ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, Στυλιάρης

Σχετικά έγγραφα
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΕΡΓΟ ΚΑΙ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

10. Παραγώγιση διανυσµάτων

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

( () () ()) () () ()

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος

Καρτεσιανό Σύστηµα y. y A. x A

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

ds ds ds = τ b k t (3)

Γενικά Μαθηματικά ΙΙ

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ

Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας»

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

Λύσεις στο επαναληπτικό διαγώνισμα 3

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ


b proj a b είναι κάθετο στο

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

Εφαρμοσμένα Μαθηματικά ΙΙ

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ


ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

2 ο Μάθημα Κίνηση στο επίπεδο

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

( () () ()) () () ()

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

Εφαρμοσμένα Μαθηματικά ΙΙ

Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις

ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης

website:

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

Φυσική για Μηχανικούς

1. Εισαγωγή στην Κινητική

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης


Εφαρμοσμένα Μαθηματικά ΙΙ

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

Φυσική για Μηχανικούς

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Σύντομη μαθηματική εισαγωγή

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

DIPLA KAI TRIPLA OLOKLHRWMATA

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

website:

Φυσική για Μηχανικούς

8 ο Μάθημα Περιστροφική κίνηση. Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

dv 2 dx v2 m z Β Ο Γ

5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας

Η επιτάχυνση και ο ρόλος της.

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

Α. Ροπή δύναµης ως προς άξονα περιστροφής

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων)

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή.

ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Κίνηση σε δύο διαστάσεις

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

ΦΥΣ. 111 Κατ οίκον εργασία # 1 - Επιστροφή 19/09/2017. Οι ασκήσεις στηρίζονται στα κεφάλαια 1 και 2 των βιβλίων των Young και Serway

Φυσική για Μηχανικούς

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

πάχος 0 πλάτος 2a μήκος

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ

Εφαρμοσμένα Μαθηματικά ΙΙ

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Ανασκόπηση-Μάθημα 28 Τριπλό ολοκλήρωμα-κυλινδρικές-σφαιρικές συντεταγμένες

Transcript:

ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 08-9 ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες Στοιχειώδεις Όγκοι ΠΑΡΑΓΩΓΙΣΗ Ιδιότητες της Παραγώγου Συνάρτηση Πολλών Μεταβλητών Μερική Παράγωγος ΠΑΡΑΓΩΓΟΣ ΙΑΝΥΣΜΑΤΟΣ Καμπύλες και Ταχύτητα Παράγωγος κατά Κατεύθυνση Παραγώγιση στον Τρισδιάστατο Χώρο Ο Τελεστής Stthis Costs STILIARIS, Vellidis, UoA 06-07 08-9

ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 08-9 ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΒΙΒΛΙΟΓΡΑΦΙΑ Τα εισαγωγικά κεφάλαια των παρακάτω βιβλίων αποτελούν μέρος μόνο της πλούσιας διαθέσιμης βιβλιογραφίας που υπάρχει για τα θέματα που θίγονται στα επόμενα. J. Mdsen & A. Tomb: ιανυσματικός Λογισμός (Vecto Clculus), 3 d Edition, Απόδοση στα Ελληνικά Α. Γιαννόπουλος, Πανεπιστημιακές Εκδόσεις Κρήτης (99) ISBN: 978 9607309457. Susn J. Colle: Vecto Clculus, Peson 4 th Edition (0) ISBN: 978 0378065. Adin Bnne: The Clculus Lifese, Pinceton Uniesit Pess, st (007) ISBN: 978 06930880. Edition Stthis Costs STILIARIS, Vellidis, UoA 06-07 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Επιπέδου Το σημείο P του επιπέδου προσδιορίζεται μέσω της ακτίνας και της γωνίας θ: P(,θ) cosθ sinθ όπου 0 < 0 θ < π Stthis STILIARIS, UoA 06-07 3 Costs Vellidis, UoA 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Σχέση Πολικών & Καρτεσιανών Συντεταγμένων cosθ sinθ όπου 0 < 0 θ < π θ tn d cosθ d sinθ dθ Ο γεωμετρικός d sinθ d cosθ dθ γεωμετρικός τόπος const. στις πολικές συντεταγμένες είναι ένας κύκλος. Stthis STILIARIS, UoA 06-07 4 Costs Vellidis, UoA 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Κυλινδρικές Συντεταγμένες Κυλινδρικές συντεταγμένες σε Καρτεσιανές cosθ sinθ Καρτεσιανές συντεταγμένες σε Κυλινδρικές Ο γεωμετρικός τόπος const. στις κυλινδρικές συντεταγμένες είναι η επιφάνεια κυλίνδρου. θ tn Το σημείο P του χώρου προσδιορίζεται μέσω της ακτίνας, της γωνίας θ και της καρτεσιανής συντεταγμένης : P(, θ,, ) Stthis STILIARIS, UoA 06-07 5 Costs Vellidis, UoA 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Σφαιρικές Συντεταγμένες Ο γεωμετρικός τόπος ρconst. στις σφαιρικές συντεταγμένες είναι η επιφάνεια σφαίρας. ρsinφ cosθ ρsinφsinθ ρcosφ όπου 0 ρ < 0 θ < π 0 φ π Το σημείο P του χώρου προσδιορίζεται μέσω της ακτίνας ρ και των γωνιών θ και φ: P(ρ, θ, φ) Stthis STILIARIS, UoA 06-07 6 Costs Vellidis, UoA 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Σφαιρικές Συντεταγμένες Σφαιρικές συντεταγμένες σε Καρτεσιανές ρsinφ cosθ ρsinφsinθ ρcosφ Καρτεσιανές συντεταγμένες σε Σφαιρικές ρ θ tn φ tn cos ( ρ) Stthis STILIARIS, UoA 06-07 7 Costs Vellidis, UoA 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Σχέση Κυλινδρικών & Σφαιρικών Συντεταγμένων P(, θ,, ) ρsinφ θ θ ρcosφ ρ θ θ φ P(ρ, θ, φ) ( ) tn Stthis STILIARIS, UoA 06-07 8 Costs Vellidis, UoA 08-9

ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Παράδειγμα Το σημείο του χώρου P με Καρτεσιανές Συντεταγμένες (,, ) έχει: Κυλινδρικές Συντεταγμένες P θ tn ( ) (- ) 7π 4 Σφαιρικές Συντεταγμένες ρ φ θ ρ θ tn ( ) (- ) cos(/ 7π 4 3) 54.7 o 3 Stthis STILIARIS, UoA 06-07 9 Costs Vellidis, UoA 08-9

ΠΑΡΑΓΩΓΙΣΗ Παράγωγος Συνάρτησης Μιας Μεταβλητής df f () lim d 0 f( ) f() Μερική Παράγωγος Συνάρτησης Πολλών Μεταβλητών Εάν η συνάρτηση έχει περισσότερες μεταβλητές {,, i n }, τότε η μερική παράγωγος της συνάρτησης αυτής ως προς μια μεταβλητή i ορίζεται ως το όριο: f i lim 0 f(,,... i... n ) f(,,... i... n ) ηλαδή, ελέγχεται η μεταβολή της συνάρτησης f μόνο ως προς την μεταβλητή i, θεωρώντας όλες τις άλλες μεταβλητές της σταθερές. Παράδειγμα f f(, ) f, 3 3 Stthis STILIARIS, UoA 06-07 0 Costs Vellidis, UoA 08-9

ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Παράγωγος Σύνθετης Συνάρτησης Πολλών Μεταβήτών Ηπαράγωγοςτηςσύνθετηςσυνάρτησηςf (, ) ως προς την μεταβλητή t, όταν (t) και (t) δίνεται από τον κανόνα της αλυσίδας: df df((t), (t)) f d f d Αντίστοιχα το διαφορικό df δίνεται από τη σχέση: df f f d d Παράδειγμα f(, ) (t) t (t) t df f d f d d Επαλήθευση d t (t )t t 4 5t 4 4t 3 df 5 4 4 f(t) (t ) (t ) t t 5t 4t 3 Stthis STILIARIS, UoA 06-07 Costs Vellidis, UoA 08-9

