1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο κατά το διπλάσιο γινόµενο µιας εξ αυτών επί την προβολή της άλλης πάνω σε αυτήν Να συµπληρώσετε το κατάλληλο σύµβολο (, <, > ) στις παρακάτω προτάσεις α) Σε τρίγωνο ισχύει α < β + γ αν και µόνο αν.90 ο β) Σε τρίγωνο ισχύει α > β + γ αν και µόνο αν.90 ο γ) Σε τρίγωνο ισχύει α β + γ αν και µόνο αν.90 ο ii Σε τρίγωνο δίνονται :, 5 και 7 Η προβολή της πάνω στην είναι. 7,. 8,. 65 1,. 1, Ε. 1 Επιλέξτε την σωστή απάντηση iν) Στον παρακάτω πίνακα στην στήλη δίνεται το είδος της γωνίας ενός τριγώνου και στην στήλη τριάδα αριθµών που µπορεί να είναι µήκη πλευρών τριγώνου. Να κάνετε τις σωστές αντιστοιχίσεις Στήλη Στήλη α. > 90 ο 1. α κ, β κ, γ κ όπου κ θετικός ακέραιος β. < 90 ο. α 7, β, γ 5 γ. 90 ο. α, β 7, γ 9. α 6, β 8, γ 15 Έστω ότι < 90 ο και ύψος του τριγώνου τότε, αν όλες οι γωνίες είναι οξείες έχουµε το σχήµα (1 ) και αν ɵ > 90 ο έχουµε το σχήµα () A Σχ. 1 A Σχ.
Όπου και στα δύο σχήµατα το είναι η προβολή της στην. πό το ορθογώνιο τρίγωνο έχουµε ότι + (α) Στο σχήµα (1) είναι ενώ στο σχήµα () είναι Και στις δύο περιπτώσεις από την (α) βρίσκουµε ότι + + (β) πό το ορθογώνιο τρίγωνο προκύπτει (γ) Η (β) λόγω της (γ) γίνεται + + + Οπότε αποδείχτηκε το ζητούµενο i α) Σε τρίγωνο ισχύει α < β + γ αν και µόνο αν < 90 ο β) Σε τρίγωνο ισχύει α > β + γ αν και µόνο αν > 90 ο γ) Σε τρίγωνο ισχύει α β + γ αν και µόνο αν 90 ο ii Επειδή 5 και + 9 + 9 58 δηλαδή < + + άρα < 90 ο τότε όπως αποδείξαµε στο (α) έχουµε 5 9 + 9 1 1 iν) α, β, γ 1
1. Στο διπλανό σχήµα δίνονται κύκλος κέντρου Ο µε διάµετρο 8, Κ το µέσο της Ο και Λ η χορδή που διέρχεται από το Κ µε Κ Να υπολογίσετε το τµήµα Κ i Να υπολογίσετε το εφαπτόµενο τµήµα Λ Κ Ο του κύκλου που γράφεται µε διάµετρο την Ο ii Να υπολογίσετε το εµβαδόν της περιοχής που βρίσκεται µεταξύ των δύο κύκλων φού 8 είναι Ο Ο και Κ, Κ 6 γνωρίζουµε ότι Κ Κ Κ Κ Κ 1 Κ i Λ Ο Λ Λ ii Το ζητούµενο εµβαδόν ισούται µε το εµβαδόν του µεγάλου κύκλου µείον το εµβαδόν του µικρού κύκλου εποµένως Ε ζητούµενο π Ο π OB 16π π 1π τετραγωνικές µονάδες
1. ίνεται τρίγωνο και Ε το µέσο της. Προεκτείνουµε την κατά ευθύγραµµο τµήµα και φέρνουµε το Να αποδείξετε ότι (Ε) 1 () i Να βρείτε τους λόγους ( Ε ) ( ) και ( ) ( ) ii ν Μ είναι η διάµεσος του τριγώνου, να αποδείξετε ότι (Ε) (ΜΕ) Επειδή Ε διάµεσος στο τρίγωνο είναι (Ε) ( Ε) 1 () Ε i Τα τρίγωνα Ε και έχουν 1 Μ 1 + 180 ο άρα ( Ε) ( ) Ε 1 Τα τρίγωνα και έχουν την γωνία ɵ κοινή άρα ( ) ( ) ii Στο τρίγωνο ΕΜ η Ε είναι διάµεσος άρα (Ε) (ΕΜ) (1) επίσης στο τρίγωνο Μ η ΜΕ είναι διάµεσος άρα (ΕΜ) (ΕΜ) () από τις (1) και () έχουµε ότι (Ε) (ΜΕ)
