dt. λ+µ

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Ενδεικτικές Λύσεις Ασκήσεων. Κεφάλαιο 3. Κοκολάκης Γεώργιος

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

2

Ασκήσεις 3 ου Κεφαλαίου

Αριθμητική Ανάλυση και Εφαρμογές

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

DEPARTMENT OF STATISTICS

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Στην Ξένια και στην Μαίρη

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Κεφάλαιο 1: Εισαγωγή. Κοκολάκης Γεώργιος

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Αντίστροφη & Ιδιάζουσα μήτρα. Στοιχεία Γραμμικής Άλγεβρας

Στοχαστικές Ανελίξεις- Ιούλιος 2015

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

«ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

Επεξεργασία Στοχαστικών Σημάτων

5 Σύγκλιση σε τοπολογικούς χώρους

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

Μέρος ΙΙ. Τυχαίες Μεταβλητές

a n = 3 n a n+1 = 3 a n, a 0 = 1

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Στοχαστικές Στρατηγικές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

II. Τυχαίες Μεταβλητές

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

X = = 81 9 = 9

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

Τυχαίες Μεταβλητές. Ορισμός

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

3.1. ΠΙΘΑΝΟΤΗΤΕΣ ΜΕΤΑΒΑΣΗΣ

X i = Y = X 1 + X X N.

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

/ / 38

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 2271035468

Σημειακή Διαδικασία 0 T 1 T 2 T 3 T T k-1 T k Χρόνος μεταξύ δύο γεγονότων U k = T k T k-1 0 αριθμός γεγονότων : N(t) t

Στοχαστική Διαδικασία Μια διαδικασία περιγράφεται επίσης από τον αριθμό των γεγονότων Ν(t) που συμβαίνουν σε ένα χρονικό διάστημα Ν(t): ο αριθμός των γεγονότων στο χρ. διάστημα [0,t] Ν((α,β])=Ν(β)-Ν(α) N = 1 ( t) 1{ T t} = 1{ T1 t} + 1{ T2 t} + K+ { T t} 1 { N( t) = } = { T t < T+ 1 } Μέσος αριθμός γεγονότων πριν την στιγμή t: [ N ( )] m ( t) = E t

Στοχαστική Διαδικασία Θεωρείστε ένα σύστημα το οποίο εξελίσσεται τυχαία στο χρόνο και έστω ότι παρατηρούμε το σύστημα στους χρόνους = 0, 1, 2, 3,. Έστω X η (τυχαία) κατάσταση του συστήματος στο χρόνο. Η ακολουθία των τυχαίων μεταβλητών {X 0, X 1, X 2, } ονομάζεται στοχαστική διαδικασία διακριτούχρόνου και γράφεται {Χ, 0} Αν με Ε συμβολίσουμε το σύνολο όλων των δυνατών τιμών που μπορεί να πάρει η X για όλα τα, τότε το Ε ονομάζεταιχώροςκαταστάσεων της στοχαστικής διαδικασίας {Χ, 0}

Στοχαστική Διαδικασία Παραδείγματα σ.δ.δ.χ. X : η θερμοκρασία στην πόλη της Χίου την ημέρα στις 12:00 το μεσημέρι. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε =(-20,50) X : το αποτέλεσμα της -οστής ρίψης ενός κανονικού ζαριού. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = {1, 2, 3, 4, 5, 6} X : ο δείκτης του Χ.Α.Α. την ημέρα. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = [0, ) X : ο αριθμός των εφημερίδων «ΕΝΗΜΕΡΩΣΗ» που πουλάει ένα περίπτερο την ημέρα. Ο χώρος καταστάσεων της σ.δ.δ.χ. {Χ, 0} είναι Ε = {0, 1, 2, 3,.} διακριτή σ.δ. με διακριτό χώρο καταστάσεων διακριτή σ.δ. με συνεχή χώρο καταστάσεων

Στοχαστική Διαδικασία Θεωρείστε ένα σύστημα το οποίο εξελίσσεται τυχαία στο χρόνο και έστω ότι παρατηρούμε το σύστημα σε όλες τις χρ. στιγμές t 0και έστω X(t) η κατάσταση του συστήματος χρ. στιγμή t. Το σύνολο των καταστάσεων στις οποίες μπορεί να βρεθεί το σύστημα σε οποιαδήποτε χρ. στιγμή t καλείται χώρος καταστάσεων και συμβολίζεται με Ε. Η διαδικασία {X(t), t 0} καλείται στοχαστική διαδικασία συνεχούς χρόνου με χώρο καταστάσεων Ε.

