ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης
|
|
- Ἄρης Σερπετζόγλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης
2 Θεωρία Κελυφών Βασικές αρχές (διαφορική γεωµετρία) Καµπύλη στο χώρο Μοναδιαίο Εφαπτοµενικό ιάνυσµα Κύριο Επίπεδο (osculating plane) Καµπυλότητα Βασικές αρχές (διαφορική γεωµετρία) x 3 s Q x x 3 (t) e 3 x e 1 e x 1 (t) x (t) x 1
3 3 1) Καµπύλη στο χώρο (παραµετρική διατύπωση) x = x ( t) e + x ( t) e + x ( t) e (1.1) ) Μοναδιαίο Εφαπτοµενικό ιάνυσµα dx dx dx dx = + + ds ds ds ds 1 3 e1 e e3 1 dx dx dx dx dx3 = + + ds ds ds ds ds (1.) Ισχύει: ( ds) ( dx ) ( dx ) ( dx ) = + + (1.3) 1 3 Άρα: δηλαδή dx ds είναι µοναδιαίο διάνυσµα. dx dx = 1 (1.4) ds ds dx t= = ds lim s 0 x s (1.5) Επίσης: dx dx ds x = = (1.6) dt ds dt είναι εφαπτοµενικό διάνυσµα, αλλά όχι κατ ανάγκη µοναδιαίο.
4 4 x 3 x x s + x x s e 3 x dx ds e 1 e x x 1 3) Κύριο Επίπεδο (osculating plane) Η οριακή θέση ενός επιπέδου που διέρχεται από τρία συνεχόµενα σηµεία της καµπύλης, καθώς τα δύο πλησιάζουν το τρίτο, ορίζουν το κύριο επίπεδο στη συγκεκριµένη θέση Κάθε σηµείο του κυρίου επιπέδου ορίζει µε ένα σηµείο x της καµπύλης ένα διάνυσµα (X-x), το οποίο βρίσκεται στο ίδιο επίπεδο µε το εφαπτοµενικό διάνυσµα και το διάνυσµα της µεταβολής του Tο κύριο επίπεδο ορίζεται ως:
5 5 ( ) ( ) ( X x) x x = 0 (1.7) Έτσι, µπορεί να οριστεί το κύριο κάθετο διάνυσµα σε ένα σηµείο της καµπύλης ως το διάνυσµα που βρίσκεται στο κύριο επίπεδο και είναι κάθετο στο εφαπτοµενικό διάνυσµα t. 4) Καµπυλότητα d t t= 1και άρα ( t t ) = t t = 0 ds όπου ( ) δηλώνει την παράγωγο ως προς s. Προκύπτει έτσι ότι το t είναι κάθετο στο t. Επίσης: dx dx dt t= = = xt ds dt ds ( ) t = xt + x t (1.8) που δηλώνει ότι το διάνυσµα t κείται στο επίπεδο των διανυσµάτων ẋ και ẋ δηλαδή στο κύριο επίπεδο. Εφόσον το διάνυσµα t είναι κάθετο του t είναι και παράλληλο στην κάθετη διεύθυνση και στο αντίστοιχο µοναδιαίο κάθετο διάνυσµα N, δηλαδή: t = k = kn (1.9) όπου k ορίζεται ως το διάνυσµα της καµπυλότητας και k=1/r η καµπυλότητα που αντιστοιχεί στην ακτίνα καµπυλότητας R, που είναι η ακτίνα ενός κύκλου στο κύριο επίπεδο που διέρχεται από τρία γειτονικά σηµεία της καµπύλης. Η κατεύθυνση του κάθετου µοναδιαίου διανύσµατος µπορεί να είναι οποιαδήποτε. Επιλέγεται ως θετική η δεξιόστροφη.
