2011,19(5): 438~445 Journal of Tropical and Subtropical Botany 8 1,2 3 4 1 3 1* (1. 510650 2. 100049 3. 528222 4. 528222) 8 1 1.5 S Cu Pb Ni Zn Mn Cr 198 ~ 3248 g 1187 g > > > > 8 S Cu Pb 325 ~ 12541 0.3 ~ 19.2 0.1 ~ 11.0 μg g -1 2459 6.8 3.5 μg g -1 S Cu Pb 485 ~ 7008 1.2 ~ 23.7 0.6 ~ 6.8 mg 2367 8.0 2.9 mg S > > > > > > > Cu > > > > > > > Pb > > > > > > > Q948.116 doi: 10.3969/j.issn.1005-3395.2011.04.008 A 1005-3395(2011)05-0438-08 Allocation and Accumulation of Pollutants in 8 Tree Species Grown in Ceramic Industry Polluted Area HOU En-qing 1,2, TAN Jia-de 3, LI Jian-li 4, ZHANG Ling-ling 1, LU Yao-dong 3, WEN Da-zhi 1* (1. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3. Foshan Institue of Forestry, Foshan 528222, China; 4. Agriculture and Forestry Technology Extension Centre of Nanhai District in Foshan, Foshan 528222, China) Abstract The accumulation and allocation of pollutants in 8 one-year-old tree speeies seedlings were studied, which were planted in ceramic industry polluted area for one and half years. The results showed that S, Cu and Pb pollutants of soil were serious, while Ni, Zn, Mn and Cr pollutants were slight. Total dry mass per plant had significant differences among 8 tree species with a range from 198 g to 3248 g, and the mean of 1187 g. The contents of S and Pb changed greatly among different tree species and organs. The contents of S, Cu and Pb in 8 tree species ranged of 325-12541, 0.3-19.2, and 0.1-11.0 μg g -1, with the mean of 2459, 6.8, and 3.5 μg g -1, respectively, while their accumulation per plant ranged of 485-7008, 1.2-23.7, and 0.6-6.8 mg, with the average of 2367, 8.0, and 2.9 mg, respectively. The S accumulation per plant was in order as F. altissima > T. championi > F. microcarpa > P. heterophyllum > A. dioica > G. robusta > F. microcarpa var. fuyuensis > G. axillaris; Cu: F. altissima > T. championi > F. microcarpa > G. robusta > P. heterophyllum > F. microcarpa var. fuyuensis > A. 2010-12-21 2011-03-16 (20070238) (200901) (1986 ~ ), email: houeq@scib.ac.cn * Corresponding author, email: dzwen@scib.ac.cn
5 8 439 dioica > G. axillaris; Pb: F. microcarpa > G. robusta > T. championi > F. microcarpa var. fuyuensis > P. heterophyllum > F. altissima > G. axillaris > A. dioica. It suggested that F. altissima, T. championi and F. microcarpa were suitable for phytoremediation in ceramic industry polluted area. Key words Ceramic industry polluted area; Dry mass allocation; Tree species; Phytoremediation 30 1 1 SO 2 NO X (23 04' N 113 03' E) 2-5 2-3,6 79% 21.7 1630 mm 21 6-8 21 6 2 2. 1 9-11 400 19 (Ficus altissima) ( F. microcarpa ) ( Pterospermum heterophyllum) ( Grevillea robusta ) 10,12 (Tutcheria championi) ( F. microcarpa var. 20 fuyuensis) (Aporusa dioica) (Gordonia 11 axillaris) 2008 8 1 11-13 2 m 1.5 m 1 hm 2 11 250 g 14-15 8 2 4 16-18 2. 2 2009 10 18-20 5 30 cm 8 0 ~ 5 cm 5 ~ 20 cm 2
