Επίπεδα Γραφήματα (planar graphs)



Σχετικά έγγραφα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Θεωρία Γραφημάτων 11η Διάλεξη

E(G) 2(k 1) = 2k 3.

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΕΠΙΠΕΔΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 7

Μαθηματικά Πληροφορικής

Βασικές Έννοιες Θεωρίας Γραφημάτων

Μαθηματικά Πληροφορικής

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

d(v) = 3 S. q(g \ S) S

Θεωρία Γραφημάτων 5η Διάλεξη

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

u v 4 w G 2 G 1 u v w x y z 4

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Θεωρία Γραφημάτων 8η Διάλεξη

2 ) d i = 2e 28, i=1. a b c

Θεωρία Γραφημάτων 10η Διάλεξη

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

q(g \ S ) = q(g \ S) S + d = S.

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

... a b c d. b d a c

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

Θεωρία Γραφημάτων 3η Διάλεξη

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Θεωρία Γραφημάτων 4η Διάλεξη

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

m = 18 και m = G 2

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

Σειρά Προβλημάτων 1 Λύσεις

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Εισαγωγή στους Αλγορίθμους

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Θεωρία Γραφημάτων 1η Διάλεξη

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Ερωτήσεις ανάπτυξης. 1. ** Έστω τρίγωνο ΑΒΓ και έστω, Ε, Ζ τα µέσα των πλευρών ΑΒ, ΒΓ και ΓΑ αντίστοιχα. Να δείξετε ότι: α) ( ΕΖ) = (ΖΓΕ)

S A : N G (S) N G (S) + d S d + d = S

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

βασικές έννοιες (τόμος Β)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Διμερή γραφήματα και ταιριάσματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Στοιχεία Θεωρίας Γραφηµάτων (1)

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

Αναζήτηση Κατά Πλάτος

ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Γράφοι: κατευθυνόμενοι και μη

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Παραδείγματα στα θεμελιώδη προβλήματα.

Θεωρία Γραφημάτων 9η Διάλεξη

Transcript:

Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο

Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους Σε πολλές πρακτικές εφαρμογές προκύπτουν γραφήματα που είναι επίπεδα ή σχεδόν επίπεδα (δηλαδή υπάρχουν λίγες τομές των ακμών). Η δομή των επίπεδων γραφημάτων επιτρέπει πιο την αποδοτική επίλυση ορισμένων προβλημάτων.

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 3 3 1 2 4 5 4 5 Αυτό το γράφημα δεν είναι επίπεδο

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους α β γ ε ζ η θ όψη επίπεδου γραφήματος: περιοχή που φράσσεται από ακμές

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους α β γ ε ζ η θ όψη επίπεδου γραφήματος: περιοχή που φράσσεται από ακμές

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους α β γ ε ζ η θ όψη επίπεδου γραφήματος: περιοχή που φράσσεται από ακμές εξωτερική όψη επίπεδου γραφήματος: όψη με άπειρο εμβαδό

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους α β γ ε ζ η θ όψη επίπεδου γραφήματος: περιοχή που φράσσεται από ακμές εξωτερική όψη επίπεδου γραφήματος: όψη με άπειρο εμβαδό

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους α β γ Έστω κορυφές ακμές και όψεις ε Αν το επίπεδο γράφημα είναι συνεκτικό τότε ισχύει ζ η θ (φόρμουλα του Euler) όψη επίπεδου γραφήματος: περιοχή που φράσσεται από ακμές εξωτερική όψη επίπεδου γραφήματος: όψη με άπειρο εμβαδό

Επίπεδα Γραφήματα Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους α β γ Έστω κορυφές ακμές και όψεις ε Αν το επίπεδο γράφημα είναι συνεκτικό τότε ισχύει ζ η θ (φόρμουλα του Euler) όψη επίπεδου γραφήματος: περιοχή που φράσσεται από ακμές εξωτερική όψη επίπεδου γραφήματος: όψη με άπειρο εμβαδό

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Απόδειξη Με επαγωγή ως προς τον αριθμό των ακμών ή Άρα ισχύει η βάση της επαγωγής.

