Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1



Σχετικά έγγραφα
2. Υπολογισμός Εδαφικών Ωθήσεων

(& επανάληψη Εδαφομηχανικής)

ΚΕΦΑΛΑΙΟ VΙI. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ. 1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού)

ΚΕΦΑΛΑΙΟ IV: ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΤΟ Ε ΑΦΟΣ

Εδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011

1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb

Μηχανική Συμπεριφορά Εδαφών. Νικόλαος Σαμπατακάκης Νικόλαος Δεπούντης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Διατμητική Αντοχή των Εδαφών

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών

Καθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση

4. Ανάλυση & Σχεδιασμός

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Γενικά

3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ

Γιώργος Μπουκοβάλας. Φεβρουάριος Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1

(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π.

Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb

(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης

6. ΠΡΟΦΟΡΤΙΣΗ. Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. ιάφορες Περιπτώσεις Προφόρτισης

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ "Α"

ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A

Γιώργος Μπουκοβάλας. 4.1 Περιγραφή Κατασκευή Αγκυρώσεων. 4.2 Αστοχία Αγκυρίου. KRANZ 4.4 Αστοχία Σφήνας Εδάφους

ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΕΔΑΦΩΝ ΑΣΤΟΧΙΑ ΕΔΑΦΙΚΟΥ ΥΛΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΠΡΟΣΟΜΟΙΩΣΗ

ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ:

ΚΕΦΑΛΑΙΟ 10 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

Καθηγητής Ε.Μ.Π. ΕΧ 4.1 Περιγραφή-κατασκευή αγκυρώσεων. 4.2 Πιθανές μορφές αστοχίας αγκυρώσεων. 4.4 Σύνθετη αστοχία κατά Kranz. 4.

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής


Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών

ΚΕΦΑΛΑΙΟ 12 ΕΙΔΙΚΑ ΘΕΜΑΤA Εκτίμηση των Υποχωρήσεων των Κατασκευών

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν. Καθηγητής

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΗ 2 Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών

Πλευρικές Ωθήσεις Γαιών

«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

α) Προτού επιβληθεί το φορτίο q οι τάσεις στο σημείο Μ είναι οι γεωστατικές. Κατά συνέπεια θα είναι:

ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5

ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ:

«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

Ασκήσεις Εδαφοµηχανικής (Capper et al., 1978, Salglerat et al., 1985)

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

.. - : (5.. ) 2. (i) D, ( ).. (ii) ( )

ΤΡΙΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ UU

Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Στερεοποίηση. Στερεοποίηση

ΘΕΜΑ 1 : [ Αναλογία στο βαθµό = 5 x 20% = 100 % ]

ΚΕΦΑΛΑΙΟ 9 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΕΔΑΦΩΝ

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση

προσομοίωση της τριαξονικής δοκιμής με τη Μέθοδο των Διακριτών Στοιχείων

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5

Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7

ΑΝΤΟΧΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ

Ωθήσεις γαιών στην ανάλυση της κατασκευής Εισαγωγή δεδομένων

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.

Εδάφη Ενισχυμένα με Γεωυφάσματα Μηχανική Συμπεριφορά και. Αλληλεπίδραση Υλικών. Ιωάννης Ν. Μάρκου Αναπλ. Καθηγητής

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6


Επίλυση & Αντιμετώπιση προβλημάτων Γεωτεχνικής

ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7)

Στερεοποίηση των Αργίλων

ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ

χαρακτηριστικά και στην ενεσιμότητα των αιωρημάτων, ενώ έχει ευμενείς επιπτώσεις στα τελικό ποσοστό εξίδρωσης (μείωση έως και κατά 30%) και στην

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΔΙΑΛΕΞΗ 2 Ανάλυση της ευστάθειας γεωφραγμάτων

Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος

Γεωτεχνική Έρευνα - Μέρος 3 Υποενότητα 8.3.1

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων. Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

Ανάλυση Βαθιών Εκσκαφών με τον Ευρωκώδικα 7

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Διδάσκων: Μπελόκας Γεώργιος

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ

Γεωτεχνική Έρευνα Μέρος 1. Nigata Καθίζηση και κλίση κατασκευών

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών

) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A

Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων

ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΜΑΖΑΣ

ΑΣΚΗΣΗ 1: Υπολογίστε την ορθή και διατμητική τάση, οι οποίες ασκούνται στα επίπεδα με κλίση α ως, όπως φαίνονται στα παρακάτω σχήματα.