440 19 10 (Optimal 2000 USA) ( 100 2. 3 0.01 cm Microsoft Excel 2003 0.1 cm Sigmaplot 10.0 SPSS 16.0 8 ± 3 Pb Cr Ni HNO 3 -HF-HClO 4 (7 4 1 V/V/V) Cu Pb HNO 3 - GSV-2 GSS-5 ESS-3) 3. 1 30 ~ 60 g 65 (% ) (g) = (g) 23-25 26-27 ( > 2 mm) ( 2 mm) 28-29 1 2 ~ 3 65 0 ~ 5 cm S Pb Cu Pb Ni 5 ~ 20 cm (P < 0.05) 0 ~ 5 cm S Pb Pb 5 ~ 20 cm 8 (P < 0.01) 60 S Pb Cu Ni S Pb S LTDL-9 ( ) Mn Zn Cu Zn Pb 30 Zn Pb 0 ~ 5 cm HClO 4 (7 4 V/V) M n Zn Cu Pb Cr 5 ~ 20 cm Mn Zn Cr Ni 0.1 mol/l HCl Ni Mn 22 ICP-MS Zn Cr Ni 1 (μg g -1 ) Table 1 Contents (μg g -1 ) of elements in soil S Mn Cu Pb Zn Cr Ni Available 0 ~ 5 cm 11.28 ± 18.05 0.99 ± 0.56 5.8 ± 1.78 1.73 ± 1.46 0.04 ± 0.01 0.43 ± 0.27 5 ~ 20 cm 5.71 ± 8.50 0.45 ± 0.28 2.5 ± 1.31 0.49 ± 0.41 0.05 ± 0.01 0.18 ± 0.11 P 0.277 0.030 0.008 0.062 0.111 0.043 Total 0 ~ 5 cm 262.47 ± 74.22 37.56 ± 21.44 4.79 ± 1.34 41.52 ± 4.04 94.24 ± 6.37 17.66 ± 1.63 3.22 ± 0.66 5 ~ 20 cm 162.03 ± 50.77 36.64 ± 10.82 3.57 ± 0.75 33.07 ± 3.26 90 ± 3.91 22.82 ± 4.79 3.97 ± 0.97 P 0.006 0.888 0.052 0.002 0.142 0.099 0.298 National standard value 35 35 100 90 40 n = 5 Background value of Guangdong soil 151 11.4 28.9 35.8 34.8 8.8
5 8 441 3. 2 1/3 (D) (H) D 2 H (r = 0.986, P < 0.01) (r = 0.923, P < 0.01) (r = 0.868, P < 0.01) (r = 0.821, P < 0.05) 18,31-32 2 1 8 D 2 H ( 2.5 ) D 2 H > > > > > > ( 2) 2 8 Table 2 Basic growth parameters of 8 tree species Diameter Height Crown D 2 H Species (D) (cm) (H) (m) width (m) (cm 3 ) n = 8 F. altissima 5.79 ± 1.52 2.82 ± 0.77 2.17 ± 0.88 11085 ± 7655 F. microcarpa 5.33 ± 1.33 1.80 ± 0.37 1.74 ± 0.40 5573 ± 3173 P. heterophyllum 3.76 ± 0.78 2.99 ± 0.80 2.51 ± 0.93 4779 ± 2942 G. robusta 2.78 ± 0.73 1.89 ± 0.39 1.58 ± 0.63 1625 ± 1138 T. championi 2.78 ± 1.05 1.49 ± 0.57 0.63 ± 0.33 1604 ± 1054 F. microcarpa var. fuyuensis 2.69 ± 0.41 0.95 ± 0.11 0.28 ± 0.09 713 ± 301 A. dioica 2.16 ± 0.35 0.99 ± 0.17 0.56 ± 0.15 492 ± 237 G. axillaris 1.64 ± 0.39 1.04 ± 0.31 0.45 ± 0.16 325 ± 281 3 8 71.7% ~ 84.9% 77.8% (3248 g) 3. 3 (198 g) 1187 g 4 22.4% ~ 45.5% ( 30.8% ) S Cu Pb 325 ~ (16.2% ~ 52.4% 25.8% ) (15.7% ~ 12541 0.3 ~ 19.2 0.1 ~ 11.0 μg g -1 27.8% 22.1% ) (9.2% ~ 42.9% 21.2% ) 0. 2% ~ 1. 1% ( 2459 6.8 3.5 μg g -1 S Cu Pb S 0.5% ) ( + + ) > > Cu 3 (g) Table 3 Allocation of dry mass (g) Species Leaf Branch Stem Coarse root Fine root Total / (% ) Aboveground/Total F. altissima 540(16.6) 546(16.8) 1242(38.2) 904(27.8) 16(0.5) 3248 71.7 F. microcarpa 159(9.2) 573(33.1) 561(32.4) 433(25.0) 7(0.4) 1732 74.7 P. heterophyllum 201(10.5) 315(16.4) 873(45.5) 527(27.5) 3(0.2) 1919 72.4 G. robusta 183(26.0) 155(22.0) 235(33.3) 128(18.2) 4(0.6) 705 81.3 T. championi 276(29.4) 189(20.1) 240(25.6) 230(24.5) 3(0.3) 938 75.2 F. microcarpa var. fuyuensis 45(10.0) 236(52.4) 101(22.4) 76(16.9) 5(1.1) 450 84.9 A. dioica 78(25.4) 89(29.0) 73(23.8) 66(21.5) 2(0.7) 307 78.2 G. axillaris 85(42.9) 32(16.2) 49(24.7) 31(15.7) 1(0.5) 198 83.8 n = 8; n = 8. Data in bracket was the percentage of dry mass of organ to the total dry mass.