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Απόδειξη Υποθέτουμε ότι ισχύει για κάθε συνεκτικό επίπεδο γράφημα με Θα δείξουμε ότι ισχύει και για α β γ Αν υπάρχει κορυφή με βαθμό 1 τότε η αφαίρεση της μαζί με την ακμή που προσπίπτει σε αυτή δίνει επίπεδο συνεκτικό γράφημα με κορυφές, ακμές και όψεις, άρα ζ ε η θ

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Απόδειξη Υποθέτουμε ότι ισχύει για κάθε συνεκτικό επίπεδο γράφημα με Θα δείξουμε ότι ισχύει και για α β γ Αν υπάρχει κορυφή με βαθμό 1 τότε η αφαίρεση της μαζί με την ακμή που προσπίπτει σε αυτή δίνει επίπεδο συνεκτικό γράφημα με κορυφές, ακμές και όψεις, άρα ζ ε η θ

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Απόδειξη Υποθέτουμε ότι ισχύει για κάθε συνεκτικό επίπεδο γράφημα με Θα δείξουμε ότι ισχύει και για α β γ Διαφορετικά, η αφαίρεση οποιαδήποτε ακμής δίνει επίπεδο συνεκτικό γράφημα με ακμές, κορυφές και όψεις, άρα ε ζ η θ

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Απόδειξη Υποθέτουμε ότι ισχύει για κάθε συνεκτικό επίπεδο γράφημα με Θα δείξουμε ότι ισχύει και για α β γ Διαφορετικά, η αφαίρεση οποιαδήποτε ακμής δίνει επίπεδο συνεκτικό γράφημα με ακμές, κορυφές και όψεις, άρα ε ζ η θ

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε βρόχος παράλληλες ακμές

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Απόδειξη α β γ Κάθε πεπερασμένη περιοχή έχει τουλάχιστον 3 ακμές στο σύνορο της. ε ζ η θ

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Απόδειξη α β γ Κάθε πεπερασμένη περιοχή έχει τουλάχιστον 3 ακμές στο σύνορο της. ε Κάθε ακμή βρίσκεται στο σύνορο το πολύ 2 περιοχών. ζ η θ Επομένως Από τη φόρμουλα του Euler

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Πόρισμα Τα παρακάτω γραφήματα δεν είναι επίπεδα.

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Πόρισμα Τα παρακάτω γραφήματα δεν είναι επίπεδα. Απόδειξη Έχουμε

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Πόρισμα Απόδειξη Τα παρακάτω γραφήματα δεν είναι επίπεδα. Ένα γράφημα και είναι διμερές εάν Ισχύει ότι ένα γράφημα είναι διμερές εάν και μόνο εάν δεν έχει κύκλους περιττού μήκους.

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Πόρισμα Απόδειξη Τα παρακάτω γραφήματα δεν είναι επίπεδα. Είναι διμερές γράφημα και επομένως δεν έχει κύκλους περιττού μήκους. Άρα κάθε πεπερασμένη περιοχή έχει τουλάχιστον 4 ακμές στο σύνορο της. Επομένως Από τη φόρμουλα του Euler

Επίπεδα Γραφήματα: Φόρμουλα του Euler Θεώρημα Για κάθε συνεκτικό επίπεδο γράφημα με κορυφές, ακμές και όψεις ισχύει Πόρισμα Αν και δεν υπάρχουν βρόχοι και παράλληλες ακμές τότε Πόρισμα Απόδειξη Τα παρακάτω γραφήματα δεν είναι επίπεδα. Είναι διμερές γράφημα και επομένως δεν έχει κύκλους περιττού μήκους. Άρα κάθε πεπερασμένη περιοχή έχει τουλάχιστον 4 ακμές στο σύνορο της. Επομένως Από τη φόρμουλα του Euler Έχουμε

Επίπεδα Γραφήματα Μετασχηματισμοί που δεν επηρεάζουν την «επιπεδότητα» Διαίρεση ακμής Σύμπτυξη ακμών

Επίπεδα Γραφήματα Μετασχηματισμοί που δεν επηρεάζουν την «επιπεδότητα» Διαίρεση ακμής Ισόμορφα γραφήματα μέχρι κορυφών βαθμού 2 Σύμπτυξη ακμών

Επίπεδα Γραφήματα Μετασχηματισμοί που δεν επηρεάζουν την «επιπεδότητα» Διαίρεση ακμής Ισόμορφα γραφήματα μέχρι κορυφών βαθμού 2 Σύμπτυξη ακμών

Επίπεδα Γραφήματα Μετασχηματισμοί που δεν επηρεάζουν την «επιπεδότητα» Διαίρεση ακμής Ισόμορφα γραφήματα μέχρι κορυφών βαθμού 2 Σύμπτυξη ακμών

Επίπεδα Γραφήματα Μετασχηματισμοί που δεν επηρεάζουν την «επιπεδότητα» Διαίρεση ακμής Σύμπτυξη ακμών Ισόμορφα γραφήματα μέχρι κορυφών βαθμού 2: το ένα μπορεί να μετασχηματιστεί στο άλλο με μία ακολουθία διαιρέσεων και συμπτύξεων. Θεώρημα (του Kuratowski) Ένα γράφημα είναι επίπεδο εάν και μόνο εάν δεν περιέχει υπογράφημα που να είναι ισόμορφο μέχρι κορυφές βαθμού 2 με το ή το.