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός

ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ

Βελτίωσης Ενίσχυσης εδαφών

Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ

Περατότητα και Διήθηση διαμέσου των εδαφών

Transcript:

Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ξηρό ή κορεσμένο έδαφος υπό στραγγιζόμενες συνθήκες φόρτισης 2.2 Κορεσμένο έδαφος υπό αστράγγιστες συνθήκες φόρτισης 2.3 Κορεσμένο έδαφος υπό συνθήκες σταθερής ροής (aπό τον «ΠΙΝΑΚΑ» ) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 2

2.1 Ξηρό ή κορεσμένο έδαφος υπό σραγγιζόμενες συνθήκες φόρτισης Ενεργητική ώθηση κατά Rankine για ξηρό έδαφος λείο τοίχο οριζόντια ελεύθερη επιφάνεια κατακόρυφη επιφάνεια επαφής τοίχου εδάφους Μικρή προς τα έξω μετακίνηση του τοίχου ( ~ 1 έως 2% του ύψους) προκαλεί μείωση των οριζόντιων ρζ ενεργών τάσεων,, από σ ho = o σ νο ( o = συντ. ουδετέρας ωθήσεως) σε σ hα < σ ho Ηενεργητικήώθησησ ha υπολογίζεται, υπό τις ανωτέρω παραδοχές, σχετικά εύκολα με βάση την απεικόνιση κατά Mohr. τ φ γεωστατικές τάσεις c σ hα σ ho σ νo σ κατάσταση ενεργητικής ώθησης c/tanφ σταδιακά μειώνεται η σ h μέχρι την αστοχία, οπότε c c (σ ' ha ) Κα (σ ' νο ) tanφ tanφ ή σ ' ha Κ α σ ' νο 2c a ) όπου Κ tan φ 45-2 2 Γ. Δ. Μπουκοβάλας, α Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3

Παθητική ώθηση κατά Rankine Κάτω από τις ίδιες προϋποθέσεις, σταδιακή μετατόπιση του τοίχου αντιστηρίξεως προς τα έσω προκαλεί αύξηση των οριζοντίων ενεργών τάσεων, από σε σ ho = o σ νο σ hp >> σ ho τ γεωστατικές τάσεις φ c (σ ' hp ) Κp (σ ' νο tanφ ή σ ' hp Κ p σ ' νο 2c c ) tanφ p ) c σ νo σ hp σ ho σ όπου Κ p tan 2 45 φ 2 c/tanφ κατάσταση παθητικής ώθησης Ειδική Περίπτωση: Ξηρή Άμμος c=0, φ 0 σ ha = a σ νο, a =tan 2 (45-φ/2) u=0 σ ha = σ ha Ειδική Περίπτωση: Κορεσμένη Άμμος c=0, φ 0 σ ha = a σ νο u=υδροστατική σ ha = Κa σ νο + υδροστατική πίεση Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 4

Ειδική Περίπτωση: Κορεσμένη Άργιλος Μακροπρόθεσμα (μετά από πολλά χρόνια όταν οι υπερπιέσεις του ύδατος των πόρων έχουν μηδενιστεί) σ ha = a σ νο -2c a u=υδροστατική σ ha = σ ha + υδροστατική πίεση Προσοχή! Επιφανειακά,, όταν a σ νο<2c a ήσ νο <2c/ a,έχουμε ρηγμάτωση του εδάφους λόγω αδυναμίας ανάληψης εφελκυστικών τάσεων. Οι ωθήσεις στο ρηγματωμένο τμήμα (αρνητικές) αγνοούνται. τι γίνεται σε ένα εύκαμπτο τοίχο που είναι πακτωμένος στο έδαφος; F I F II t=0 t=1 μήνας t>1 μήνα Πως μεταβάλλονται οι F I και F II με τον χρόνό; Θα σταματήσει ο τοίχος να μετακινείται και πότε; Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 5