6 6 k N t k < o s N t k > o k
7 7 ΕΠΙΦΑΝΕΙΕΣ Κάθε επιφάνεια S µπορεί να οριστεί σε ένα καρτεσιανό σύστηµα αξόνων ως: x 1 = f 1 (α 1,α ), x = f (α 1,α ), x 3 = f 3 (α 1,α ) (1.10) όπου f i, i = 1,,3 συναρτήσεις (µονότιµες) των παραµέτρων α 1 και α x 3 n α 1 =d 5 α 1 =d 4 α 1 =d 3 D r, r,1 α 1 =d α 1 =d 1 α =c 5 e 1 e 3 r r e α =c 1 α =c α =c 4 α =c 3 + dr, dr ds x x 1 r ( a a ) = f ( a, a ) e + f ( a, a ) e + f ( a, a ) e (1.11) 1, dr= r,1 da1 + r, da (1.1) r όπου r, i =, i= 1, a i
8 8 1 η Θεµελιώδης Μορφή: ( ds) = dr dr= E( da ) + F da da + G( da ) οπου 1 1 E= r r, F = r r, G= r r,1,1,1,,, (1.13) Κατά µήκος των παραµετρικών καµπυλών ισχύει: ds = E da καµπύλεςµεσταθερόa 1 1 ds = G da καµπύλεςµεσταθερόa 1 (1.14) Όταν οι παραµετρικές καµπύλες τέµνονται κάθετα, τότε F=0. Άρα: ( ds) = A ( da ) + A ( da ) όπου 1 1 A = E, A = G, και F = 0 1 (1.15) Κάθετο ιάνυσµα Σε κάθε σηµείο P αντιστοιχεί ένα µοναδιαίο κάθετο διάνυσµα n(α1,α) που είναι κάθετο στα διανύσµατα r,1 και r,, τα οποία ορίζουν το εφαπτόµενο επίπεδο στο σηµείο P n( a a ) = 1, ( r,1 r,) r r,1, (1.16) Από τον διανυσµατικό λογισµό είναι γνωστό ότι: r r = r r,1,,1, και r r = r r,1,,1, sinθ cosθ (1.17) όπου θ η γωνία µεταξύ των διανυσµάτων r,1 και r,
9 9 cos F sin EG θ = και θ = F (1.18) EG EG υπό την προϋπόθεση ότι H 0. r,1 r, άρα n( a1, a) =, H = EG F (1.19) H Παρατήρηση: Το κάθετο διάνυσµα µίας καµπύλης της επιφάνειας δεν συµπίπτει απαραίτητα µε το κάθετο διάνυσµα της επιφάνειας στο ίδιο σηµείο, δηλαδή: γενικά N n 1 Σύµβαση: Το κάθετο διάνυσµα n θεωρείται θετικό, όταν δείχνει από το κοίλο προς το κυρτό χωρίο. Αυτό βεβαίως απαιτεί τον κατάλληλο προσανατολισµό των παραµετρικών καµπύλων. εύτερη Θεµελιώδης Μορφή Το διάνυσµα της καµπυλότητας δίδεται ως dt K = = Kn+ Kt (1.0) ds και διαχωρίζεται σε δύο συνιστώσες: την κάθετη και την εφαπτοµενική Kn και K t, αντίστοιχα Το κάθετο διάνυσµα παρουσιάζει το κύριο ενδιαφέρον: K n = K n (1.1) n τα διανύσµατα n και t είναι κάθετα, δηλαδή n* t =0.
10 10 dn dt t= n ds ds K n = K ( ) n n dt n = n Kn ds dr dn Kn = ds = dr dr dr dr (( ) ) (1.) Επίσης: dn = n da + n da,1 1, dr = r da + r da,1 1, (1.3) Έτσι: K n ( 1) ( ) ( ) + + ( ) II L da Mda da N da = = I E da Fda da G da 1 1 (1.4) όπου οι επόµενες ποσότητες ορίζουν την δεύτερη θεµελιώδη µορφή ( ) L= r n, M = r n + r n, N = r n (1.5),1,1,1,,,1,, Παραγωγίζοντας τις εκφράσεις r,1 n= 0 και r, n= 0 λαµβάνουµε: L= r n, M = r n, N = r n (1.6),11,1, όπου r, ij καθώς επίσης r r =, i, j= 1, a a i j = r,1,1
11 11 Επειδή οι ποσότητες E, F, G, L, M, N ορίζονται ως εκφράσεις των α και α 1 και είναι σταθερές σε κάθε σηµείο προκύπτει ότι η κάθετη καµπυλότητα εξαρτάται dα1 µόνο από την διεύθυνση dα. Κύριες Καµπυλότητες Αναζητούµε τις διευθύνσεις που καθιστούν την κάθετη καµπυλότητα µέγιστη και da ελάχιστη λ= da 1 K( λ) = L+ Mλ+ Nλ E+ Fλ+ Gλ (1.7) Θέτοντας dk ( λ) 0 dλ = λαµβάνουµε ( E Fλ Gλ )( M Nλ) ( L Mλ Nλ )( F Gλ) Παρατηρώντας ότι: = 0 (1.8) ( ) ( ) ( ) ( ) E+ Fλ+ Gλ = E+ Fλ + λ F+ Gλ L+ Mλ+ Nλ = L+ Mλ + λ M + Nλ (1.9) Βρίσκουµε ότι: ( E Fλ)( M Nλ) ( F Gλ)( L Mλ) + + = + + (1.30) Έτσι : M + Nλ L+ Mλ K( λ) = = F+ Gλ E+ Fλ (1.31)
