Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.
|
|
- Ιωάννα Καλαμογδάρτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.
2 Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = = +-. H τελευταία έχει όριο το. Παράδειγμα. Να εξετάσετε αν η σειρά + συγκλίνει. 3+ Απάντηση. Παρατηρούμε ότι το όριο της ακολουθίας = + lim + = lim 3+ = 3 0, άρα η σειρά αποκλίνει. 3+ του γενικού όρου της σειράς, είναι Ορισμός: Θα λέμε ότι η σειρά συγκλίνει απολύτως αν η σειρά συγκλίνει. Θεώρημα: Αν η σειρά συγκλίνει απολύτως τότε είναι συγκλίνουσα. Αν οι όροι μιας σειράς είναι μη αρνητικοί αριθμοί τότε ισχύει το παρακάτω θεώρημα: Αν παραλείψουμε ένα πεπερασμένο πλήθος όρων μιας σειράς, τότε η σειρά που προκύπτει έχει την ίδια συμπεριφορά ως προς τη σύγκλιση με την αρχική, ωστόσο το άθροισμά της θα είναι διαφορετικό. Υπόλοιπο (remider) σειράς (R ). Ας ξεκινήσουμε με τη σειρά και ας υποθέσουμε ότι η σειρά συγκλίνει στο s. Αυτό σημαίνει ότι αν πάρουμε τα μερικά αθροίσματα s, θα σχηματίσουν μια συγκλίνουσα ακολουθία με όριο το s. Αυτό
3 σημαίνει ότι τα μερικά αθροίσματα s πλησιάζουν το s όσο κοντά θέλουμε παίρνοντας το αρκετά μεγάλο. Με άλλα λόγια, αν πάρουμε το αρκετά μεγάλο, τότε μπορούμε να πούμε ότι, s s. Αυτή είναι μια μέθοδος για τον υπολογισμό του ορίου της σειράς. Μπορούμε να πάρουμε κάποιο μερικό άθροισμα και με αυτό να εκτιμήσουμε την τιμή της σειράς. Εγείρονται δύο ερωτήματα: Πρώτον, το πόσο καλή είναι η εκτίμηση; Δεύτερον, υπάρχει τρόπος να γίνει η εκτίμηση καλύτερη; Ας ξεκινήσουμε με μια γενική συζήτηση σχετικά με το πώς θα καθορίσουμε πόσο καλή είναι η εκτίμηση. Ας ξεκινήσουμε με όλη την σειρά και να απομακρύνουν τους πρώτους όρους (Το εδώ είναι σταθερό). Δηλαδή = + i () i= i=+ [ή + ν =( + )+( ν ) υποθέτοντας ότι υπάρχουν τα όρια όταν το ν τείνει στο άπειρο). Τότε s=s +R όπου η σειρά στα δεξιά συμβολίζεται με R και καλείται υπόλοιπο. Ισχύει () R =s-s. Επομένως το υπόλοιπο μας λέει για την διαφορά ή το λάθος μεταξύ της ακριβούς τιμής της σειράς και του μερικού αθροίσματος που χρησιμοποιούμε για την εκτίμηση της σειράς. Φυσικά δεν μπορούμε α υπολογίσουμε την ακριβή τιμή του υπολοίπου γιατί δεν γνωρίζουμε την ακριβή τιμή της σειράς. Όμως υπάρχουν θεωρήματα τα οποία με προϋποθέσεις μας βοηθούν να εκτιμήσουμε το υπόλοιπο. Παράδειγμα: Δίνεται η σειρά ν. ν= Τότε s 3 = και R 3= s = και τo -στό υπόλοιπο είναι το R =
4 Έτσι για =4 έχουμε s 4 = = , ν = και R 4= 4+ν = ν= ν= 6. Πρόταση: Αν η σειρά συγκλίνει σε ένα αριθμό s, τότε και η σειρά c όπου c σταθερός πραγματικός αριθμός συγκλίνει και μάλιστα στον αριθμό cs. Πρόταση: Αν οι σειρές και b συγκλίνουν στους αριθμούς s και r αντιστοίχως, τότε και η σειρά ( + b ) συγκλίνει και μάλιστα στον αριθμό s+r. Κριτήρια σύγκλισης (για σειρές με μη αρνητικούς όρους) o : Το Κριτήριο της Σύγκρισης (compriso test) Έστω ότι για τις ακολουθίες, b ισχύει 0 b. (α) Αν η σειρά (β) Αν η σειρά b συγκλίνει, τότε και η σειρά αποκλίνει, τότε και η σειρά b συγκλίνει. αποκλίνει. Παράδειγμα: Να εξετάσετε αν η σειρά συγκλίνει. ++5 Απάντηση. Παρατηρούμε ότι ++ < + = +. Όμως, έχουμε ήδη δει ότι η σειρά συγκλίνει στον αριθμό (σελ., παρ. 3). Αρα από το κριτήριο σύγκρισης συμπεραίνουμε + ότι η σειρά συγκλίνει. ++5 ο : Το Κριτήριο του Λόγου Έστω η σειρά με 0. 4