Αναγκαίες μετατοπίσεις για Ενεργητική Παθητική Ώθηση π.χ. για άμμους 8,0 4,0 3,0 1,9 8/4=2,0 30/19 3,0/1,9 1,6 16 Κατά τον υπολογισμό των Υ/Η παθητικών ωθήσεων λαμβάνεται Τύπος εδάφους ένας συντελεστή ασφαλείας Ενεργός ώθηση η Παθητική ώθηση η ίσος με 1.50 2.00, δηλ. Πυκνό μη συνεκτικό 0,001 0,02 P p Χαλαρό μη συνεκτικό 0,004 0,06 οριακή Pp Στιφρό συνεκτικό 0,010010 002 0,02 1.50 2.00 Μαλακό συνεκτικό 0,020 0,04 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 6

2.2 Κορεσμένο έδαφος υπό αστράγγιστες συνθήκες φόρτισης Α. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ (επανάληψη από Εδαφομηχανική Ι) Α1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού) Χημική αλληλεπίδραση Φυσική αλληλεπίδραση Μηχανική αλληλεπίδραση Α2. Ανάπτυξη (υπερ-) πίεσης των πόρων υπό «αστράγγιστες» συνθήκες 1-Δ & ισότροπη συμπίεση Διάτμηση Α3. Η έννοια της «αστράγγιστης διατμητικής αντοχής» Α1. Ο τρίπτυχος ρόλος της υγρής φάσης (του νερού των πόρων δηλαδή) Χημική μ αλληλεπίδραση ρ Την έχουμε κουβεντιάσει ήδη. Αφορά το διπλό στρώμα νερού που επηρεάζει τον τρόπο μεταφοράς των δυνάμεων μεταξύ των α ρ γ ι λ ι κ ώ ν πλακιδίων. Είναι σημαντική μόνον για λεπτόκοκκα εδάφη,, δηλαδή αργίλους και κάποιους τύπους (πλαστικών) ιλύων.. εν παίζει κανένα ρόλο σε πιο χονδρόκοκκα εδάφη, όπως άμμους και χάλικες (γιατί άραγε;) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7

Φυσική Χημική αλληλεπίδραση Όταν υπάρχει ροή νερού μέσω των πόρων του εδάφους, τότε ασκούνται δυνάμεις επί των στερεών κόκκων (κάτι ανάλογο προς τις δυνάμεις που ασκεί ένας χείμαρρος σε ογκόλιθους που βρίσκονται εντός της κοίτης του), οι οποίες μεταβάλλουν τις τάσεις επαφής. Η μορφή αυτή αλληλεπίδρασης είναι σημαντική σε χονδρόκοκκα κυρίως εδάφη (άμμους, χάλικες, κλπ..) όπου το νερό δεν είναι δεσμευμένο στο διπλό στρώμα αλλά είναι ελεύθερο και μπορεί να δημιουργήσει εσωτερική ροή. Φυσική Χημική αλληλεπίδραση Υδροστατικές συνθήκες δεν υπάρχει ροή νερού προς τα άνω. Η μόνη δύναμη που ασκείται στους κόκκους είναι η άνωση Α, η οποία μειώνει το βάρος του κόκκου από G σε G =G-A. Για συνήθη εδάφη G >0 (γιατί ;) Ροή προς τα άνω. Τώρα, εκτός από την άνωση Α, ασκείται και μία υδροδυναμική δράση F υδρ. και επομένως το βάρος του κόκκου μειώνεται ακόμη περισσότερο, από G σε G =G-A- F υδρ, και μπορεί ακόμη και να μηδενισθεί (G =0 φαινόμενο ρευστής άμμου) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 8

Φυσική Χημική αλληλεπίδραση Ερώτηση: Ένας μικρός και αμέριμνος βεδουίνος πέφτει κατά λάθος σε ρευστή (κινούμενη κατά κόσμον) άμμο. Τι θα του συμβεί; Θα πνιγεί άραγε ή όχι; (από την κλασσική ταινία Laurence of Arabia με πρωταγωνιστή τον Peter O Toul) 1 2 3 4 ρευστή άμμος α μ μ ο χ ά λ ι κ α Μηχανική Χημική αλληλεπίδραση Να σχεδιασθεί η μεταβολή των P, U, F, δ με τον χρόνο στις παρακάτω περιπτώσεις : (α) P = σταθ., αδιαπέρατη πλάκα φόρτισης (β) P = σταθ., διαπερατή πλάκα φόρτισης P = U + F U = u A A = επιφάνεια πλάκας Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 9

