Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου

Σχετικά έγγραφα
Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Παραδείγµατα γραµµικών αναλογικών συστηµάτων µιας εισόδου µιας εξόδου

Ψηφιακή Επεξεργασία Σημάτων

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

Τυπική µορφή συστήµατος 2 ας τάξης

11 Το ολοκλήρωµα Riemann

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Σηµειώσεις στις σειρές

Ισοδυναµία τοπολογιών βρόχων.

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Εισαγωγή στην Τοπολογία

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC.

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ανοικτά και κλειστά σύνολα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

x[n] = x a (nt s ), n Z (11.1)

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Εισαγωγή στην Τοπολογία

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Γεννήτριες Συναρτήσεις

(είσοδος) (έξοδος) καθώς το τείνει στο.

Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 )

Εισαγωγή στην Τοπολογία

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών


ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

lim y < inf B + ε = x = +. f(x) =

ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ

Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z

Συνέλιξη και Συστήµατα

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Kεφάλαιο 5. µετασχηµατισµού Laplace.

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e

Εισαγωγή στην Τοπολογία

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση

Γεννήτριες Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

3 Αναδροµή και Επαγωγή

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Ελλειπτικές Καµπύλες υπέρ του σώµατος C

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

(GNU-Linux, FreeBSD, MacOsX, QNX

Γεννήτριες Συναρτήσεις

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

1 Ορισµός ακολουθίας πραγµατικών αριθµών

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

Υπολογιστικά & Διακριτά Μαθηματικά

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Transcript:

ΣΥΣΗΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ Από αυστηρά µαθηµατικής απόψεως σαν σύστηµα διακριτού χρόνου ορίζεται ένας οποιοσδήποτε µετασχηµατισµός ή τελεστής (operator) ο οποίος δρα σε µία ακολουθία x [ που συνήθως θεωρείται σαν ακολουθία εισόδου και γεννά µία άλλη ακολουθία y [ που συνήθως θεωρείται σαν ακολουθία εξόδου Σχηµατικά αυτό παρίσταται: Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου Π ο ιδανικό διακριτό σύστηµα καθυστέρησης Έστω µία οποιαδήποτε ακολουθία x [ Z και έστω ένας οποιοσδήποτε ακέραιος ότε σαν ιδανικό διακριτό σύστηµα καθυστέρησης θεωρείται ο µετασχηµατισµός K : Πχ αν = τότε ή αναλυτικότερα η ακολουθία y[ : ) Z y [ = K ] ) Z y [ = K ] y [ 5] 7] y[ 4] 6] y[] ] y[8] 6] δηλαδή η αρχική ακολουθία µετατοπισµένη ( σπρωγµένη ) κατά δύο θέσεις δεξιά διότι > Αν = 3 τότε ή αναλυτικότερα η ακολουθία y[ : ) + 3 Z y [ = K 3 ] y [ 5] ] y[ 4] ] y[] 3] y[8] ] δηλαδή η αρχική ακολουθία µετατοπισµένη ( σπρωγµένη ) κατά τρείς θέσεις αριστερά διότι <

Π ο διακριτό σύστηµα κινητού µέσου όρου (movig average) Έστω µία οποιαδήποτε ακολουθία x [ Z και έστωσαν δύο οποιοιδήποτε θετικοί ακέραιοι ότε σαν διακριτό σύστηµα κινητού µέσου όρου (movig average) θεωρείται ο µετασχηµατισµός ΜA : y[ = ) = x[ i] Z ( + + ) i = Z y[ = )= ( ) { x [ + ] [ ] [ ] [ ] [ ]} + x + + + x + x + + x + + ιατυπώνοντάς το µε λόγια µπορεί κανείς να πει ότι το -οστό δείγµα της ακολουθίας εξόδου [ y είναι ο µέσος όρος των ( + ) δειγµάτων της + ακολουθίας εισόδου x [ γύρω απ το -οστό της δείγµα Π3 α διακριτά συστήµατα άνευ µνήµης Ένα διακριτό σύστηµα λέγεται ότι δεν έχει µνήµη όταν το -οστό δείγµα της ακολουθίας εξόδου y [ εξαρτάται µόνον από το -οστό δείγµα της ακολουθίας εισόδου x [ Πχ 3 y [ = 3 ) + 5 )