442 19 4 8 S Cu Pb (μg g -1 ) Table 4 Contents (μg g -1 ) of S, Cu and Pb in different organs of 8 tree species Elements Species Leaf Branch Stem Coarse root Fine root S F. altissima 6804 1306 1151 1291 1556 F. microcarpa 6955 1134 584 920 835 P. heterophyllum 6495 797 475 593 507 G. robusta 2338 2986 1563 1032 1554 T. championi 6977 1787 1074 1410 2477 F. microcarpa var. fuyuensis 6994 965 350 321 638 A. dioica 12541 5867 2354 2130 2204 G. axillaris 4049 1598 1405 618 1733 Cu F. altissima 17.9 4.9 4.3 6.7 3.3 F. microcarpa 5.6 6.8 5.6 0.6 4.7 P. heterophyllum 8.6 9.0 1.6 1.9 0.3 G. robusta 13.0 14.5 10.0 6.3 5.3 T. championi 19.2 10.1 6.1 9.2 9.2 F. microcarpa var. fuyuensis 16.5 7.7 3.7 0.3 5.2 A. dioica 15.0 8.9 1.0 2.9 0.6 G. axillaris 6.9 7.1 3.8 6.4 1.2 Pb F. altissima 0.2 1.5 0.4 0.5 4.3 F. microcarpa 4.0 9.1 0.6 1.4 2.7 P. heterophyllum 2.2 2.0 1.3 0.5 0.6 G. robusta 7.7 11.0 5.4 3.3 4.4 T. championi 1.7 5.3 2.7 4.4 4.9 F. microcarpa var. fuyuensis 2.9 9.2 3.1 2.4 4.5 A. dioica 0.1 3.5 0.7 2.7 0.6 G. axillaris 2.5 7.1 4.8 6.2 5.6 > > > > Pb > S Cu 0.6 ~ 6.8 mg 2367 8.0 2.9 mg S Cu Pb > > > > > > > Cu > 1,23,33 > > > > > > 12,34 8 S Pb > > > > 2338 ~ 12541 μg g -1 6644 μg g -1 S (2000 ~ 5000 μg g -1 ) 35 Cu 5.2 ~ 19.2 μg g -1 ( 12.8 μg g -1 Alloway 36 ( 5 ~ 20 μg g -1 ) Pb 0.1 ~ 7.7 μg g -1 2.7 μg g -1 Pb (5 ~ 10 μg g -1 ) 36 3. 4 5 8 S Cu Pb S Cu Pb 485 ~ 7008 1.2 ~ 23.7 > > > S ( 30.6% ~ 71.0% ) + + ) 83.0% ~ 95.7% Cu Pb Cu Pb 74.2% ~ 98.3% 67.6% ~ 92.6% 87.3%
5 8 443 81.2% Pearson 89.8% S 88.8% Cu Pb Pb (S Cu Pb) 29 Pb 5 8 S Cu Pb (mg) Table 5 Accumulation of S, Cu and Pb in plant organs of 8 tree species (mg) Elements Species Leaf Branch Stem Coarse root Fine root Total S F. altissima 3674 713 1429 1167 25 7008 F. microcarpa 1106 650 328 398 6 2488 P. heterophyllum 1306 251 415 313 2 2285 G. robusta 428 463 367 132 6 1396 T. championi 1926 338 258 324 7 2853 F. microcarpa var. fuyuensis 315 228 35 24 3 605 A. dioica 978 522 172 141 4 1817 G. axillaris 344 51 69 19 2 485 Cu F. altissima 9.6 2.7 5.3 6.1 0.1 23.7 F. microcarpa 0.9 3.9 3.2 0.3 0.0 8.3 P. heterophyllum 1.7 2.8 1.4 1.0 0.0 7.0 G. robusta 2.4 2.2 2.3 0.8 0.0 7.8 T. championi 5.3 1.9 1.5 2.1 0.0 10.8 F. microcarpa var. fuyuensis 0.7 1.8 0.4 0.0 0.0 3.0 A. dioica 1.2 0.8 0.1 0.2 0.0 2.2 G. axillaris 0.6 0.2 0.2 0.2 0.0 1.2 Pb F. altissima 0.1 0.8 0.5 0.5 0.1 2.0 F. microcarpa 0.6 5.2 0.3 0.6 0.0 6.8 P. heterophyllum 0.4 0.6 1.2 0.2 0.0 2.5 G. robusta 1.4 1.7 1.3 0.4 0.0 4.8 T. championi 0.5 1.0 0.7 1.0 0.0 3.2 F. microcarpa var. fuyuensis 0.1 2.2 0.3 0.2 0.0 2.8 A. dioica 0.0 0.3 0.1 0.2 0.0 0.6 G. axillaris 0.2 0.2 0.2 0.2 0.0 0.9 4 Mn Cr S Cu Pb 8 1,37 S Cu Pb 3 S S Cu S S S Pb Cu Cu S Cu Pb Pb Pb S Pb Cu Ni Zn