12 Η χαρακτηριστική εξίσωση που προκύπτει είναι: 1 ( MG NF) λ + ( LG NE) λ+ ( LF ME) = 0 (1.3) από όπου προκύπτει: λ 1, ( LG NE) ± ( LG NE) 4( MG NF)( LF ME) = ( MG NF) (1.33) Αποδεικνύεται ότι οι δύο καµπυλότητες είναι ορθογώνιες και οι οικογένειες των καµπυλών που αντιστοιχούν σε αυτές είναι και αυτές ορθογώνιες. Αυτές αντιστοιχούν: da da da = 0 και = 0 (1.34) da 1 1 οπότε LF ME= 0 και MG NF = 0 (1.35) όµως για ορθογώνιες καµπύλες ισχύει F = 0. Αποδεικνύεται, επίσης ότι, γενικά: EG-F > 0, οπότε για τις ορθογώνιες, ούτε το Ε, ούτε το G µπορούν να µηδενίζονται. Έτσι, το Μ πρέπει να είναι µηδέν. F = M = 0 (1.36) 1 L 1 N οπότε K = =, K = = (1.37) R E R G 1 1 Έτσι, όταν οι καµπύλες κύριας καµπυλότητας χρησιµοποιούνται ως παραµετρικές καµπύλες, απλοποιούνται σηµαντικά οι εξισώσεις των κελυφών.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Θεµελιώδες Θεώρηµα Θεωρίας Επιφανειών Αφορά στην ανάπτυξη τριών διαφορετικών εξισώσεων (Gauss-Cdazzi)
Διαβάστε περισσότεραds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
Διαβάστε περισσότερα( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Διαβάστε περισσότερα( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Διαβάστε περισσότερα14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας.
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Kαθηγητής Στυλιανός Σταματάκης URL: http://stamata.webpages.auth.gr/geometry/ ΑΣΚΗΣΕΙΣ 1. Να εξεταστεί πώς αλλάζει
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος. Ποιες από τις επόμενες καμπύλες παριστάνουν ευθείες γραμμές; r ( ) 8,, ˆ ˆ r ˆ () i 7 j+ k r ( )
Διαβάστε περισσότεραΠαράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς
Παράρτημα Ι 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Ας θεωρήσουμε μια κυκλική στεφάνη ακτίνας a η οποία κυλίεται, χωρίς να ολισθαίνει, πάνω σε μια ευθεία (για ευκολία υποθέστε ότι η ευθεία είναι ο
Διαβάστε περισσότεραΗ μέθοδος του κινουμένου τριάκμου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις
Διαβάστε περισσότερα( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1
Διαβάστε περισσότερα1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
Διαβάστε περισσότεραΛύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
Διαβάστε περισσότεραΕργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε
Διαβάστε περισσότεραΜαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
Διαβάστε περισσότερα1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.
1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 3 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού
Διαβάστε περισσότεραΗμερολόγιο μαθήματος
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤPΙΑ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Τμήμα Α Διδάσκων: Kαθηγητής Στυλιανός Σταματάκης Website URL: http://stamata.webpages.auth.gr/geometry/ Ημερολόγιο
Διαβάστε περισσότεραΚαθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Κελύη Εκ Περιστροής Μεµβρανική Θεωρία Τυχαία Φόρτιση Ανάπτυξη όρτισης σε σειρές Fourier: ( )
Διαβάστε περισσότεραΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT
ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT Αρβανιτογεώργος Ανδρέας Πατέρας Ιωάννης ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ Στόχος Εργασίας Η εύρεση των γεωδαισιακών καμπυλών πάνω σε μια επιφάνεια.