Στοχαστική Διαδικασία Παραδείγματα σ.δ.σ.χ. Έστω μια μηχανή η οποία μπορεί να λειτουργεί ή να μην λειτουργεί. Εάν θεωρήσουμε ως X(t) την κατάσταση της μηχανής στο χρόνο t τότε η {X(t), t 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =(λειτουργία, μη-λειτουργία) Έστω X(t) ο αριθμός των πελατών που μπαίνουν σε ένα εμπορικό κατάστημα στο χρόνο t τότε η {X(t), t 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =(0, 1, 2, } Έστω X(t) η θερμοκρασία στην πόλη της Χίου στο χρόνο t τότε η {X(t), t 0} είναι μια σ.δ.σ.χ με χώρο καταστάσεων Ε =(-20,50) συνεχής σ.δ. με διακριτό χώρο καταστάσεων συνεχής σ.δ. με συνεχή χώρο καταστάσεων

Στοχαστική Διαδικασία Μια διαφορετική προσέγγιση: Ορισμός: Η συνάρτηση Χ(ω,t) όπου ω το αποτέλεσμα ενός πειράματος τύχης και t ο χρόνος, λέγεται στοχαστική διαδικασία. Αν t = t 0 μια συγκεκριμένη χρονική στιγμή, τότε η Χ(ω,t 0 ) = Χ (ω) είναι τ.μ. Αν ζ = ζ 0 είναι ένα συγκεκριμένο αποτέλεσμα του πειράματος τύχης, τότε η Χ(ζ 0, t) = x(t) είναι μια συνάρτηση του χρόνου Χ(ζ 1, t) * Χ(ζ 1, t 0 ) Χ(ζ 2, t) Χ(ζ 3, t) * Χ(ζ 2, t 0 ) t 0 * Χ(ζ 3, t 0 )

Διαδικασία Poisso Ο αριθμός των γεγονότων Ν(t) ακολουθεί την κατανομή Poisso αν οι χρόνοι U i ακολουθούν εκθετική κατανομή { } { } 1 ) ( + > = t T t N { } { } 1 3 2 1 0 1 1 όπου ) ( + + + + + + + + = > = U U U U T T t T t N K ( ) ( ) ( ) t T t T t N > > = = + Pr Pr ) ( Pr 1 ( )! ) ( Pr e t N t λ λ = =

Διαδικασία Poisso Poisso λ 1 Υπέρθεση Poisso (λ 1 + λ 2 ) Poisso λ 2 Poisso λp Διαχωρισμός Poisso λ Poisso λ(1-p) ΠΑΡΑΔΕΙΓΜΑ: Ανεξάρτητες τ.μ. Χ, Υ Pr k λ λ 1 λ 1 λ2 2 ( X = k) = e, Pr( Y = k) = e, Pr( X + Y = ) =? k! k k!

ΜΑΡΚΟΒΙΑΝΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Μαρκοβιανές Αλυσίδες Δικριτού Χρόνου

Ορισμός (Μαρκοβιανή Αλυσίδα) Μια ακολουθία τ.μ. (X ) με τιμές στο Ε, είναι μια Μαρκοβιανή Αλυσίδα αν για οποιοδήποτε k > 0 και για οποιαδήποτε ακολουθία i, j, i 0, i 1,, i -1 στοιχείων του Ε, έχουμε: ( X + 1= j X0 = i0, X1= i1, X2 = i2, K, X = i) = Pr( X+ = j X = i) Pr 1 Μαρκοβιανή ιδιότητα Αν p ( ) = Pr( X j) τότε η δεσμευμένη συνάρτηση μάζας πιθανότητας j = p jk ( m,) = Pr( X = k X = j) 0 m ονομάζεται συνάρτηση πιθανοτήτων μετάβασης της ΜΑ Ομογενής ΜΑ m