444 19 ( ) 11-12 8 (1): 7-12. S Cu 7 Liu L M ( ), Yang L( Punshon 38 rural urbanization J S Cu S Cu 202-206.(in Chinese) 8 Su S Q ( 2 ~ 20 S Cu S Cu S Cu 9 Luo Y M ( S Cu J. Soils( ), 1999(5): 261-265,80.(in Chinese) 19,39 10 Wang H B( ), Su W S( J. Acta Ecol Sin ( S Cu Pb Pb Pb Pb (4): 529-540. Pb Pb Pb 8 species in a mining area J 2008, 19(4): 752-756.(in Chinese) 13 Dickinson N M. Strategies for sustainable woodland on conta- minated soils J 1 Kuang Y W( ), Zhou G Y( ), Wen D Z ( ). Environmental bioindication of sulphur in tree rings of masson pine (Pinus massoniana) in the Pearl River Delta of China J. J Beijing For Univ( ), 2008, 30 (2 ): 1-7. (in Chinese) 2 Wong S C, Li X D, Zhang G, et al. Heavy metals in agricultural soils of the Pearl River Delta, South China J. Environ Pollut, 2002, 119(1): 33-44. 3 Guan D S( ), Chen Y J ( ), Ruan G B( ). Study on heavy metal concentrations and imapact of human activity on them in urban and suburb soils of Guangzhou J. Acta Sci Nat Univ Sunyatseni( ), 2001, 40(4): 93-96,101.(in Chinese) 4 Zhang Y D( ). Simple analysis of acid rain pollution in the Pearl River Delta Region J. Res Environ Sci( ), 1999, 12(3): 31-34.(in Chinese) 5 Yuan Z( ). The way and direction of environmental protection in the Pearl River Delta J. Guangdong Environ Protect Sci Techn ( ), 2002, 12(2): 1-4.(in Chinese) 6 Wen D Z, Kuang Y W, Liu S Z, et al. Evidences and implications of vegetation damage from ceramic industrial emission on a rural site in the Pearl River Delta of China J. J For Res, 2006, 17 ), Li Z P( ). Landscaple ecological problems and the countermeasures in the process of. Ecol Environ ( ), 2006, 15 (1): ), Lin B S ( ), Zeng X D ( ). Ecological and environmental protection problems in land consolidation and the countermeasures J. Ecol Environ( ), 2006, 15(4): 881-884.(in Chinese) ). Phytoremediation in metals polluted soil ), Lan C Y( ). Ecology for heavy metal pollution: Recent advances and future prospects Chinese) ), 2005, 25 (3 ): 596-605. (in 11 Pulford I D, Watson C. Phytoremediation of heavy metal-contaminated land by trees: A review J. Environ Inter, 2003, 29 12 Liu W T( ), Zhang Y L( ), Chen Z M ( ), et al. Cadium and zinc absorption and distribution in various tree. Chin J Appl Ecol( ),. Chemosphere, 2000, 41(1/2): 259-263. 14 Dickinson N M, Turner A P, Lepp N W. How do trees and other long-lived plants survive in polluted environments J Funct Ecol, 1991, 5(1): 5-11. 15 Kahle H. Response of roots of trees to heavy-metals J. Environ Exp Bot, 1993, 33(1): 99-119. 16 Dickinson N M, Turner A P, Watmough S A, et al. Acclimation of trees to pollution stress Cellular metal tolerance traits J. Ann Bot (London), 1992, 70(6): 569-572. 17 Wen D Z( ), Kong G H( ), Zhang D Q( ), et al. Ecophysiological responses of 30 gardens plant species exposed to short-term air pollution J. Acta Phytoecol Sin( ), 2003, 27(3): 311-317.(in Chinese) 18 Zheng F X( ), Yu C Z( ), Wen D Z( ), et al. Growth responses and dry mass allocation pattern of five subtropical tree species seedling to air pollution stress J. Ecol Environ( ), 2006, 15(3): 519-524.(in Chinese) 19 Kong G H( ), Chen H T( ), Liu S Z( ), et al. Responses of garden greening plants to air pollution in Guangdong Province and the accumulation of pollutants in leaves J. J Trop Subtrop Bot( ), 2003, 11(4): 297-315.(in Chinese) 20 Jiangsu Institute of Botany ( ), Guangdong Institute of Botany ( ), Beijing Botanical Garden of Chinese Academy of Sciences(