5 + (α) Αν το lim =<, τότε η σειρά συγκλίνει. + (β) Αν το lim => τότε η σειρά αποκλίνει. + (γ) Αν το lim =, τότε δεν έχουμε κανένα συμπέρασμα για τη σύγκλιση της σειράς. Παράδειγμα: Να εξετάσετε αν η σειρά! συγκλίνει. Λύση. Χρησιμοποιώντας το κριτήριο του λόγου έχουμε: lim +! = lim =0<, άρα η σειρά συγκλίνει. +! 3 ο : Το Κριτήριο του Ολοκληρώματος. Έστω f(x) μια μη αρνητική, συνεχής και φθίνουσα συνάρτηση με πεδίο ορισμού το διάστημα [, +). (α) Το ολοκλήρωμα (β) Το ολοκλήρωμα f(x)dx συγκλίνει, αν και μόνο αν η σειρά f(x)dx αποκλίνει, αν και μόνο αν η σειρά f() συγκλίνει. f() αποκλίνει. Προσοχή! Αν το ολοκλήρωμα και η σειρά συγκλίνουν δεν σημαίνει, ότι συγκλίνουν απαραίτητα στον ίδιο αριθμό. Παράδειγμα: Να εξετάσετε αν η σειρά p με p> συγκλίνει. Απάντηση. Θεωρούμε τη συνάρτηση f(x) = x p διάστημα [, )., p>. H συνάρτηση αυτή είναι θετική και φθίνουσα στο 5
6 Ισχύει dx x = p t t lim p dx = lim - p- x t p- t = p- Άρα το γενικευμένο ολοκλήρωμα συγκλίνει και επομένως και η αντίστοιχη σειρά. Εναλλάσσουσες σειρές Μια σειρά στην οποία οι διαδοχικοί όροι της αλλάζουν πρόσημο λέγεται εναλλάσσουσα. Σε μια εναλλάσουσα σειρά ο γενικός της όρος θα έχει την μορφή =(-) b ή =(-) + b, όπου b 0. Κριτήριο Εναλλασσουσών σειρών. Αν σε μία εναλλάσσουσα σειρά ισχύει + και η είναι μια μηδενική ακολουθία τότε η σειρά συγκλίνει. Παράδειγμα: Η σειρά είναι συγκλίνουσα. Απάντηση. Πράγματι η σειρά αυτή είναι εναλλάσσσουσα και η ακολουθία είναι φθίνουσα και τείνει στο 0, συνεπώς η σειρά συγκλίνει. Παρατηρείστε ότι η σειρά αυτή δε συγκλίνει απόλυτα αφού η αρμονική σειρά δεν συγκλίνει. Δυναμοσειρές Έστω, N μια ακολουθία πραγματικών αριθμών. Μια σειρά της μορφής ( x-c) λέγεται =0 δυναμοσειρά με κέντρο το c και συντελεστές. Παρατηρήσεις: ) Μια δυναμοσειρά είναι πιθανόν να συγκλίνει για κάποιες τιμές του x, ενώ να αποκλίνει για άλλες. Για κάθε x που συγκλίνει ορίζεται μια συνάρτηση f(x). 6
7 ) Όλες οι δυναμοσειρές με κέντρο το c συγκλίνουν για x=c. (θεωρούμε ότι 0 0 =) Παράδειγμα: Ισχύει x = =0 -x για x <. (γεωμετρική σειρά παρ.4 σελ.). Σε κάθε δυναμοσειρά ενδιαφέρον έχει το σύνολο των πραγματικών αριθμών x για τους οποίους η σειρά συγκλίνει. Ισχύει σχετικά η παρακάτω πρόταση: Πρόταση: Το σύνολο σύγκλισης μιας δυναμοσειράς είναι το σύνολο {xr : x-c <r}, όπου r - = lim +. Αν x-c >r η σειρά αποκλίνει. Αν x-c =r δεν μπορούμε εν γένει να αποφανθούμε. To r ονομάζεται ακτίνα σύγκλισης της δυναμοσειράς. Παράδειγμα: Η δυναμοσειρά έχει ακτίνα σύγκλισης r=, δηλαδή συγκλίνει σε όλο το R. Πράγματι + = + 0, άρα r=. Ισχύει το παρακάτω θεώρημα: Θεώρημα: Έστω f(x)= =0 ( x-c) - α) f (x)= ( x-c) = ( + +) ( x-c). = για κάθε x στο διάστημα σύγκλισής της. Τότε ισχύει: =0 + x-c - x-c β) f(x)dx = +λ= +λ, όπου λ είναι μια σταθερά. + =0 = 7