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Έλεγχος επιπεδότητας α β γ Το γράφημα εισόδου δίνεται ως ακολουθία ακμών: ε π.χ. (α,β), (β,γ), (α,ε), (β,η), (θ,ζ), (η,ε), (ζ,α), (γ,θ), (θ,β), (ε,ζ), (η,θ), (ζ,η) ζ η θ Ο έλεγχος μπορεί να γίνει σε γραμμικό χρόνο (προσεχώς!)

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Αναπαράσταση επίπεδου γραφήματος α ε β γ Αναπαράσταση με ευθείες γραμμές : Αναθέτουμε σε κάθε κορυφή συντεταγμένες στο επίπεδο, έτσι ώστε οι ακμές να αντιστοιχούν σε ευθύγραμμα τμήματα που δεν τέμνονται. ζ η θ

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Αναπαράσταση επίπεδου γραφήματος Συνδυαστική αναπαράσταση : Για κάθε κορυφή δίνουμε μια κυκλική διάταξη των α β γ γειτονικών της ακμών, π.χ. δεξιόστροφα (κατά τη φορά των δεικτών του ρολογιού). α : (α,β), (α,ε), (α,ζ) ε β : (β,α), (β,γ), (β,θ), (β,η) γ : (γ,β), (γ,θ) ε : (ε,α), (ε,η), (ε,ζ) ζ η θ ζ : (ζ,α), (ζ,ε), (ζ,η) η : (η,ζ), (η,ε), (η,β), (η,θ) θ : (θ,η), (θ,β), (θ,γ), (θ,ζ)

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Αναπαράσταση επίπεδου γραφήματος Συνδυαστική αναπαράσταση : Για κάθε κορυφή δίνουμε μια κυκλική διάταξη των α β γ γειτονικών της ακμών, π.χ. δεξιόστροφα (κατά τη φορά των δεικτών του ρολογιού). ζ ε η θ α : (α,β), (α,ε), (α,ζ) β : (β,α), (β,γ), (β,θ), (β,η) γ : (γ,β), (γ,θ) ε : (ε,α), (ε,η), (ε,ζ) ζ : (ζ,α), (ζ,ε), (ζ,η) η : (η,ζ), (η,ε), (η,β), (η,θ) θ : (θ,η), (θ,β), (θ,γ), (θ,ζ) Αν ξεκινήσουμε από μια ακμή (u,v) και ακολουθήσουμε κάθε φορά την επόμενη ακμή (v,w) στην κυκλική διάταξη του κόμβου w, τότε θα επισκεφτούμε (κυκλικά) όλες τις ακμές μιας όψης.

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Όταν μας δίνεται ένα επίπεδο γράφημα μπορούμε να θεωρήσουμε ότι έχουμε ένα σχέδιο του στο επίπεδο, μαζί με αντίστοιχη συνδυαστική αναπαράσταση. Σχέδιο στο επίπεδο Συνδυαστική αναπαράσταση α β γ α : (α,β), (α,ε), (α,ζ) β : (β,α), (β,γ), (β,θ), (β,η) γ : (γ,β), (γ,θ) ε ε : (ε,α), (ε,η), (ε,ζ) ζ : (ζ,α), (ζ,ε), (ζ,η) η : (η,ζ), (η,ε), (η,θ) ζ η θ θ : (θ,η), (θ,β), (θ,γ)

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Όταν μας δίνεται ένα επίπεδο γράφημα μπορούμε να θεωρήσουμε ότι έχουμε ένα σχέδιο του στο επίπεδο, μαζί με αντίστοιχη συνδυαστική αναπαράσταση. α β γ Μπορούμε να μετατρέψουμε οποιαδήποτε όψη σε εξωτερική: Αρκεί να αλλάξουμε την κυκλική διάταξη ορισμένων ακμών. ε ζ η θ

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Όταν μας δίνεται ένα επίπεδο γράφημα μπορούμε να θεωρήσουμε ότι έχουμε ένα σχέδιο του στο επίπεδο, μαζί με αντίστοιχη συνδυαστική αναπαράσταση. α β γ Μπορούμε να μετατρέψουμε οποιαδήποτε όψη σε εξωτερική: Αρκεί να αλλάξουμε την κυκλική διάταξη ορισμένων ακμών. ε f p r Έστω p ένα σημείο μέσα στην όψη f. Έστω r μια ακτίνα που πηγάζει από το p και δεν τέμνει καμία κορυφή. Αλλάζουμε το σχέδιο ζ η θ της ακμής της τρέχουσας εξωτερικής όψης που τέμνεται από την r.

