Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Σχετικά έγγραφα
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Μετασχηματισμός Δεδομένων

Μετασχηματισμός Δεδομένων

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Καθορισμός μεταβλητών και εισαγωγή δεδομένων

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

κωδικοποίηση κτλ) Εισαγωγή δεδομένων με μορφή SPSS Εισαγωγή δεδομένων σε μορφή EXCEL Εισαγωγή δεδομένων σε άλλες μορφές

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

6 / 4 / Βιοστατιστικός, MSc, PhD

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή

Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης Τμήμα Ψυχολογίας

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

Πανεπιστήμιο Πελοποννήσου

χ 2 test ανεξαρτησίας

HMY 799 1: Αναγνώριση Συστημάτων

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

1. Θα χρησιμοποιηθεί το αρχείο Ο γονικός έλεγχος στην εφηβική ηλικία. Στο. i. Με ποιες μεταβλητές που αφορούν σε σχέσεις εφήβων με τους γονείς τους

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

Περιγραφική Στατιστική

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΙΑΣ ΤΟΥ SPSS 19.0

P(200 X 232) = =

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΚΡΑΙΕΣ ΤΙΜΕΣ ΣΤΗΝ ΠΑΛΙΝ ΡΟΜΗΣΗ

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Κεφάλαιο 4. Περιγραφική Στατιστική - Γραφήματα. Σύνοψη. Προαπαιτούμενη γνώση. 4.1 Βασικές Έννοιες και Ορισμοί

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ)

Τυχαία μεταβλητή (τ.μ.)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Εισαγωγή και αποθήκευση δεδομένων-τα βασικά του S.P.S.S.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

14/11/2016. Στατιστική Ι. 7 η Διάλεξη (Βασικές συνεχείς κατανομές)

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ Πρακτική με SPSS (1)

6.4. LOGLINEAR (MANOVA) 121

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

HMY 795: Αναγνώριση Προτύπων

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

ΣΧΕΣΗ ΜΕΤΑΞΥ ΠΟΙΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Γνωριμία με τον προγραμματισμό μέσω της γλώσσας R Στοιχεία Περιγραφικής Στατιστικής

Διμεταβλητές κατανομές πιθανοτήτων

Ενότητα 2 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής

Στατιστική Συμπερασματολογία

Στατιστική Επιχειρήσεων Ι. Βασικές συνεχείς κατανομές

Εισαγωγή στην Ανάλυση Δεδομένων

Βιομαθηματικά BIO-156

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Κεφάλαιο 5. Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

1991 US Social Survey.sav

ΗΥ-SPSS Statistical Package for Social Sciences 6 ο ΜΑΘΗΜΑ. ΧΑΡΑΛΑΜΠΟΣ ΑΘ. ΚΡΟΜΜΥΔΑΣ Διδάσκων Τ.Ε.Φ.Α.Α., Π.Θ.

HMY 795: Αναγνώριση Προτύπων

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

, x > a F X (x) = x 3 0, αλλιώς.

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων. Ενότητα: Εισαγωγή και αποθήκευση δεδομένων-τα βασικά του S.P.S.S.

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Transcript:

ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο

Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση να υπερβεί τα 6 λεπτά Ε 2 : μια κλήση να διαρκέσει από 4 έως 6 λεπτά Ε 3 : να υπερβεί τα 10 λεπτά δοθέντος ότι έχει διαρκέσει ήδη 4 λεπτά Ε 4 : μια κλήση να διαρκέσει ακριβώς 4 λεπτά Εάν η τ.μ. Χ παριστά τη διάρκεια μιας υπεραστικής κλήσης σε λεπτά, τότε Χ~ Εκθετική(θ=1/2) και για την επίλυση του παραδείγματος πρέπει να υπολογιστούν οι πιθανότητες: P(Ε 1 )=P(X > 6)=1-P(X 6) P(Ε 2 )=P(4 X 6)=P(X 6)-P(X<4) P(Ε 3 )=P(X >10 X 4)=P(X>6+4)/P(X 4)=P(X>6) P(Ε 4 )=P(X = 4) (αμνήμων ιδιότητα της εκθετικής) + + P( X > x) = f ( t) dt = θe dt = - e = e P( X x) = 1-e x X x -θt -θt -θx -θx x ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2

Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή a. σε νέο Data Set βάζουμε στη στήλη x τις τιμές (0) 4, 6 και 10 που μας ενδιαφέρουν εδώ b. για Target Variable επιλέγω cdfexp_0.5 (ή dfexp_0.5 ) c. για Function group επιλέγουμε CDF & Noncentral CDF (ή PDF & Noncentral PDF) d. για Functions and Special Variables επιλέγουμε CDF.EXP(x,1/2) (ή PDF.EXP(x,1/2)) και έτσι υπολογίζουμε την P(X x) ή την f X (x) ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 3

Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή οπότε παίρνουμε τα εξής αποτελέσματα P(X 4)=0.8647 f X (4)=0.0677 P(X 6)=0.9502 P(X 10)=0.9933 και άρα P(Ε 1 )= 0.0498 P(Ε 2 )= 0.0855 P(Ε 3 )= P(Ε 1 )= 0.0498 P(Ε 4 )=0 f X (4) ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 4

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Εκθετική Κατανομή a. σε νέο Data Set βάζουμε στη στήλη x πολύ πυκνές τιμές 0, 0.2, 0.4, 0.6,,10 οι τιμές που μας ενδιαφέρουν εξαρτώνται από την τιμή της παραμέτρου b. δημιουργούμε στήλες με τις PDF.EXP(x,παράμετρος) CDF.EXP(x,παράμετρος) για διάφορες τιμές της παραμέτρου (εδώ για θ=0.5 και θ=2) c. παίρνουμε τις γραφικές παραστάσεις ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 5