(α) Αδιαπέρατη Αδιαπέρατη πλάκα πλάκα (χωρίς διαφυγή νερού) (χωρίς διαφυγή νερού) 0 δ w s w (χωρίς διαφυγή νερού) (χωρίς διαφυγή νερού) =10 8 kpa w =10 8 kpa 0 F P U 0 w s s s w s w s 1 1 P δ P δ δ w =10 kpa s =10 5 kpa w s =10 5 kpa (β) ιαπερατή πλάκα ιαπερατή πλάκα w s w 1 1 P U δ U (β) ιαπερατή πλάκα ιαπερατή πλάκα (σταδιακή διαφυγή νερού (σταδιακή διαφυγή νερού) t=0+ δεν έχει προλάβει να διαφύγει w s 1 1 P F δ F t=0+ δεν έχει προλάβει να διαφύγει νερό, άρα ως (α) t= έχει προλάβει να διαφύγει s t έχει προλάβει να διαφύγει το περισσευούμενο νερό P δ 0 w P F 0 U 0 s w s s w Κ w = 0 -> ( α ) χωρίς δυνατότητα στράγγισης : ( β ) με δυνατότητα στράγγισης : (β) μ ε δ υ ν α τ ό τ η τ α σ τ ρ ά γ γ ι σ η ς Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 10

από την ΕΙΣΑΓΩΓΗ έκλεψα λίγο στην Θεμελίωση αλλά ποτέ δεν θα μαθευτεί!!! 850 χρόνια μετά... μετά σας θυμίζει τίποτα; Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 11

Α2. Ανάπτυξη (υπέρ-) πίεσης των πόρων υπό «αστράγγιστες» ρ ς συνθήκες φόρτισης 1-Δ Δ συμπίεση Την έχουμε κουβεντιάσει ήδη... u = σv σv σ v = 0 κορεσμένο έδαφος ή πιο γενικά u = Β σv σ v = (1-Β) σv Β=1 1 για πλήρως κορεσμένο (Sr >98%) και Β=0 για ξηρό ή μερικώς κορεσμένο έδαφος ισοτροπική συμπίεση Για τους ίδιους λόγους με την 1- συμπίεση (μηχανική αλληλεπίδραση μεταξύ εδαφικού σκελετού και ασυμπίεστου νερού).. έδαφος σc u =ΒΒ σc σ C C = (1-Β) σc Β=1 για πλήρως κορεσμένο (Sr >98%) και Β=0 για ξηρό ή μερικώς κορεσμένο έδαφος σc Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 12

μονο-αξονική φόρτιση u σ d Στην περίπτωση αυτή δεν ισχύει άμεσα το μηχανικό ανάλογο που παρουσιάσαμε προηγουμένως για την 1- και την ισοτροπική συμπίεση, μια και η τάση για μεταβολή του όγκου δεν προέρχεται από την επιβαλλόμενη ορθή τάση, αλλά κυρίως από την διάτμητική (διαστολικότητα). Έτσι, με βάση πειραματικά αποτελέσματα για κορεσμένο έδαφος, προκύπτει ότι: u = A σ d [ ή γενικότερα: u = Β(A σ d )] 1.0 1/3 0 όπου: A(ε, ( OCR) -1.0 0 αξονική παραμόρφωση ε d 1.0 1/3 0 A(ε, OCR) -1.0 10 0 αξονική παραμόρφωση ε d ύο ερωτήματα σχετικά με τον δείκτη πίεσης πόρων Α: Γιατί γίνεται αρνητικός όταν OCR >> 1.0 ; Γιατί γίνεται ίσος με 1/3 ανεξαρτήτως OCR, όταν ε d =0; Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 13

τριαξονική φόρτιση σ1 u σ3 σ3 = σ3 u1 σ1- σ3 + u2 ισοτροπική συμπίεση ( σc = σ3) μονοαξονική συμπίεση ( σd = σ1 - σ3) u1=β σ3 u2=β A ( σ1- σ3) άρα, τελικώς. u = B [ σ3 + Α( σ1- σ3)] Α = Α(ε, OCR) & Β=1 για πλήρως κορεσμένο έδαφος (ή αλλοιώς Β=0) τριαξονική φόρτιση σ1 σ3 u u = B [ σ3 + Α( σ1- σ314 )] Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π.