8 Σειρές Tylor-Mcluri Η σειρά Τέιλορ (Tylor) μίας πραγματικής συνάρτησης f(x) η οποία είναι απείρως παραγωγίσιμη σε ένα διάστημα ενός πραγματικού αριθμού α είναι η δυναμοσειρά: f()+ f ()! (x-)+ f ()! (x-) + f () 3! (x-) 3 + ή σε συμπαγή μορφή =0 f! x- Η παράγωγος τάξης μηδέν της f ορίζεται να είναι η ίδια η f. Στην περίπτωση που =0, η σειρά ονομάζεται και σειρά Mcluri. Λέμε ότι η f αναπτύσσεται σε σειρά Tylor ή Mcluri. Είναι κοινή πρακτική να χρησιμοποιείται πεπερασμένος αριθμός από τους όρους της σειράς Τέιλορ για να προσεγγίσουμε μια συνάρτηση. Η εκθετική συνάρτηση (μπλε), και το άθροισμα των πρώτων + (=0,,,3,4,5,6,7) όρων της οικείας σειράς Τέιλορ στο 0 (κόκκινο). 8
9 Μερικές σημαντικές σειρές Mcluri Στη συνέχεια δίνουμε μερικές εξαιρετικά χρήσιμες σειρές μαζί με τα διαστήματα σύγκλισής τους. Οι σειρές αυτές θα αποτελέσουν το πρότυπο για τον υπολογισμό συνθετότερων μορφών τέτοιων συναρτήσεων. e x = + x + x + x3 + + x + x R! 3!! l( + x) = x x + x3 x + ( )+ 3 + < x l( x) = x x x3 3 x x < συνx = cosx = x + x4! 4! x + + ( ) + x R ()! ημx = six = x x3 3! + x5 5! + x + ( ) + x R ( + )! x = + x + x + x x + x < +x = x + x x ( ) x + x < 9
ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. v. Σε αυτή την περίπτωση το lim v
ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Η ακολουθία { α ν } λέγεται αθροίσιμη αν η ακολουθία {S ν } συγκλίνει, όπου S 2 3.... Σε αυτή την περίπτωση το lim S συμβολίζεται με και λέγεται το άθροισμα της ακολουθίας {
Διαβάστε περισσότεραΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση
ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ 1. ΑΚΟΛΟΥΘΙΕΣ Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση : 1 λέγεται ακολουθία πραγματικών αριθμών ή
Διαβάστε περισσότεραn sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4.
ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Εξετάστε ως προς τη σύγκλιση τη σειρά si. Λύση: Παρατηρούμε ότι si 0 άρα η σειρά δεν συγκλίνει. Συγκεκριμένα
Διαβάστε περισσότεραΜερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.
Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα
Διαβάστε περισσότεραΑκολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.
Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες Σειρές Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 9 εκδόσεις Καλό
Διαβάστε περισσότεραΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΣΕΙΡΕΣ:. Να γράψετε τους πρώτους πέντε όρους της κάθε ακολουθίας: (β) (γ), Απαντήσεις: {/, /, 7/8, 5/6, /} (β) {, /5, /,5/, /7} (γ) {, /,, /,
Διαβάστε περισσότεραΑκολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.
Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες, Σειρές, Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 7 εκδόσεις Καλό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι ΣΕΙΡΕΣ Διδάσκουσα : Δρ Μαρία Αδάμ Λυμένες ασκήσεις ) Να μελετηθούν ως προς τη σύγκλισή
Διαβάστε περισσότεραΣηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας
Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο
Διαβάστε περισσότεραDunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA
Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες
Διαβάστε περισσότεραΑπειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών
Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της
Διαβάστε περισσότεραΣειρές Taylor και MacLaurin
Σειρές Taylor και MacLaurin Πολυωνυμική προσέγγιση: Υποθέτουμε ότι για μια συνάρτηση f γνωρίζουμε την τιμή της f(α) αλλά δεν γνωρίζουμε πώς να βρούμε την τιμή f(x) σε άλλα σημεία x κοντά στο α. Για παράδειγμα
Διαβάστε περισσότεραΞέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.
Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.
Διαβάστε περισσότεραf(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)
Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων
Διαβάστε περισσότεραΣειρές πραγματικών αριθμών
ΚΕΦΑΛΑΙΟ Σειρές πραγματικών αριθμών Προσέγγιση του π < π < Αρχιμήδης ο Συρακούσιος (87 π.χ - π.χ.) 7 7 π = Frçois Viète (54-6) + + + π 4 4 6 6 8 8 = Joh Wllis (66-7) 5 5 7 7 9 4 π = + Viscout Broucker
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει
Διαβάστε περισσότεραΚεφάλαιο 12. Σειρές Ορισμός και Παραδείγματα Ορισμός
Κεφάλαιο 2 Σειρές Στο κεφάλαιο αυτό θα εισάγουμε την έννοια της σειράς, δηλαδή του αθροίσματος ενός άπειρου πλήθους πραγματικών αριθμών. Στην Παράγραφο 2. θα ορίσουμε, καταρχάς, τις σειρές, και θα δούμε
Διαβάστε περισσότεραΗ Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΚΤΟ ΜΑΘΗΜΑ Τώρα θα μας απασχολήσουν τρία ερωτήματα σε σχέση με την κατά σημείο σύγκλιση ακολουθίας συναρτήσεων. Και για τα τρία ερωτήματα θα υποθέσουμε ότι f f στο
Διαβάστε περισσότεραAkoloujÐec sunart sewn A. N. Giannakìpouloc, Tm ma Statistik c OPA
AkoloujÐec sunrt sewn A. N. Ginnkìpouloc, Tm m Sttistik c OPA Eisgwg Στη διάλεξη αυτή θα μελετήσουμε την έννοια της σύγκλισης ακολουθίων συναρτήσεων και συγκεκριμένα την έννοια της ομοιόμορφης σύγκλισης.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις
Διαβάστε περισσότεραΑσκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα
Διαβάστε περισσότεραΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)
Έστω συνάρτηση f: [α, β] R παραγωγίσιμη. Τότε η παράγωγος συνάρτηση f (x) παίρνει όλες τις τιμές μεταξύ των f (α) και f (β). Έστω f (α) < λ < f (β). Πρέπει να δείξουμε ότι υπάρχει x 0 ώστε f (x 0 ) = λ.
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο
Διαβάστε περισσότεραΓια να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
Διαβάστε περισσότεραΣηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
Διαβάστε περισσότεραΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 9--3 Μ. Παπαδημητράκης. Εκτός από το κριτήριο του Cauchy, όλα τα άλλα κριτήρια σύγκλισης μιας σειράς που είδαμε μέχρι τώρα (απόλυτης σύγκλισης, σύγκρισης δυο σειρών, λόγου,
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ Συνεχίζουμε την λύση της άσκησης 6.3.. Μέχρι τώρα έχουμε αποδείξει ότι για κάθε διαμέριση του [, b] υπάρχει μια αντίστοιχη διαμέριση του [, B] ώστε να ισχύουν
Διαβάστε περισσότεραΠερίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.
Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0, 1, 2, 3, 4, }. Με Q θα
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, --3 Μ. Παπαδημητράκης. Τώρα θα δούμε μια ακόμη εφαρμογή του Κριτηρίου του Ολοκληρώματος. Παράδειγμα. Γνωρίζουμε ότι η αρμονική σειρά αποκλίνει στο +, το οποίο φυσικά σημαίνει
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο
Διαβάστε περισσότεραΑόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.