ΓΡΑΜΜΙΚΑ ΣΥΣΉΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ ΟΡΙΣΜΟΣ : Έστω ένα σύστηµα τέτοιο ώστε ) Z y [ = Εάν για δύο οποιεσδήποτε ακολουθίες εισόδου x [ ] και x [ ] και δύο τυχούσες σταθερές a a ισχύει ότι: ( a x + a x [ ) = a( x [ ) + a( x [ ) = a y [ + a y [ Z [ δηλαδή εάν ισχύει πάντα η αρχή της επαλληλίας τότε το σύστηµα καλείται γραµµικό (iear) ΘΕΩΡΗΜΑ Έστωσαν ένα σύνολο N ακολουθιών εισόδου x [ x[ xμ [ Z ως και ένα σύνολο σταθερών a a am τότε εάν {} είναι ένα γραµµικό σύστηµα σύµφωνα µε τον ανωτέρω ορισµό ισχύει: M k= όπου βεβαίως υποτίθεται πάντα ότι M M ak xk ( ) = akt{ xk ( ) } = ak yk ( ) k= k= { x ( )} yk ( ) = T k Απόδειξη Είναι αρκετά ευθύγραµµη µία απόδειξη µε επαγωγή ως προς το πλήθος των ακολουθιών εισόδου αρκεί να διαπιστώσει κανείς ότι η επαλληλία τριών ακολουθιών εισόδου προκύπτει άµεσα απ την επαλληλία τών δύο από τον ορισµό τού γραµµικού συστήµατος δηλαδή: { a x + a x [ + a x [ } = { ( a x [ + a x [ ) + a x [ ]}= [ 3 3 3 3 { a x [ + a x [ ) } + a( x [ ) = a( x [ ) + a( x [ ) + a( x [ ])= ( 3 3 3 3 = a y [ + a y [ + a3 y [ Z 3 Σηµαντική σηµείωση Σε µερικές περιπτώσεις επεκτείνουµε την ιδιότητα της γραµµικότητας και σε απείρου πλήθους όρους Με άλλα λόγια θεωρούµε ότι ισχύει και: { a x [ } = a T{ x [ } Z y[ = T i i i i i= i= 3

δηλαδή θα θεωρούµε ότι συντρέχουν οι συνθήκες εκείνες (πχ οµοιόµορφη σύγκλιση των υπεισερχοµένων σειρών) οι οποίες επιτρέπουν την επέκταση τής ιδιότητας τής γραµµικότητας και σε απείρου πλήθους όρους Παραδείγµατα γραµµικών συστηµάτων διακριτού χρόνου Π4 ο σύστηµα που ορίζεται απ την µαθηµατική σχέση: { x[ } = x( k) Z y[ = Tac k= είναι γραµµικό όπου x [ είναι µία οποιαδήποτε ακολουθία µε µοναδικό περιορισµό οι αντίστοιχες σειρές να συγκλίνουν τουλάχιστον κατά την γενικευµένη έννοια ο σύστηµα αυτό συχνά ονοµάζεται συσσωρευτής (accumuator) διότι µε µία έννοια συσσωρεύει τις τιµές από έως Απόδειξη: Έστωσαν δύο ακολουθίες x [ ] και x [ ] ότε και εφ όσον οι αντίστοιχες σειρές συγκλίνουν τουλάχιστον κατά γενικευµένη έννοια ισχύει άµεσα: ( β k= { α x + βx )[ } = ( α x [ k] + x [ k ) T ] = [ + ac ac k= k= k= k= ( α x k] ) ( βx [ k] ) = α ( x [ k] ) + β ( x [ k] ) = α T { x [ } + βt { x [ ]} Π5 ο σύστηµα που ορίζεται απ την µαθηµατική σχέση: y [ x[ ] όπου x [ είναι µία οποιαδήποτε ακολουθία και ένας οποιασδήποτε ακέραιος αριθµός είναι γραµµικό Απόδειξη: Έστωσαν δύο ακολουθίες x [ ] και x [ ] και α β τυχόντες αριθµοί ότε T { α x + βx )[ } = ( αx + βx )[ ( αx + βx )[ ] = ( α x + βx [ αx [ ] βx [ ] = [ ( x x [ ]) + β( x [ x [ ] ) = αt{ x [ } βt{ x [ ]} α + [ Π6 ο σύστηµα κινητού µέσου όρου (movig average) που ορίσθηκε προηγουµένως) ως ο µετασχηµατισµός : 4