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Όταν μας δίνεται ένα επίπεδο γράφημα μπορούμε να θεωρήσουμε ότι έχουμε ένα σχέδιο του στο επίπεδο, μαζί με αντίστοιχη συνδυαστική αναπαράσταση. α β γ Μπορούμε να μετατρέψουμε οποιαδήποτε όψη σε εξωτερική: Αρκεί να αλλάξουμε την κυκλική διάταξη ορισμένων ακμών. ε f p r Έστω p ένα σημείο μέσα στην όψη f. Έστω r μια ακτίνα που πηγάζει από το p και δεν τέμνει καμία κορυφή. Αλλάζουμε το σχέδιο ζ η θ της ακμής της τρέχουσας εξωτερικής όψης που τέμνεται από την r.

Επίπεδα Γραφήματα: Αλγοριθμικά Θέματα Όταν μας δίνεται ένα επίπεδο γράφημα μπορούμε να θεωρήσουμε ότι έχουμε ένα σχέδιο του στο επίπεδο, μαζί με αντίστοιχη συνδυαστική αναπαράσταση. α β γ Μπορούμε να μετατρέψουμε οποιαδήποτε όψη σε εξωτερική: Αρκεί να αλλάξουμε την κυκλική διάταξη ορισμένων ακμών. ε f p r Έστω p ένα σημείο μέσα στην όψη f. Έστω r μια ακτίνα που πηγάζει από το p και δεν τέμνει καμία κορυφή. Αλλάζουμε το σχέδιο ζ η θ της ακμής της τρέχουσας εξωτερικής όψης που τέμνεται από την r.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Έστω συνεκτικό επίπεδο γράφημα με δεδομένο σχέδιο στο επίπεδο. Το δυϊκό γράφημα του έχει μια κορυφή για κάθε όψη του και μια ακμή για κάθε ακμή που προσπίπτει στις όψεις και.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Έστω συνεκτικό επίπεδο γράφημα με δεδομένο σχέδιο στο επίπεδο. Το δυϊκό γράφημα του έχει μια κορυφή για κάθε όψη του και μια ακμή για κάθε ακμή που προσπίπτει στις όψεις και.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Έστω συνεκτικό επίπεδο γράφημα με δεδομένο σχέδιο στο επίπεδο. Το δυϊκό γράφημα του έχει μια κορυφή για κάθε όψη του και μια ακμή για κάθε ακμή που προσπίπτει στις όψεις και. Κορυφή του δυϊκού γραφήματος η οποία αντιστοιχεί στην εξωτερική όψη του αρχικού επίπεδου γραφήματος. To δυϊκό γράφημα είναι επίπεδο. Οι ακμές που προσπίπτουν σε μία κορυφή του αντιστοιχούν στις ακμές μιας όψης του. Αν το είναι συνεκτικό τότε το δυϊκό γράφημα του είναι το :.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Έστω συνεκτικό επίπεδο γράφημα με δεδομένο σχέδιο στο επίπεδο. Το δυϊκό γράφημα του έχει μια κορυφή για κάθε όψη του και μια ακμή για κάθε ακμή που προσπίπτει στις όψεις και. Το μπορεί να μην είναι απλό γράφημα (χωρίς βρόχους και παράλληλες ακμές) ακόμα και αν το είναι απλό.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Για μη συνεκτικά γραφήματα έχουμε διαφορετικούς ορισμούς του δυϊκού γραφήματος, που έχουν ορισμένα μειονεκτήματα! α) Ένωση των δυϊκών γραφημάτων κάθε συνεκτικής συνιστώσας : Ουσιαστικά δεν υπάρχει εξωτερική όψη! Κορυφές του δυϊκού γραφήματος οι οποίες αντιστοιχούν στις εξωτερικές όψεις των συνεκτικών συνιστωσών.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Για μη συνεκτικά γραφήματα έχουμε διαφορετικούς ορισμούς του δυϊκού γραφήματος, που έχουν ορισμένα μειονεκτήματα! β) Ένωση των δυϊκών γραφημάτων κάθε συνεκτικής συνιστώσας, συγχωνεύοντας σε μία τις κορυφές που αντιστοιχούν στις εξωτερικές όψεις. Όμως! Κορυφή του δυϊκού γραφήματος που αντιστοιχεί στην εξωτερική όψη.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Ιδιότητες Έστω συνεκτικό επίπεδο γράφημα με δεδομένο σχέδιο στο επίπεδο και έστω ένα συνδετικό δένδρο του. Κάθε κύκλος του περιέχει μια ακμή τέτοια ώστε.

Επίπεδα Γραφήματα: Δυϊκό Γράφημα Ιδιότητες Έστω συνεκτικό επίπεδο γράφημα με δεδομένο σχέδιο στο επίπεδο και έστω ένα συνδετικό δένδρο του. Οι δυϊκές ακμές του σχηματίζουν ένα συνδετικό δένδρο του.

Επίπεδα Γραφήματα: Εξωεπίπεδο Γράφημα Μπορεί να σχεδιαστεί έτσι ώστε όλοι οι κόμβοι του να βρίσκονται στην εξωτερική όψη.