Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Σχετικά έγγραφα
Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Δυναμική Διατήρηση Γραμμικής Διάταξης

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

max & min Μεθοδολογία - 1 Τα βήματα που συνήθως ακολουθούμε στις τεχνικές εύρεσης max & min είναι τα εξής:

Διαχρονικές δομές δεδομένων

Ουρά Προτεραιότητας (priority queue)

Αντισταθμιστική ανάλυση

Μη γράφετε στο πίσω μέρος της σελίδας

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

Αλγόριθμοι Ταξινόμησης Μέρος 4

Κεφάλαιο 13 Αντισταθμιστική Ανάλυση

ΑΥΤΟΡΓΑΝΟΥΜΕΝΕΣ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Αλγόριθμοι Ταξινόμησης Μέρος 1

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Συστήματα Αρχείων. Διδάσκoντες: Καθ. Κ. Λαμπρινουδάκης Δρ. Α. Γαλάνη

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ

Φυσική για Μηχανικούς

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

Δομές Δεδομένων. Τι είναι η δομή δεδομένων; Έστω η ακολουθία αριθμών: 8, 10,17,19,22,5,12 Λογικό Επίπεδο. Φυσικό Επίπεδο RAM. Ταξινομημένος.

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο)

Insert(K,I,S) Delete(K,S)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

max & min Μεθοδολογία Τα βήματα που ακολουθούμε σε όλες τις τεχνικές εύρεσης max & min είναι τα εξής 2:

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Ταξινόμηση. Ταξινόμηση ευθείας ανταλλαγής (Φυσαλίδα) 1) Να ταξινομηθεί ο πίνακας Α[Ν] σε αύξουσα σειρά με τη μέθοδο της φυσαλίδας.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

Bubble Hack Οπτικοποίηση του αλγορίθμου ταξινόμησης Bubble Sort στο Scratch

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τυχαιοκρατικοί Αλγόριθμοι

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

Ταξινόμηση. Ταξινόμηση ευθείας ανταλλαγής (Φυσαλίδα) 1) Να ταξινομηθεί ο πίνακας Α[Ν] σε αύξουσα σειρά με τη μέθοδο της φυσαλίδας.

ΕΡΓΟ: «Ανάπτυξη Εφαρμογής Μητρώου και Εκπαίδευση» ΠΑΡΑΔΟΤΕΟ Έλεγχος Συστήματος & Λογισμικού Μητρώου ΑμεΑ

Ουρά Προτεραιότητας (priority queue)

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δεύτερου φυλλαδίου ασκήσεων.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Λύσεις των θεμάτων των επαναληπτικών πανελλαδικών εξετάσεων στα Μαθηματικά και Στοιχεία Στατιστικής

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Δομές Δεδομένων και Αλγόριθμοι

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

Σειρά Προβλημάτων 4 Λύσεις

Πληροφορική 2. Αλγόριθμοι

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

Αιτιώδεις Σχέσεις και Χρονισµός. Παναγιώτα Φατούρου Αρχές Κατανεµηµένου Υπολογισµού

Διαδικασιακός Προγραμματισμός

Φυσική για Μηχανικούς

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

Κυψελλικό αυτόματο: (A, N, f ), όπου

ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Διαδικασίες και συναρτήσεις. 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1

Τεχνικές Επιμερισμένης Ανάλυσης

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

Δομές Δεδομένων & Αλγόριθμοι

Τεχνητή Νοημοσύνη. 2η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

Κεφάλαιο 28 Ολιγοπώλιο

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης

Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων

1 Η εναλλάσσουσα ομάδα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

Ασκήσεις μελέτης της 8 ης διάλεξης

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων. Γ Λυκείου Γενικής Παιδείας. Δευτέρα, 10 Ιουνίου 2013 ΕΣΠΕΡΙΝΑ

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

lim x)) = lim f( x) lim (f( x)) x)) x 2 y x 2 + y 2 = 0 r 3 cos 2 θsinθ r 2 (cos 2 θ + sin 2 θ) = lim

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Αλγόριθμοι Ταξινόμησης Μέρος 2

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Transcript:

Έχουμε αποθηκεύσει μια συλλογή αρχείων σε μια συνδεδεμένη λίστα, όπου κάθε αρχείο έχει μια ετικέτα ταυτοποίησης. Μια εφαρμογή παράγει μια ακολουθία από αιτήματα πρόσβασης στα αρχεία της λίστας. Για να προσπελάσουμε ένα αρχείο πρέπει να το αναζητήσουμε στη λίστα διατρέχοντας τη από την. Καθώς ικανοποιούμε τα αιτήματα μπορούμε να αναδιατάσσουμε τα στοιχεία της λίστας. a b c d e f g Άμεσος αλγόριθμος Εξυπηρετεί ένα αίτημα τη φορά χωρίς να γνωρίζει τα μελλοντικά αιτήματα