5 8 445 ), et al. Anti-pollutant Greening Plants M. Beijing: Science Press, 1978: 1-176.(in Chinese) 21 Sun L J( ), Chen H Y( ), Fang Z L( ), et al. Water-holding characterisitic of 0-20 cm depth soil in fengshui woods of Foshan City J. Guangdong For Sci Tech( ), 2007, 23(1): 47-52 (in Chinese) 22 HJ/T 166-2004, The Technical Specification for Soil Environmental Monitoring S. 2004: 1-41.(in Chinese) 23 Sucharova J, Suchara I. Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques: Part I: Relative and absolute current atmospheric deposition levels detected by moss analyses J. Water Air Soil Pollut, 2004, 153(1/2/3/4): 205-228. 24 Sabovljevic M, Vukojevic V, Sabovjevic A, et al. Determination of heavy metal deposition in the county of Obrenovac (Serbia) using mosses as bioindicators: III. Copper (Cu), iron (Fe) and mercury (Hg) J. Arch Biol Sci, 2007, 59(4): 351-361. 25 Pandey J, Pandey U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India J. Environ Monit Assess, 2009, 148(1/2/3/4): 61-74. 26 Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples City port J. Chemosphere, 2005, 61(6): 800-809. 27 Blaser P, Zimmermann S, Luster J, et al. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils J. Sci Tot Environ, 2000, 249(1/2/3): 257-280. 28 Sun F F, Wen D Z, Kuang Y W, et al. Concentrations of sulphur and heavy metals in needles and rooting soils of masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou, China J. Environ Monit Assess, 2009, 154(1/2/3/4): 263-274. 29 Wei S H ( ), Zhou Q X ( ), Wang X ( ). Characteristic of 18 species of weed hyperaccumulating heavy metals in contaminated soils J. J Basic Sci Eng( ), 2003, 11(2): 152-160.(in Chinese) 30 China National Environmental Monitoring Centre( ). The Background Concentrations of Soil Elements in China M. Beijing: Chinese Environment Science Press, 1990: 316-378.(in Chinese) 31 Zhao C Y( ), Song Y D( ), Wang Y C( ), et al. Estimation of aboveground biomass of desert plants J. Chin J Appl Ecol( ), 2004, 15 (1 ): 49-52. (in Chinese) 32 Zhang L( ), Luo T X( ), Deng K M ( ), et al. Biomass and net primary productivity of secondary evergreen broad-leaved forest in Huangmian forest farm J. Chin J Appl Ecol( ), 2004, 15(11): 2029-2033.(in Chinese) 33 Klumpp A, Bauer K, Franz-Gerstein C, et al. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil) J. Environ Inter, 2002, 28 (3): 165-171. 34 Zhang D Q( ), Chu G W( ), Yu Q F( ), et al. Decontamination ability of garden plants to absorb sulfur dioxide and fluoride J. J Trop Subtrop Bot( ), 2003, 11(4): 336-334.(in Chinese) 35 Mengel K, Kirkby E A. Principles of Plant Nutrient M. 4th ed. Berlin: International Potash Institute, 1987: 381-399. 36 Alloway B J, Ayres D C. Chemical Principles of Environmental Pollution M. London: Blackie Academic and Professional, 1993: 1-291. 37 Zhu B Q, Chen Y W, Peng J H. Lead isotope geochemistry of the urban environment in the Pearl River Delta J. Appl Geochem, 2001, 16(4): 409-417. 38 Punshon T, Dickinson N M. Acclimation of Salix to metal stress J. New Phytol, 1997, 137(2): 303-314. 39 Wen D Z( ), Lu Y D( ), Kuang Y W( ), et al. Ecophysiological responses and sensitivity of 39 woody species exposed to air pollution J. J Trop Subtrop Bot( ), 2003, 11(4): 341-347.(in Chinese)