Για μια ομογενή ΜΑ χρησιμοποιούμε την p jk = m+ m = ( ) Pr( X = k X j) και ονομάζεται πιθανότητα μετάβασης -βημάτων Λόγω της Μαρκοβιανής ιδιότητας μπορούμε να ορίσουμε την από κοινού πιθανότητα ( X0 = i0,x1= i1,x2 = i, K,X ) = i =... = p i (0) p i i K p 0 0 1 i 1 i Pr 2 Αυτό ουσιαστικά σημαίνει ότι μπορούμε να υπολογίσουμε οποιαδήποτε από κοινού πιθανότητα θέλουμε αρκεί να γνωρίζουμε την αρχική κατανομή ( α() ) p i ( 0) = Pr( X0= i) i και τις πιθανότητες μετάβασης μεταξύ των καταστάσεων

Δηλαδή: [ p (0) p (0) K ] ή [ a(0) (1) K] α= p( 0) = 1 p00 p01 K P = [ p ] ij = p 10 p 11 K M M M 0 a Το άθροισμα κάθε γραμμής του πίνακα P είναι j E p ij = Pr( X = 0 X 1 = i) + Pr( X = 1 X 1= i) + K= 1 Ένας τέτοιος τετραγωνικός πίνακας ονομάζεται στοχαστικός Παραδείγματα 1-5

Πιθανότητα -βημάτων: Γνωρίζουμε ότι p ij = m+ m = ( ) Pr( X = j X i) Pr(η διαδικασία πάει στην κατάσταση k στοm-οστό βήμα, δοθέντος ότιχ 0 = i) = p ik (m) Pr(αν η διαδικασία φτάνει στην κατάσταση j μετά από (m+) βήματα, δοθέντος ότιχ m = k)=p kj () Η μαρκοβιανή ιδιότητα υποδεικνύει ότι τα δύο παραπάνω γεγονότα είναι ανεξάρτητα. Από το θεώρημα ολικής πιθανότητας: ij( m+ ) = k E p p ( m) p ( ) ik Chapma-Kolmogorov kj

Αν τώρα συμβολίσουμε με P() τον πίνακα με στοιχεία p ij (), τότε με βάση τα προηγούμενα προκύπτει : P ( ) = P P( 1) = P Μπορούμε ακόμα να υπολογίσουμε την περιθώρια σ.μ.π. της τ.μ.χχ, με βάση τις πιθανότητες -βημάτων και την αρχική κατανομή p Η περιθώρια σ.μ.π. της.χ σαν διάνυσμα: και με βάση τα προηγούμενα Παραδείγματα 6, 7 j( ) = Pr( X = j) = Pr( X0 = i) Pr( X = j X0 i E = i E a( i) p ij ( ) ή i E = i) a( i) p ( i,j) [ p ( ) p ( )...] p( ) = 1 0 p( ) = α P( ) p( ) = α P

Για πολλές περιπτώσεις αλλά όχι για όλες τις Μ.Α. ισχύει: π Ταξινόμηση Καταστάσεων j = p = j lim ( ) j 01,, 2 Ορισμός: Μια κατάσταση i ονομάζεται μεταβατική (ή μη-επαναληπτική) αν και μόνο αν υπάρχει θετική πιθανότητα η διαδικασία να μην ξαναγυρίσει σε αυτή Γενικά για μια πεπερασμένη Μ.Α. περιμένουμε ότι μετά από ένα μεγάλο αριθμό βημάτων, η πιθανότητα η αλυσίδα να βρεθεί σε μια μεταβατική κατάσταση τείνει στο 0, ανεξάρτητα από την αρχική κατάσταση. ΈστωΧ ji ο αριθμός των επισκέψεων στην i από την j. Τότε Αν η i είναι μεταβατική τότε E[ X ji ] = =0 p ji ( ) =0 p ji( ) < j και άρα p ( ) ji 0

Ορισμός: Μια κατάσταση i ονομάζεται επαναληπτική αν και μόνο αν ξεκινώντας από την i η διαδικασία θα επιστρέψει κάποια στιγμή σε αυτή με πιθανότητα 1. Για τις επαναληπτικές καταστάσεις είναι σημαντικός ο χρόνος επιστροφής σε αυτές Έστω f ij ()=Pr(ηπρώτηεπίσκεψηαπότην iστην jγίνεταιμεακριβώς βήματα) τότε p ij ( ) = k= 1 f ij ( k) p jj ( k) 1