είναι γραµµικό y[ = ) = x[ i] Z ( + + ) i = Απόδειξη: Έστωσαν δύο ακολουθίες x [ ] και x [ ] ότε {( α x+ βx )[ } = ( αx+ βx )[ i ] Z= ( + + ) i = = + α β x [ i] x ( + + ) ( + + ) i= { x } β { x [ ]} α + [ i= [ i] = ΣΥΣΉΜΑΑ ΑΝΑΛΛΟΙΩΑ ΣΟΝ ΧΡΟΝΟ (TIME-INVARIANT SYSTEMS) ΟΡΙΣΜΟΣ : Έστω ένα σύστηµα τέτοιο ώστε ) Z y [ = ο σύστηµα αυτό λέγεται αναλλοίωτο στον χρόνο ή ισοδυνάµως χρονικά αναλλοίωτο αν µ Z και για κάθε ακολουθία εισόδου ισχύει: ]) = y[ µ Z µ ] ηλαδή λεκτικά αν θεωρήσουµε σαν είσοδο τού συγκεκριµένου συστήµατος την ακολουθία x [ µ ] Z της οποίας τα στοιχεία είναι τα στοιχεία της ακολουθίας x [ µετατοπισµένα στον χρόνο κατά µ τότε η έξοδος τού συγκεκριµένου συστήµατος είναι τα στοιχεία της ακολουθίας y [ επίσης µετατοπισµένα στον χρόνο κατά τον ίδιο ακέραιο αριθµό µ 5

Παραδείγµατα διακριτών συστηµάτων αναλλοίωτων στον χρόνο Θα ελέγξουµε τα προαναφερθέντα παραδείγµατα ως προς το χρονικά αναλλοίωτο: Π7 Θα ελέγξουµε πρώτα το ιδανικό διακριτό σύστηµα καθυστέρησης ) Z y [ = K ] Έστω τώρα ένας οποιοσδήποτε άλλος ακέραιος µ ότε πρέπει να ελέγξουµε την έξοδο µ] ) Z K K µ ]) ( µ ) ] µ ] Εξάλλου για κάθε ισχύει [ '] ' ] Οπότε θέτοντας =-µ ισχύει y y [ µ ] ( µ ) ] µ ] Άρα ]) [ µ ] = K µ y δηλαδή το συγκεκριµένο σύστηµα είναι χρονικά αναλλοίωτο Π 8 Εν συνεχεία θα ελέγξουµε εάν το διακριτό σύστηµα κινητού µέσου όρου (movig average) είναι χρονικά αναλλοίωτο Πράγµατι έστω ένας οποιοσδήποτε θετικός ακέραιος µ ότε µ ]) = x[( µ ) i] Z= ( + + ) i = Ο τελευταίος όρος είναι ακριβώς η χρονική µετάθεση της ακολουθίας εξόδου τού συστήµατος κινητού µέσου όρου στο -µ αφού αν y [ ' ] = ' ]) = x[ ' i ΜA ( + + ) i = Θέτοντας =-µ έχουµε ] Z 6