τριαξονική φόρτιση πολυ-αξονική φόρτιση u = B [ σ 3 + Α( σ 1 - σ 3 )] u = B [ σ OCT + 3a τ OCT ] Skempton (1954) Henkel (1960) πολυ-αξονική φόρτιση όπου: και OCT 1 2 3 3 OCT 1 ( ) ( ) ( ) 3 2 2 2 1 2 2 3 3 1 u = B [ σ OCT + 3a τ OCT ] Henkel (1960) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 15

πολυ-αξονική φόρτιση όπου: και OCT OCT 1 2 3 3 1 ( ) ( ) ( ) 3 2 2 2 1 2 2 3 3 1 Για εξ-άσκηση, μπορείτε να αποδείξετε ότι: 1 ( 2 ) 3 ή 1 1 ( ) 2 3? u = B [ σ OCT + 3a τ OCT ] Henkel (1960) ΠΑΡΑ ΕΙΓΜΑ 1 Να υπολογισθούν οι ενεργές και οι ολικές τάσεις στο τέλος της ακόλουθης 1- συμπίεσης: στάδιο 1: στερεοποίηση υπό κατακόρυφη τάση σ VO =σ σ VO =100 kpa στάδιο 2: κατακόρυφη φόρτιση υπό αστράγγιστες συνθήκες, με σ V =200 kpa Το εδαφικό δοκίμιο είναι κορεσμένο και έχει συντελεστή o=0.50 σv σvo τα μπλέ βέλη δείχνουν αστράγγιστη φόρτιση και τα μαύρα στραγγιζόμενη κορεσμένο έδαφος Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 16

ΠΑΡΑ ΕΙΓΜΑ 2 Να υπολογισθούν οι ενεργές και οι ολικές τάσεις στο τέλος της ακόλουθης τριαξονικής φόρτισης: στάδιο 1: στερεοποίηση υπό ισοτροπική τάση σ c =σ σ c =100 kpa στάδιο 2: ισοτροπική φόρτιση υπό αστράγγιστες συνθήκες, με σ c =100 kpa στάδιο 3: αξονική συμπίεση με υπό αστράγγιστες συνθήκες, με σ α=200 kpa Το εδαφικό δοκίμιο είναι κορεσμένο και έχει συντελεστή πίεσης πόρων Α=0.50 σ α σ C σ C τα μπλέ βέλη δείχνουν αστράγγιστη φόρτιση και τα μαύρα στραγγιζόμενη σ C σ C u; Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 17

Α3. Η έννοια της «αστράγγιστης ρ διατμητικής αντοχής» του εδάφους Ας ξεκινήσουμε με ένα «θεωρητικό πείραμα» που θα μπορούσε να ήταν και άσκηση επάνω στον υπολογισμό των υδατικών υπερπιέσεων υπό αστράγγιστες συνθήκες φόρτισης. Εκτελώ βήμα προς βήμα μία τριαξονική δοκιμή φόρτισης, και σε κάθε βήμα υπολογίζω τις πιέσεις πόρων και τις αντίστοιχες ενεργές τάσεις: 1o ΒΗΜΑ: Ισοτροπική στερεοποίηση υπό πλήρως στραγγιζόμενες συνθήκες σ C σ 1 = σ 3 = σ C u=0 σ C = σ C σ C σ 1 = σ 3 = σ C 2o ΒΗΜΑ: Ισοτροπική στερεοποίηση υπό αστράγγιστες συνθήκες (κλείνω τις στρόφιγγες της στράγγισης και δεν τις ξανανοίγω μέχρι το τέλος του πειράματος). σ 1 = σ 3 = σ C + σ C σ C + σ C u= σc σ C + σ C σ 1 = σ 3 = σ C (δεν αλλάζουν!) 3o ΒΗΜΑ: Αύξηση της κατακόρυφης τάσης υπό αστράγγιστες συνθήκες σ α σ 3 = σ C + σ C σ C + σ C σ 1 = σ C + σ C + σ α u= σ C + Α σ α (Β=1.0) σ 3=σ C- Α σ α σ C + σ C σ 1 = σ C + (1-Α) σ α Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 18