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Εκθετική Κατανομή c. παίρνουμε τις γραφικές παραστάσεις Click Graphs > Legacy Dialogs > Lines d. επιλέγουμε Simple, click define e. επιλέγουμε Category Axis x f. μετακινούμε το dfexp ή το cdfexp στο Variable g. στο Change Statistic επιλέγουμε Sum of values h. Continue i. Ok προσοχή: τα σημεία στο x είναι σε αύξουσα σειρά και ισαπέχουν μεταξύ τους ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 6

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Εκθετική Κατανομή θ=0.5 θ=2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 7

Υπολογισμός Πιθανοτήτων Κανονική Κατανομή Παράδειγμα 2 Έστω ότι το επίπεδο του Na στο ανθρώπινο αίμα ακολουθεί κανονική κατανομή με μέση τιμή 140mg/ml και τυπική απόκλιση 7mg/ml. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : σε ένα άτομο το επίπεδο του Na είναι μικρότερο του 130 Ε 2 : σε ένα άτομο το επίπεδο του Na είναι μεταξύ 135 και 145 Ε 3 : σε ένα άτομο το επίπεδο του Na είναι μεγαλύτερο του 160 Εάν η τ.μ. Χ παριστά επίπεδο του Na στο ανθρώπινο αίμα, τότε Χ~ Ν(μ=140,σ 2 = 7 2 ) και Z=(X-μ)/σ ~ Ν(μ=0,σ 2 = 1) για την επίλυση του παραδείγματος πρέπει να υπολογιστούν οι πιθανότητες: P(Ε 1 )=P(X < 130)=P((X-μ)/σ <(130-140)/7)=P(Z<-1.43)=1-Φ(1.43) P(Ε 2 )=P(135 X 145)=P(X 145)-P(X<135) =P((X-μ)/σ 0.714)-P((X-μ)/σ -0.714) =P(Z 0.714)-P(Z -0.714) =2Φ(0.714)-1 P(Ε 3 )=P(X >160)=1- P(X 160)=1- P((X-μ)/σ 2.86)= P(Z 2.86)=Φ(2.86) ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 8

Υπολογισμός Πιθανοτήτων Κανονική Κατανομή οπότε παίρνουμε τα εξής αποτελέσματα P(X 130)=0.0766 P(X 135)=0.2375 P(X 145)=0.7625 P(X 160)=0.9979 Φ(1.43)=0.9236 Φ(0.714)=0.7624 Φ(2.86)=0.9979 και άρα P(Ε 1 )=0.0766 P(Ε 2 )=0.5249 P(Ε 3 )=0.0021 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 9

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Τυπική Κανονική Κατανομή a. σε νέο Data Set βάζουμε στη στήλη x πυκνές τιμές -3,-2.8,- 2.5,-2.2,-2, 0,,2,2.2,2.5,2.8,3 b. δημιουργούμε στήλες με τις PDF.Νormal(x,0,1) CDF. Νormal(x,0,1) για διάφορες τιμές των παραμέτρων (εδώ για μ=1 και σ=1) c. παίρνουμε τις γραφικές παραστάσεις τα σημεία δεν ισαπέχουν κατ ανάγκη μεταξύ τους, ούτε χρειάζεται να είναι σε αύξουσα σειρά ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 10

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Τυπική Κανονική Κατανομή c. παίρνουμε τις γραφικές παραστάσεις Click Graphs > Legacy Dialogs > Scatter/Dot d. επιλέγουμε Simple Scatter, click define e. επιλέγουμε X Axis x f. μετακινούμε το dfnormal ή το cdfnormal στο Y Axis g. Ok h. πάνω στην γραφική Add interpolation line επιλέγουμε Spline i. Apply μπορούμε να αλλάξουμε και τους κύκλους από τα σημεία ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 11

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Τυπική Κανονική Κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 12

Προσομοίωση τυχαίου δείγματος Κανονική Κατανομή a. σε ένα νέο Data Set βάζουμε έναν αριθμό στην 1 η στήλη στο 100 ο κελί (για να πάρουμε 100 τιμές) b. Transform >Compute Variable c. επιλέγω Target Variable Χ 1, Χ 2, Χ 3, Χ 4, Χ 5 d. Function group επιλέγουμε Random Numbers e. για Functions and Special Variables επιλέγουμε RV.ΝΟRMAL(4,2) έτσι δημιουργούμε 5 ομάδες των 100 τυχαίων παρατηρήσεων από Ν(μ=4,σ 2 =2 2 ) έχουμε στην αρχή θέσει Random number generator Starting point 16410 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 13

Μετασχηματισμοί τυχαίου δείγματος Κανονική Κατανομή 2 Χ1-μ Εάν Χ1 Ν(μ,σ ) τότε η τ.μ. Z 1= Ν(0,1) σ Εάν Χ, Χ Ν(μ,σ ) τότε η τ.μ. D=Χ -Χ Ν(μ-μ=0,σ +σ =2σ ) 2 2 2 2 1 2 1 2 Χ +...+Χ n 2 2 1 n Εάν Χ 1,..., Χn Ν(μ,σ ) τότε η τ.μ. X = Ν(μ, ) σ n ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 14

Μετασχηματισμοί τυχαίου δείγματος Κανονική Κατανομή για να δούμε πόσο διαφέρουν τα τ.δ. από την αντίστοιχη θεωρητική κανονική κατανομή: a. Click Analyze > Descriptive Statistics > Frequencies b. επιλέγουμε Variable Χ 1, Z 1, D, Xmean c. στα Statistics επιλέγουμε Mean, Variance, Range. d. στα Charts επιλέγουμε Histograms ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 15

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 16

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 17

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; 2σ 2 =8=(2.828) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 18

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; σ 2 /n=4/5=(0.8944) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 19