Έστω f ij = Pr(ξεκινώνταςαπότην iναφτάσωκάποιαστιγμήστην j) τότε f ij = =1 f ij ( ) Αν f ii = 1 τότε η i είναιεπαναληπτική* Αν f ii <1 τότε η i είναιμεταβατική* Έστω f ii = 1 τότε ορίζεται ομέσοςχρόνοςεπανάληψης της i (µ i ή m i ή v i ) µ i = fii( ) = 1 Αν µ i = τότε η i είναιμηδενικάεπαναληπτική Αν µ i < τότε η i είναιθετικάεπαναληπτική*

Ορισμός: Για μια επαναληπτική κατάσταση i ισχύει p ii () > 0 για κάποιο 1. Ορίζουμε ως περίοδο της i και συμβολίζουμε με d i, το μέγιστο κοινό διαιρέτη των θετικών ακεραίων για τους οποίους p ii () > 0 Ορισμός: Μια επαναληπτική κατάσταση i είναι απεριοδική αν d i = 1 και περιοδική αν d i > 1* Ορισμός: Μια κατάσταση i είναιαπορροφητική αν p ii = 1 i μεταβατική επαναληπτική μηδενικά θετικά περιοδική απεριοδική περιοδική απεριοδική

Ορισμός: Δύο καταστάσεις i και j λέμε ότι επικοινωνούν, αν υπάρχει τουλάχιστον ένα μονοπάτι που οδηγεί από την i στην j και αντίστροφα. Ορισμός: Ένα σύνολο C από καταστάσεις που επικοινωνούν είναι ένα κλειστό σύνολο αν καμία κατάσταση έκτος του C δεν είναι προσβάσιμη από καμία κατάσταση εντός τουc.* Ορισμός: Μια Μ.Α. ονομάζεται μη-διαχωρίσιμη (ή μη-αναγωγίσιμη ή αμετάπτωτη) αν κάθε κατάστασή της είναι προσβάσιμη από οποιαδήποτε άλλη σε πεπερασμένο αριθμό βημάτων. Αν μια κατάσταση μιας μη-διαχωρίσιμης Μ.Α, είναι απεριοδική τότε όλες της οι καταστάσεις είναι απεριοδικές και η Μ.Α. λέγεται απεριοδική. Ομοίως περιοδικη, μεταβατική, επαναληπτική. Παράδειγμα 8

Οριακή Κατανομή Οι πιθανότητες μετάβασης -βημάτων μιας πεπερασμένης, μη διαχωρίσιμης και απεριοδικής Μ.Α. (εργοδικής) γίνονται ανεξάρτητες από την κατάσταση i και από το όταν ö Όταν ö η οριακή πιθανότητα είναι: π j = lim pj( ) = lim α( i) pij ( ) = ( i) α i i = 1 ( ) lim p ( ) = lim p ( ) ij ( ) lim p ( ) Αυτό σημαίνει ότι όταν ö ο P συγκλίνει σε έναν πίνακα Π με όμοιες γραμμέςπ=[π 0 π 1 ] Αν ισχύει και τότε το π ονομάζεται οριακή κατανομή j E π = 1 j ij ij

Από το Θεώρημα Ολικής Πιθανότητας έχουμε ότι : και αφού παίρνουμε π lim j p j ( ) = π = lim p ( 1) = π p ή i i ij j Προκύπτει λοιπόν το σύστημα γραμμικών εξισώσεων: j π= π P j = i p ( ) p ( -1) p π= π P π = 1 i i i ij Οποιοδήποτε διάνυσμα x ικανοποιεί το σύστημα ονομάζεται στάσιμη κατανομή

Θεώρημα: Για μια απεριοδική Μ.Α. το lim p υπάρχει Θεώρημα : Για οποιαδήποτε μη-διαχωρίσιμη και απεριοδική Μ.Α. οι οριακές πιθανότητες π j = lim p j π j = ( ) = lim p ( ) ij j () υπάρχουν και είναι ανεξάρτητες από την αρχική κατανομή α Θεώρημα : Για μια εργοδική Μ.Α. η οριακή κατανομή πιθανοτήτων ονομάζεταιπ=[π 0 π 1 ] είναι η μοναδική στάσιμη κατανομή. Παραδείγματα 9-12