4ο ΒΗΜΑ: Εάν η γωνία τριβής του εδάφους είναι φ (c=0), να υπολογισθεί η πρόσθετη ολική τάση που απαιτείται για να προκληθεί αστοχία. (σ 1-σ 3)/(σ 1 +σ 3 ) = sin φ sin 2 ' c 1 1 2 sin 2 a όπου Α α είναι ο συντελεστής πίεσης πόρων κατά 1.20 την αστοχία που προσεγγιστικά είναι 0. 20 OCR 1 A a.17 5ο ΒΗΜΑ: Να εφαρμοσθούν οι ανωτέρω σχέσεις για σ ο C =150 kpa, Φ=30, OCR=1 και δύο τιμές της πρόσθετης ολικής τάσης στερεοποίησης σ C =0 και 50 kpa. να σχεδιασθούν οι κύκλοι Mohr των ολικών και των ενεργών τάσεων κατά την αστοχία και να ορισθούν οι αντίστοιχες περιβάλλουσες αστοχίας. Τι παρατηρείτε;; οκιμή Α ( σ C =0 kpa) A α =1.0 σ α =100 kpa σ 3 =50 kpa σ 1 = 150 kpa u=100 kpa σ 3 =150 kpa σ 1 =250 kpa οκιμή Β ( σ C =50 kpa) A α =1.0 σ α =100 kpa σ 3 =50 kpa σ 1 = 150 kpa u=150 kpa σ 3 =200 kpa σ 1 =300 kpa (γιατί ; ελέγξτε τις πράξεις..) τ (kp Pa) 100 περιβάλλουσα 50 ολικών τάσεων (c= σ α /2, φ=0) A & B A B 0 0 100 200 300 σ, σ' (kpa) περιβάλλουσα ενεργών τάσεων (c', φ') Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 19

Τι παρατηρείτε; τ (kpa) 100 50 0 περιβάλλουσα ενεργών τάσεων (c', φ') A & B A B περιβάλλουσα ολικών τάσεων (c= σ α /2, φ=0) 0 100 200 300 σ, σ' (kpa) Οι κύκλοι Mohr των ολικών τάσεων διαφέρουν αλλά οι αντίστοιχοι κύκλοι των ενεργών τάσεων ταυτίζονται. H περιβάλλουσα αστοχίας των ενεργών τάσεων είναι η γνωστή μας (Mohr Coulomb) Η περιβάλλουσα αστοχίας των ολικών τάσεων είναι οριζόντια, σαν να είχαμε δηλαδή c= σ α /2 και φ=0! Εάν γνωρίζουμε την «αστράγγιστη διατμητκή αντοχή» C=C U = σ α /2 (π.χ. από την δοκιμή Α) μπορούμε να ορίσουμε τις συνθήκες με βάση τις ολικές τάσεις, χωρίς να έχουμε υπολογίσει πρώτα τις υπερ-πιέσεις πιέσεις πόρων (πράγμα καθόλου εύκολο στην πράξη). Η ευκολία αυτή έκανε την έννοια της αστράγγιστης διατμητικής αντοχής ιδιαίτερα δημοφιλή στην πράξη. τ (kpa) 100 50 0 περιβάλλουσα ενεργών τάσεων (c', φ') A & B A B περιβάλλουσα ολικών τάσεων (c= σ α /2, φ=0) 0 100 200 300 σ, σ' (kpa) Προσοχή Προσοχή όμως όμως!!!!!!!! Η Η περιβάλλουσα περιβάλλουσα αστοχίας αστοχίας των των ολικών ολικών τάσεων, τάσεων, και η και η «αστράγγιστη διατμητική αντοχή» C=C «αστράγγιστη διατμητική αντοχή» C=C U = σ = σ α /2, α /2, Εξαρτώνται από την ενεργό τάση στερεοποίησης σ Εξαρτώνται από την ενεργό τάση στερεοποίησης C και τον λόγο προφόρτισης OCR, σ και τον λόγο προφόρτισης ΕΝ ΑΠΟΤΕΛΟΥΝ ΗΛΑ Η ΜΗΧΑΝΙΚΕΣ Ι ΙΟΤΗΤΕΣ ης ΤΟΥ C Ε ΑΦΟΥΣ (όπως ρ τα c και OCR, φ ). ΕΝ ΑΠΟΤΕΛΟΥΝ ΗΛΑ Η ΜΗΧΑΝΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ Ε ΑΦΟΥΣ (όπως τα c και φ ). Θα πρέπει να χρησιμοποιούνται αποκλειστικά και μόνον με ΟΛΙΚΕΣ ΤΑΣΕΙΣ, όχι με ενεργές. Θα πρέπει να χρησιμοποιούνται αποκλειστικά και μόνον με ΟΛΙΚΕΣ ΤΑΣΕΙΣ, όχι με ενεργές. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 20