y [ µ ] = x[( µ ) i] Z ΟΕ ΜA ( + + ) i= Π9 ο σύστηµα τού συσσωρευτού είναι χρονικά αναλλοίωτο Απόδειξη: Αφού y T { x[ } = x( k) Z [ = ac προκύπτει ότι T k= ac k= { x[ µ ]} = x( k µ ) Z και ο τελευταίος όρος προφανώς είναι ο y[ µ ] δηλαδή η ακολουθία εξόδου τού συσσωρευτού µετατοπισµένη κατά τον ίδιο ακέραιο αριθµό µ αφού: µ k= y[ µ ] = x( k) µ Z εάν δε στην τελευταία σειρά κάνουµε την αντικατάσταση k βέβαια αυτή συγκλίνει προκύπτει ότι: = p µ και εφ όσον y[ µ ] = x( p) µ Z p= δηλαδή ακριβώς το ζητούµενο 3 ΑΙΙΑΑ ΣΥΣΉΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ (CAUSAL SYSTEMS) ΟΡΙΣΜΟΣ 3: Έστω ένα σύστηµα τέτοιο ώστε ) Z y [ = ο σύστηµα αυτό λέγεται αιτιατό όταν η έξοδος τού συστήµατος εξαρτάται σε κάθε χρονική στιγµή µόνον από τις τιµές τις εισόδου τις χρονικές στιγµές Z Από τα παραδείγµατα συστηµάτων που ανεφέρθησαν προηγούµενα προφανώς ο ιδανικό διακριτό σύστηµα καθυστέρησης είναι αιτιατό αν αλλιώς είναι µη αιτιατό 7

ο σύστηµα κινητού µέσου όρου είναι αιτιατό αν και αλλιώς είναι µη αιτιατό ο σύστηµα που ονοµάσαµε συσσωρευτή είναι πάντα αιτιατό α διακριτά συστήµατα άνευ µνήµης είναι πάντα αιτιατά κλπ 8

4 ΕΥΣΑΘΗ ΣΥΣΉΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ (STABLE SYSTEMS Bouded Iput Bouded Output) ΟΡΙΣΜΟΣ 4: Μία ακολουθία x [ λέγεται φραγµένη (bouded) αν υπάρχει ένας συγκεκριµένος πεπερασµένος πραγµατικός αριθµός Μ τέτοιος ώστε x [ M Z ΟΡΙΣΜΟΣ 5: Ένα σύστηµα το οποίον για κάθε φραγµένη ακολουθία εισόδου παράγει µία φραγµένη ακολουθία εξόδου λέγεται ευσταθές BIBO Παραδείγµατα ευσταθών και µη ευσταθών διακριτών συστηµάτων α προαναφερθέντα συστήµατα τού είναι όλα ευσταθή γιατί στον µαθηµατικό τύπο ορισµού τους η εκάστοτε τιµή της εξόδου εξαρτάται µόνον από πεπερασµένου πλήθους στοιχεία (µέλη) της ακολουθίας εισόδου Η σχετικά πλέον περίπλοκη περίπτωση είναι τού κινητού µέσου όρου η απόδειξη της ευστάθειας τού οποίου δίνεται αµέσως: Έστω ότι Μ είναι ένα φράγµα της ακολουθίας εισόδου ότε y [ = ) = x[ ] ( + + ) = x [ ] Μ = Μ + ( + ) ( + + ) = = Z ΟΕ Αντιθέτως ο συσσωρευτής ΕΝ είναι ευσταθές διακριτό σύστηµα Για ν αποδειχθεί αυτό αρκεί να βρεθεί ένα αντιπαράδειγµα δηλαδή να βρεθεί µία φραγµένη ακολουθία εισόδου τού συστήµατος που γεννά µία µη φραγµένη ακολουθία εξόδου Πράγµατι ας επιλέξουµε σαν ακολουθία εισόδου την βηµατική συνάρτηση: < x [ = u[ = >= ότε προφανώς η έξοδος τού συστήµατος είναι: < y[ = Tac{ x[ } = u( k) = k= ( + ) >= 9

η οποία βεβαίως δεν είναι φραγµένη ακολουθία 5 ΓΡΑΜΜΙΚΑ ΧΡΟΝΙΚΑ ΑΝΑΛΛΟΙΩΑ ΣΥΣΉΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ (LINEAR TIME INVARIANT (LTI) SYSTEMS) Μία ιδιαιτέρως σηµαντική για πολλές εφαρµογές κλάση συστηµάτων είναι εκείνων των συστηµάτων που είναι και γραµµικά και χρονικά αναλλοίωτα α συστήµατα αυτά έχουν χρήσιµες ιδιότητες οι οποίες τα καθιστούν ιδιαιτέρως εύχρηστα και χρήσιµα