Αόριστο ολοκλήρωμα Αντιπαράγωγος μίας συνάρτησης f() ορισμένης σε ένα διάστημα [α,β] λέγεται κάθε συνάρτηση F() που επαληθεύει την ισότητα F( ) f ( ) F( ) c επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ Παράδειγμα. Θεωρούμε για κάθε την συνάρτηση με πεδίο ορισμού [0, + ) και με τύπο (x) = x για κάθε x [0, + ). + x Έχουμε δει ότι 0 στο [0, + ). Τώρα, για
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, 9-10-13 Μ. Παπαδημητράκης. 1 ΠΡΟΤΑΣΗ. Αν ισχύει y n για άπειρους n και x R και y n y R, τότε x y. Απόδειξη. Υποθέτουμε (για άτοπο) ότι y < x. Γνωρίζουμε ότι υπάρχει κάποιος αρκετά
Διαβάστε περισσότεραΛύσεις Διαγωνισμάτος 1 Ενότητα: Ακολουθίες-Σειρές
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegea.gr Λύσεις Διαγωνισμάτος Ενότητα: Ακολουθίες-Σειρές Άσκηση. Έστω ακολουθία (a ), για την οποία ισχύει ότι Θεωρούμε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ
Διαβάστε περισσότεραsup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.
Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)
Αριθμός Εξέτασης 7 α.α) ος τρόπος: Έστω z i. Τότε ΑΠΑΝΤΗΣΕΙΣ z i και Re z. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι z z,ισχύει επίσης ότι. Είναι z z z z z z z z z z z
Διαβάστε περισσότεραΜαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x)
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..3: Κανόνες Παραγώγισης
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 5 Ορισµοί Εστω α δοθείσα πραγµατική ακολουθία Ορίζουµε µία νέα ακολουθία ως εξής: 3 3 = + + + = = + = + + Ορισµός 5 Εάν υπάρχει το lim + = τότε η ακολουθία καλείται
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και
Διαβάστε περισσότεραΜέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο
Διαβάστε περισσότεραΘέμα 1. που. . Δηλαδή ο υπόχωρος V είναι το. Απάντηση 1α) ii)παρατηρούμε οτι
Θέμα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουνίου (οποιεσδήποτε άλλες ορθές απαντήσεις είναι αποδεκτές)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
Διαβάστε περισσότερα7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z
7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
Διαβάστε περισσότερα5o Επαναληπτικό Διαγώνισμα 2016
5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότεραΕκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Σειρές ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των σει- ϱών. Το ϕυλλάδιο διατίθεται
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ, 28--3 Μ. Παπαδημητράκης. ΚΡΙΤΗΡΙΟ ΑΠΟΛΥΤΗΣ ΣΥΓΚΛΙΣΗΣ. Αν η σειρά + = x συγκλίνει απολύτως, τότε συγκλίνει και + x x. = = Δεν θα παρουσιάσω την απόδειξη. Διαβάστε την στο βιβλίο.
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 25 Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Όσοι έχουν πάρει προβιβάσιμο βαθμό στην Πρόοδο (πάνω
Διαβάστε περισσότερα13 Μονοτονία Ακρότατα συνάρτησης
3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν
Διαβάστε περισσότεραlim y < inf B + ε = x = +. f(x) =
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηματική Ανάλυση Ι ΟΜΑΔΑ: Α 8 Μαρτίου, 0 Θέμα. (αʹ) Εστω A, B μη κενά σύνολα πραγματικών αριθμών τέτοια ώστε x y, για
Διαβάστε περισσότεραΌριο και συνέχεια πραγματικής συνάρτησης
ΚΕΦΑΛΑΙΟ 4 Όριο και συνέχεια πραγματικής συνάρτησης Αγνοώ το πώς με βλέπει ο κόσμος αλλά στον εαυτό μου, φαίνομαι σαν να μην ήμουν τίποτα άλλο από ένα αγοράκι που παίζει στην ακρογιαλιά και κατά καιρούς
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις
Διαβάστε περισσότεραEisagwg sthn Anˆlush II
Eisgwg sthn Anˆlush II Μ. Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Φθινόπωρο 006 Prìlogoc Οι σημειώσεις αυτές διαφέρουν από τις παλιότερες κατά πολύ.. Εχει προστεθεί ύλη και έχουν γίνει πολλές
Διαβάστε περισσότερα1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. Η πρόταση είναι Λάθος. Αντιπαράδειγμα:
1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. 3 017 f(), D { 1,0,1} και g() D { 1,0,1} f f έχουμε D D και f( 1) g( 1), f(0) g(0), f(1) g(1) g Άρα f()=g() για Df =Dg
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ 5 Να γράψετε τις ιδιότητες του άπειρου ορίου στο o Απάντηση : Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων, που ορίζονται σε ένα σύνολο της
Διαβάστε περισσότεραΓενικά Μαθηματικά (Φυλλάδιο 1 ο )
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Διαβάστε περισσότεραΠροφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe
Άρτιο και Περιττό μέρος Συνάρτησης Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας e και μιας περιττής συνάρτησης, ως εξής: Αν e και,
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ 5 Να γράψετε τις ιδιότητες του άπειρου ορίου στο o Απάντηση : Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων, που ορίζονται σε ένα σύνολο της
Διαβάστε περισσότεραΕρωτήσεις-Απαντήσεις Θεωρίας
1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε
Διαβάστε περισσότεραΜιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης
Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C
Διαβάστε περισσότεραΜεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.
Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραΠαράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
Διαβάστε περισσότεραf(x) f(c) x 1 c x 2 c
Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς
Διαβάστε περισσότεραΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης
ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ, 1-11-13 Μ. Παπαδημητράκης. 1 Άσκηση 2.2.7. Έστω ϵ 0 > 0. Αποδείξτε ότι x n x αν και μόνο αν για κάθε ϵ με 0 < ϵ ϵ 0 ισχύει τελικά x n N x ϵ). Λύση: Έχουμε να αποδείξουμε την
Διαβάστε περισσότεραΓια την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Θέμα Α) Να δείξετε ότι αν f μια συνάρτηση ορισμένη σε διάστημα Δ και F μια παράγουσα της f στο Δ τότε: α) όλες οι συναρτήσεις της μορφής G(χ) = F ( ) +c, c είναι παράγουσες
Διαβάστε περισσότερα). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που
Διαβάστε περισσότερα... ονοµάζεται ακολουθία µερικών αθροισµάτων. Το όριό της, καθώς το n τείνει στο άπειρο, n n n 1
ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Στην ενότητα αυτή παρουσιάζουµε τα βασικότερα στοιχεία που είναι απαραίτητα για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους Έτσι, δίνονται συστηµατικά οι
Διαβάστε περισσότερα1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
Διαβάστε περισσότεραΓ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5 η Ηµεροµηνία Αποστολής στον Φοιτητή: Μαρτίου 8 Ηµεροµηνία παράδοσης της Εργασίας: Μαϊου 8 Πριν από την
Διαβάστε περισσότεραΓια την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0
5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ Άσκηση 0... Θεωρήστε τη σειρά συναρτήσεων sin( ). Αποδείξτε ότι η σειρά συγκλίνει σε κάποια συνάρτηση s κατά σημείο στο R και ομοιόμορφα στο [ a, a]
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Ιανουαρίου 009 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 009. Πριν
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε
Διαβάστε περισσότεραΑπό το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β
Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 8 ΝΟΕΜΒΡΙΟΥ 2016 ΜΕΣΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Έστω η συνάρτηση συνολικής ζήτησης: p = D(q) = 50 2q
Διαβάστε περισσότεραΟλοκληρωτικός Λογισμός
Ολοκληρωτικός Λογισμός Ορισμένο Ολοκλήρωμα Αόριστο Ολοκλήρωμα o Ιδιότητες Αόριστου Ολοκληρώματος o Βασικά Αόριστα ολοκληρώματα o Τεχνικές Ολοκλήρωσης o Ολοκλήρωση ρητών συναρτήσεων Εφαρμογές Ολοκληρώματος
Διαβάστε περισσότεραΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116
ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 1 ΕΙΣΑΓΩΓΙΚΟ-ΠΑΡΑΓΩΓΟΙ Ορισμός παραγώγου συνάρτησης σε σημείο Μια συνάρτηση f (X) λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του
Διαβάστε περισσότεραf x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R
ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Διαβάστε περισσότεραΣηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας
Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα
Διαβάστε περισσότεραΠ Κ Τ Μ Ε Μ Λύσεις των ασκήσεων
Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.
Διαβάστε περισσότεραΓ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των
Διαβάστε περισσότερα