Β. Ωθήσεις γαιών υπό αστράγγιστες συνθήκες φόρτισης Κορεσμένη Άργιλος, Μακροπρόθεσμα (μετά από πολλά χρόνια όταν οι υπερπιέσεις του ύδατος των πόρων έχουν μηδενιστεί) ) σ ha = a σ νο -2c a u=υδροστατική σ ha = σ ha + υδροστατική πίεση Προσοχή! Επιφανειακά, όταν a σ νο <2c a ήσ νο <2c/ a,έχουμε ρηγμάτωση του εδάφους λόγω αδυναμίας ανάληψης εφελκυστικών τάσεων. Οι ωθήσεις στο ρηγματωμένο τμήμα (αρνητικές) αγνοούνται. Κορεσμένη Άργιλος, Βραχυπρόθεσμα ( αμέσως μετά την κατασκευή της εκσκαφής και της αντιστήριξης ) Οι συνθήκες της φόρτισης είναι αστράγγιστες. Στην περίπτωση αυτή, οι ολικές ενεργητικές ωθήσεις μπορούν να υπολογισθούν με την παραδοχή c=s u, φ=0. Τότε a = tan 2 (45-φ/2) = 1.00 και σ ha =? u=? πάλι αναπτύσσεται ρωγμή λόγω σ ha = σ νο -2S u εφελκυστικών τάσεων Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 21

Αναγκαίες μετατοπίσεις για Ενεργητική Παθητική Ώθηση για άμμους 8,0 4,0 3,0 1,9 8/4=2,0 3,0/1,9 1,6 για αργίλους Υ/Η Τύπος εδάφους Ενεργός ώθηση Παθητική ώθηση Στιφρό συνεκτικό 0,010 0,02 Μαλακό συνεκτικό 0,020020 004 0,04 Αναγκαίες μετατοπίσεις για Ενεργητική Παθητική Ώθηση Κατά τον υπολογισμό των παθητικών ωθήσεων ω λαμβάνεται συντελεστή ασφαλείας ίσος με 1.00, δηλ. P p οριακή P 1.00 p γιατί αυτή η διαφορά ;; για αργίλους Τύπος εδάφους Υ/Η Ενεργός ώθηση Παθητική ώθηση Στιφρό συνεκτικό 0,010 0,02 Μαλακό συνεκτικό 0,020 0,04 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 22

δ σ ο σ ο Π σ ο Δσ Δσ σ ο Ε Εδαφικό Στοιχείο Π Εδαφικό Στοιχείο Ε α. αρχικές τάσεις α. αρχικές τάσεις σ 1ο = σ 3ο = σ ο σ 1ο = σ 3ο = σ ο u=u o σ 1ο = σ 3ο = σ ο - u o β. τελικές τάσεις (μετά την μετακίνηση του πετάσματος) σ 1τ = σ ο + Δσ σ 3τ = σ ο u=u o + [Δσ 3 +Α (Δσ 1 -Δσ 3 )] = u o + Α Δσ σ 1τ = σ 1τ u = σ ο + (1-Α) Δσ σ 3τ = σ 3τ u = σ ο -Α Δσ u=u o σ 1ο = σ 3ο = σ ο - u o β. τελικές τάσεις (μετά την μετακίνηση του πετάσματος) σ 1τ = σ ο σ 3τ = σ ο - Δσ u=u o + [Δσ 3 +Α (Δσ 1 -Δσ 3 )] = u o -(1-Α) Δσ σ 1τ = σ 1τ u = σ ο + (1-Α) Δσ σ 3τ = σ 3τ u = σ ο -Α Δσ Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 23

2.3 Κορεσμένο έδαφος υπό συνθήκες σταθερής ροής Πως υπολογίζονται οι ενεργητικές και οι παθητικές ωθήσεις γαιών, πίσω και μπροστά από το πέτασμα αντίστοιχα, σε αυτή την περίπτωση; χώρος για προσωπικές σημειώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 24

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 25

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 26