5 1. Τρείς κύκλοι ( Ο 1, R 1 ), (O, R ) και (O, R ) εφάπτονται ανά δύο εξωτερικά στα σηµεία, και. ν είναι R 1 R και R Να αποδείξετε ότι το τρίγωνο Ο 1 Ο Ο είναι ορθογώνιο i Να υπολογίσετε το εµβαδόν του τριγώνου Ο 1 Ο Ο ii Να υπολογίσετε την περίµετρο του καµπυλόγραµµου τριγώνου ( γκρίζο τρίγωνο) iν) Να υπολογίσετε το εµβαδόν του καµπυλόγραµµου τριγώνου Επειδή οι κύκλοι εφάπτονται ανά δύο εξωτερικά θα είναι Ο 1 Ο R 1 + R, Ο 1 Ο R 1 + R, O O R + R (O 1 O ) 8 και (O 1 O ) + (O O ) 8 άρα Ο 1 (O 1 O ) (O 1 O ) + (O O ) εποµένως το τρίγωνο Ο 1 Ο Ο είναι ορθογώνιο µε υποτείνουσα Ο 1 Ο. i φού O 1 O O O θα είναι 1 (Ο 1 Ο Ο ) (O 1 O )(O O ) τετραγωνικές µονάδες ii φού O 1 O O O το ορθογώνιο τρίγωνο Ο 1 Ο Ο είναι και ισοσκελές άρα Ο 1 5 ο Ο Τα τόξα και είναι φανερά ίσα και το µήκος κάθε ενός είναι Ο Ο π 5 l 0 180 0 π Το τόξο αφούο 90 ο έχει µήκος l π ( ) 90 0 180 0 π ( ) εποµένως Η περίµετρος του καµπυλόγραµµου τριγώνου είναι ίση µε Ρ π + π ( ) π µονάδες µήκους
6 ii Το ζητούµενο εµβαδόν προκύπτει αν από το εµβαδό του τριγώνου Ο 1 Ο Ο αφαιρέσουµε το εµβαδόν των τριών τοµέων που βρίσκονται στο εσωτερικό του τριγώνου. Όµως (Ο 1 Ο Ο ) 1 ( O 1O ) (O O ), Ε Ε ( ) ( Ο 1 A) Ο π ( ) 5 0 60 0 π και Ε ( Ο ) π ( ) 90 0 60 o π(6 ) άρα Ε ζητούµενο π π(6 ) ( π + π ) τετραγωνικές µονάδες
7 15. Τρίγωνο είναι εγγεγραµµένο σε κύκλο. Φέρνουµε την διάµεσο Μ η οποία προεκτεινόµενη τέµνει τον κύκλο στο. ν β + γ α δείξτε ότι Μ α 5 i Μ α 5 10 ii (A) (Μ) 10 β + γ α νωρίζουµε ότι µ α και λόγω της υπόθεσης µ α i α α 5α Είναι Μ Μ Μ Μ ii α 5 Μ α α άρα µ α α 5 Μ α 5 10 (β + γ ) α 1 Μ Τα τρίγωνα Μ και Μ έχουν Μ 1 Μ σαν κατακορυφήν άρα (AΜ) (Μ) α α 5 Μ Μ 5 (1) όµως Μ Μ α 5 α 10 στο τρίγωνο η Μ είναι διάµεσος άρα (Μ) (Μ) 1 () τότε η (1) γίνεται () (Μ) 5 (A) (Μ) 10
8 16.. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο το τετράγωνο µιας κάθετης πλευράς του είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή αυτής της κάθετης πλευράς στην υποτείνουσα i Έστω τρίγωνο µε ύψος και Μ διάµεσο και ɵ > 90 ο Να αντιστοιχίσετε σε κάθε στοιχείο της στήλης του παρακάτω πίνακα ένα στοιχείο της στήλης ώστε να προκύψει ισότητα Στήλη Στήλη α. 1. + + β.. Μ + γ. +. Μ. + 5. Μ + 6.. i ) Τα µήκη των πλευρών ενός τριγώνου είναι α 5, β 7, γ 10 η διάµεσος µ γ είναι α), β), γ), δ), ε) επιλέξτε την σωστή απάντηση i ίνεται κύκλος (Ο, R) και µία διάµετρος του. πό σηµείο του κύκλου φέρνουµε την κάθετη στην. ν 0, 1 δείξτε ότι 5 ii ίνεται ισοσκελές τρίγωνο µε και ɵ 10 ο, δείξτε ότι
9 A. Έστω το ορθογώνιο τρίγωνο και το ύψος στη υποτείνουσα. Θα αποδείξουµε ότι Τα ορθογώνια τρίγωνα και έχουν την γωνία κοινή άρα είναι όµοια οπότε i α, β 1, γ 5. µ γ β + α γ 98+ 50 100 σωστή απάντηση είναι η β i 1 άρα µ γ οπότε Στο διπλανό σχήµα είναι 90 ο ως εγγεγραµµένη σε ηµικύκλιο και το ύψος στην υποτείνουσα του ορθογωνίου τριγώνου 1 1 ( ) 1 (0 ) οπότε 80 80 5 ii πό τον νόµο των συνηµιτόνων έχουµε + συν10 ο 16 + 16 ( 1 ) 8 άρα