ΙΑΝΥΣΜΑ ΘΕΣΗΣ ΚΑΙ ΤΑΧΥΤΗΤΑΣ ιάνυσμα Θέσης î ĵ kˆ ( î ( î ĵ kˆ ) ( î ĵ kˆ ) )î ( ĵ Μετατόπιση kˆ )ĵ ( )kˆ t î Μέση Ταχύτητα ĵ t kˆ t î t ĵ kˆ t d lim t 0 t d Ταχύτητα ( î ĵ kˆ ) Stthis STILIARIS, UoA 06-07 Costs Vellidis, UoA 08-9 d î d ĵ d kˆ

ΙΑΝΥΣΜΑ ΙΑΝΥΣΜΑ ΕΠΙΤΑΧΥΝΣΗΣ ΕΠΙΤΑΧΥΝΣΗΣ kˆ d ĵ d î d ) kˆ ĵ ( î d d Ταχύτητα Ταχύτητα kˆ ĵ î t t Μέση Μέση Επιτάχυνση Επιτάχυνση kˆ d ĵ d î d ) kˆ ĵ î ( d d t lim 0 t Επιτάχυνση Επιτάχυνση kˆ ĵ î Stthis STILIARIS, UoA 06-07 3 Costs Vellidis, UoA 08-9

ΙΑΝΥΣΜΑ ΘΕΣΗΣ ΚΑΙ ΤΑΧΥΤΗΤΑΣ T Κατά τη κίνηση του σώματος από το Α στο Β η μετατόπιση s πάνω στην καμπύλη δίνεται από το τόξο ΑΒ. s lim lim t 0 t t 0 s t s lim lim s 0 s t 0 t Στο όριο αυτό το s γίνεται ίσο με το μέτρο, οπότε ο πρώτος όρος αντιπροσωπεύει ένα μοναδιαίο διάνυσμα, εφαπτόμενο στη διαδρομή (καμπύλη) που περιγράφει την κίνηση του σώματος. d lim ut s 0 s ds ut ut s ds lim t 0 t Stthis Costs STILIARIS, Vellidis, UoA 06-07 08-9 4

ΙΑΝΥΣΜΑ ΕΠΙΤΑΧΥΝΣΗΣ T N C Σώμα κινείται στην τροχιά C και τη χρονική στιγμή t έχει ταχύτητα και επιτάχυνση. Η επιτάχυνση έχει πάντα κατεύθυνση προς τα κοίλα της τροχιάς. Μπορούμε να αναλύσουμε την επιτάχυνση σε δύο κάθετες συνιστώσες: Σε μια εφαπτομενική στην τροχιά και σε μια κάθετη συνιστώσα. T Εφαπτομενική Επιτάχυνση: Αλλαγή στο μέτρο της ταχύτητας N Κάθετη Επιτάχυνση: Αλλαγή στη διεύθυνση της ταχύτητας Stthis STILIARIS, UoA 06-07 5 Costs Vellidis, UoA 08-9

ΙΑΝΥΣΜΑ ΕΠΙΤΑΧΥΝΣΗΣ u T u T ' d d (u T ) u T d du T u N dφ u T u T ' du T Όταν η τροχιά δεν είναι ευθύγραμμη, τότε το μοναδιαίο διάνυσμα u T αλλάζει κατεύθυνση, οπότε χρειάζεται να υπολογισθεί η παράγωγός του ως προς τον χρόνο. Στο αντίστοιχο κεφάλαιο της Κινηματικής θα αποδειχθεί πως du T u N ρ όπου το μοναδιαίο διάνυσμα u N είναι κάθετο στην εφαπτομενική διεύθυνση της τροχιάς και ρ ηακτίνακαμπυλότητας. Stthis STILIARIS, UoA 06-07 6 Costs Vellidis, UoA 08-9