Διαβάστε περισσότεραΚεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
Διαβάστε περισσότερα2 η ΕΡΓΑΣΙΑ Παράδοση
η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)
Διαβάστε περισσότεραΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 5 6 6 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μέση και Στιγμιαία Ταχύτητα Επιτάχυνση Διαφορικές
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ
Διαβάστε περισσότεραΚαθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Κελύφη Εκ Περιστροφής Μεµβρανική Θεωρία Παραµόρφωση w K.K K.K υ 3 Κάτοψη Παράλληλος θ 0 θ θ 0
Διαβάστε περισσότεραΕλληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά
Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Διαβάστε περισσότεραΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ
Διαβάστε περισσότεραΓενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών
Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Τι είναι το διαφορικό (1 από 2) Η μεταβολή μίας συνάρτησης f(x), όταν το x αυξάνεται κατά Δx γράφεται : Δy AΔx B( Δx ) 2 Αν οι
Διαβάστε περισσότεραΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ
Διαβάστε περισσότεραb proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
Διαβάστε περισσότεραΜιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών
6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών Να βρεθούν τα όρια, αν υπάρχουν: lim i) (,) (0,0) + ii) lim (,) (0,0) + iii) 3 lim 3 (,) (0,0) 6 + lim iv) (,) (0,0) + + lim sin + sin v) (,) (0,0)
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος
3/4/6 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Έστω το ολοκλήρωμα: I da {(, ) :, } 3 ( + 3 ) Να εκφράσετε το ολοκλήρωμα σε νέες συντεταγμένες, οι οποίες ορίζονται
Διαβάστε περισσότεραΛύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )
Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =
Διαβάστε περισσότεραΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί
Διαβάστε περισσότεραΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, Στυλιάρης
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 08-9 ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες
Διαβάστε περισσότεραΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή
Διαβάστε περισσότεραΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4
Διαβάστε περισσότεραΔιάνυσμα του Plücker
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ ΘΕΩΡΗΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑ: ΕΥΘΕΙΑΚΗ ΓΕΩΜΕΤΡΙΑ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016-17 Διδάσκων: Αναπλ. Kαθηγητής Στυλιανός Σταματάκης ΑΣΚΗΣΕΙΣ 1.
Διαβάστε περισσότεραwebsite:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
Διαβάστε περισσότεραΤίτλος Μαθήματος: Διαφορική Γεωμετρία II
Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Σσναλλοίωτη παράγωγος και παράλληλη μεταφορά Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 17 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΟρισµός: Μερική παράγωγος ως προς x (αντ. ως προς y) στο σηµείο x,y είναι η παράγωγος της f ως προς x στο x (αντ. ως προς y στο y ( + ) ( )
2 Έστω f: A, Α ανοικτό σύνολο και x,y A. 0 0 Ορισµός: Μερική παράγωγος ως προς x (αντ. ως προς y) στο σηµείο x,y είναι η παράγωγος της f ως προς x στο x (αντ. ως προς y στο y 0 0 ), όπου έχουµε κρατήσειτοy
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 1 Τμήμα Α Ακ.Έτος: 6-7 Διδάσκων Σ.Ε.Π. : Τρύφων Δάρας ΣΗΜΕΙΩΣΕΙΣ 4 ΚΑΜΠΥΛΕΣ ΣΤΟ ΧΩΡΟ Μία συνάρτηση της μορφής r ():[ aβ, ] (αντίστοιχα r ():[, ] aβ ) λέμε ότι παριστάνει
Διαβάστε περισσότερα< F ( σ(h(t))), σ (h(t)) > h (t)dt.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και
Διαβάστε περισσότεραΕνότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Διαβάστε περισσότεραΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Διαβάστε περισσότεραΤίτλος Μαθήματος: Διαφορική Γεωμετρία
71 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Λσμένα Παραδείγματα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 71 72 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας
Διαβάστε περισσότεραΚλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Διαβάστε περισσότεραΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις
ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε
Διαβάστε περισσότεραΚεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις
Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική
Διαβάστε περισσότεραYλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση:
Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: y = Αηµωx όπου Α, ω σταθερές και θετικές ποσότητες. Εάν το υλικό σηµείο κατά τον άξονα x κινείται
Διαβάστε περισσότερα(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα
Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες
Διαβάστε περισσότεραΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι Εξετάσεις (Λύσεις)
ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι Εξετάσεις - 2-24 (Λύσεις) ) Βλήµα εκτοξεύεται κάθετα στην επιφάνεια του πλανήτη Άρη και αντίστοιχα σε αυτή του πλανήτη Αφροδίτη. Το ύψος που διανύει το ϐλήµα, s, σχετίζεται µε τον χρόνο,
Διαβάστε περισσότερα1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα
ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
Διαβάστε περισσότεραΑνασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)
Διαβάστε περισσότεραΓ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://www.teiath.gr/stef/tio/medisp/gr_downloads.htm E-mail: gloudos@teiath.gr Ροπή Η τάση για περιστροφή
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΝΟΤΗΤΑ 1.4. 5 ο ΜΑΘΗΜΑ ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Σκοπός της ενότητας Σκοπός της ενότητας είναι ο ορισμός εφαπτομένης της γραφικής παράστασης μιας συνάρτησης σε κάποιο σημείο της,
Διαβάστε περισσότεραΚεφάλαιο 3 ο : Αναπαράσταση θέσης
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Μάθηµα 3 ο Αναπαράσταση θέσης στο επίπεδο (2 ) και στο χώρο (3 ) Οµογενής Μετασχηµατισµός Κεφάλαιο 3 ο : Αναπαράσταση θέσης Μεταφορά αξόνων σε 2 X Ι Ο Ι Y Ι
Διαβάστε περισσότεραΣτοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1
Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις
Διαβάστε περισσότεραΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t
ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε
Διαβάστε περισσότερα1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων
3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από
Διαβάστε περισσότεραΕφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014
Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,
Διαβάστε περισσότεραΑκτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.
Διαβάστε περισσότερα( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα
Διαβάστε περισσότεραιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ
1 ιανύσµατα Ο ϕυσικός χώρος µέσα στον οποίο Ϲούµε και κινούµαστε είναι ένας τρισδιάστατος ευκλείδειος γραµµικός χώ- ϱος. Ισχύουν λοιπόν τα αξιώµατα της Γεωµετρίας του Ευκλείδη, το πυθαγόρειο ϑεώρηµα και
Διαβάστε περισσότεραv = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
Διαβάστε περισσότεραΣυστήματα συντεταγμένων
Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες
Διαβάστε περισσότερα14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ
SECTION 4 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4. Γενικοί Ορισµοί Η θέση ενός σηµείου P στον τρισδιάστατο Ευκλείδειο χώρο µπορεί να καθορισθεί µε ορθογώνιες καρτεσιανές συντεταγµένες (x y οι οποίες µετριώνται
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που
Διαβάστε περισσότεραΗ Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)
Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k
Διαβάστε περισσότεραΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης
Διαβάστε περισσότεραΚεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.
Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Διαβάστε περισσότεραΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
[] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Μόνιμη ΆκυκληΡοή Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΓενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός
Διαβάστε περισσότεραwebsite:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΘΕΟΔΩΡΟΣ ΒΛΑΧΟΣ
ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΘΕΟΔΩΡΟΣ ΒΛΑΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΙΩΑΝΝΙΝΑ 2018 2 Περιεχόμενα 1 Καμπύλες του Ευκλειδείου χώρου R 2 7 1.1 Κανονικές καμπύλες................... 8 1.2 Αναπαραμετρήσεις
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΘΕΟΔΩΡΟΣ ΒΛΑΧΟΣ
ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΘΕΟΔΩΡΟΣ ΒΛΑΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΙΩΑΝΝΙΝΑ 2017 2 Περιεχόμενα 1 Καμπύλες του R 2 5 1.1 Κανονικές καμπύλες.................... 6 1.2 Αναπαραμετρήσεις καμπυλών..............
Διαβάστε περισσότεραΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες Στοιχειώδεις Όγκοι ΠΑΡΑΓΩΓΙΣΗ Ιδιότητες
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000
Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0
Διαβάστε περισσότεραΒ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
2ο κεφάλαιο: Ευθείες Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος Αποστόλου
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΘΕΟΔΩΡΟΣ ΒΛΑΧΟΣ
ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΘΕΟΔΩΡΟΣ ΒΛΑΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΙΩΑΝΝΙΝΑ 2017 2 Περιεχόμενα 1 Καμπύλες του Ευκλειδείου χώρου R 2 7 1.1 Κανονικές καμπύλες................... 8 1.2 Αναπαραμετρήσεις
Διαβάστε περισσότεραdx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Διαβάστε περισσότεραGMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,
Διαβάστε περισσότεραΑκουστικό Ανάλογο Μελανών Οπών
Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:
Διαβάστε περισσότερα