10 17. Σε κύκλο ( Ο, R) θεωρούµε τις διαδοχικές χορδές R και R. Να υπολογίσετε συναρτήσει του R Το εµβαδόν του κυκλικού τοµέα (Ο ) που αντιστοιχεί στην κυρτή γωνία Ο i Το άθροισµα των εµβαδών των κυκλικών τµηµάτων τ 1, τ, τ ( γκρίζα περιοχή) ii Την χορδή Επειδή R λ είναι 90 ο και R Ε Ο i λ άρα 10 ο οπότε θα είναι 150 ο πr µ ο 60 ο πr 150 ο 60 o 5πR 1 Το άθροισµα των εµβαδών των τριών κυκλικών τµηµάτων προκύπτει αν από το εµβαδόν του κύκλου αφαιρέσουµε το εµβαδόν των τριών τριγώνων Ο, Ο και Ο Ε κύκλου πr (Ο) 1 R R ηµ90ο 1 R (AO) 1 R R ηµ150ο 1 R 1 1 R (Ο) 1 R R ηµ10ο 1 R R εποµένως Ε ζητούµενο πr 1 R 1 R R ii (π )R πό τον νόµο των συνηµιτόνων στο τρίγωνο Ο έχουµε R + R R συν150 ο R R ( ) R + R άρα R + τ Ο τ τ 1
11 18. Στις πλευρές,, τριγώνου παίρνουµε αντίστοιχα τα σηµεία, Ε, Ζ έτσι ώστε 1, Ε λ, Ζ λ, όπου 0< λ <1 Να δείξετε ότι ( Ζ ) ( ) 1 λ ελάχιστο εµβαδόν. i ( ) ΕΖ ( ) λ λ+ Τα τρίγωνα και Ζ έχουν την γωνία κοινή άρα ( Ζ) ( ) Ζ (1) φού Ζ λ έχουµε ότι ii ν λ Ζ λ Ζ (1 λ) οπότε η (1) γίνεται 1 ( Ζ) ( ) Ζ (1 λ) 1 λ i πό το ( έχουµε ότι (Ζ) 1 λ () Οµοίως βρίσκουµε (Ε) λ () και (Ε) (λ λ ) () οπότε Ε το τρίγωνο ΕΖ έχει το Ζ (ΕΖ) () (Ζ) (Ε) (Ε) () 1 λ λ () () (λ λ ) () () Εποµένως ( ΕΖ) ( ) λ λ+ ii πό το (i έχουµε ότι λ λ+ (ΕΖ) () άρα το (ΕΖ) γίνεται ελάχιστο όταν λ λ+ λ λ + ελάχιστο.όµως γνωρίζουµε ότι η ελάχιστη τιµή του τριώνυµου προκύπτει για λ β α 6
1 19. ίνεται παραλληλόγραµµο µε α, β, γ όπου >. Με διαµέτρους τις διαγώνιες και γράφουµε κύκλους. είξτε ότι + + + +. i ν Ε είναι το εµβαδό του σχηµατιζόµενου κυκλικού δακτυλίου δείξτε ότι Ε π (γ α β ). πό το πρώτο θεώρηµα διαµέσων στα τρίγωνα και έχουµε + Ο + + + + και οµοίως + προσθέτοντας κατά µέλη βρίσκουµε Ο + + + + i Το εµβαδόν του κυκλικού δακτυλίου προκύπτει αν από το εµβαδόν του κύκλου (Ο, Ο) αφαιρέσουµε το εµβαδόν του κύκλου ( Ο, Ο) Έχουµε Ε ( Ο, Ο) π Ο γ π πγ Ε ( Ο, Ο) π Ο όµως η Ο είναι διάµεσος στο τρίγωνο οπότε Ο + α +β γ συνεπώς α +β γ Ε ( Ο, Ο) π µετά από αυτά πγ Ε ζητούµενο π α + β γ πγ πα πβ π (γ α β ) τ. µ
1 0. ίνεται τρίγωνο εγγεγραµµένο σε κύκλο (O, R ) µε α, β και ɵ 60 ο α +β αβ. είξτε ότι i Να βρείτε το εµβαδόν του τριγώνου συναρτήσει των α και β α + β αβ ii R iν) Nα βρείτε το εµβαδόν του κυκλικού τµήµατος µε χορδή αυτή που περιέχεται µέσα στην γωνία ɵ του τριγώνου. πό τον νόµο των συνηµιτόνων στο τρίγωνο έχουµε + συν ɵ Ο α β ( α +β αβ ) β + α αβσυν ɵ α + β αβ β + α α βσυν ɵ συν ɵ 1 άρα ɵ 60 ο i () 1 αβηµɵ αβ ii τετραγωνικές µονάδες () αβγ R αβ iν) αβ α +β βγ R Το ζητούµενο εµβαδόν είναι ίσο µε Ε ζητούµενο Ε Ε ( Ο AB) Ο R α + β αβ πr µ ο 60 ο 1 R ηµ10 ο πr 10 ο 60 ο 1 R πr R τετραγωνικές µονάδες