Κόστος προσπέλασης και αντιμετάθεσης Εάν το αρχείο που ψάχνουμε βρίσκεται στη θέση τότε το κόστος προσπέλασης του είναι. Στη συνέχεια μπορούμε να μεταφέρουμε το σε οποιαδήποτε θέση χωρίς επιπλέον κόστος. Π.χ. προσπέλαση e: Καθώς αναζητούμε το e από την της λίστας αποθηκεύουμε ένα δείκτη στη θέση που θέλουμε να το μεταφέρουμε a b c d e f g κόστος = 5 a b e c d f g

Κόστος προσπέλασης και αντιμετάθεσης Εάν το αρχείο που ψάχνουμε βρίσκεται στη θέση τότε το κόστος προσπέλασης του είναι. Στη συνέχεια μπορούμε να μεταφέρουμε το σε οποιαδήποτε θέση χωρίς επιπλέον κόστος. Σε οποιαδήποτε χρονική στιγμή μπορούμε να αλλάξουμε τη θέση δύο διαδοχικών αρχείων. Το κόστος μιας τέτοιας αντιμετάθεσης είναι 1. Π.χ. αντιμετάθεση c,d a b c d e f g κόστος = 1 a b d c e f g

Κόστος προσπέλασης και αντιμετάθεσης Εάν το αρχείο που ψάχνουμε βρίσκεται στη θέση τότε το κόστος προσπέλασης του είναι. Στη συνέχεια μπορούμε να μεταφέρουμε το σε οποιαδήποτε θέση χωρίς επιπλέον κόστος. Μπορούμε να θεωρήσουμε ότι η μετακίνηση του x γίνεται με δωρεάν αντιμεταθέσεις διαδοχικών αρχείων μέχρι να φτάσει το x στην τελική του θέση. x Σε οποιαδήποτε χρονική στιγμή μπορούμε να αλλάξουμε τη θέση δύο διαδοχικών αρχείων. Το κόστος μιας τέτοιας αντιμετάθεσης είναι 1. Ονομάζουμε μια τέτοια αντιμετάθεση πληρωμένη.

Κόστος προσπέλασης και αντιμετάθεσης Παράδειγμα a b c d e f g 1 2 4 5 6 Χωρίς να αλλάξουμε τη θέση κανενός αρχείου: κόστος = 1+5+2+4+5+6+5 = 28

Κόστος προσπέλασης και αντιμετάθεσης Παράδειγμα a b c d e f g 1 5 e a b c d f g Μετά την πρώτη προσπέλαση στο e το μεταφέρουμε στην πρώτη θέση : κόστος = 1+5+3+5+1+6+1 = 22 1 2 3 5 6

Μερικοί Γνωστοί Άμεσοι Αλγόριθμοι move-to-front: transpose: Μετά την πρόσβαση στο αρχείο x το τοποθετεί στην της λίστας Μετά την πρόσβαση στο αρχείο x το αντιμεταθέτει με το αρχείο που προηγείται του x στη λίστα frequency-count: Μετρά τον αριθμό προσβάσεων (συχνότητα πρόσβασης) κάθε αρχείου και διατάσσει τα αρχεία σε φθίνουσα σειρά ως προς τη συχνότητα πρόσβασης. Μετά την πρόσβαση στο αρχείο x ο μετρητής του x αυξάνει κατά ένα και το x μετακινείται στην κατάλληλη θέση

Αλγόριθμος move-to-front (MFT) a b c d e f g κόστος = 1

Αλγόριθμος move-to-front (MFT) a b c d e f g κόστος = 1+5

Αλγόριθμος move-to-front (MFT) e a b c d f g κόστος = 1+5

Αλγόριθμος move-to-front (MFT) e a b c d f g κόστος = 1+5+3

Αλγόριθμος move-to-front (MFT) b e a c d f g κόστος = 1+5+3

Αλγόριθμος move-to-front (MFT) b e a c d f g κόστος = 1+5+3+5

Αλγόριθμος move-to-front (MFT) d b e a c f g κόστος = 1+5+3+5

Αλγόριθμος move-to-front (MFT) d b e a c f g κόστος = 1+5+3+5+3

Αλγόριθμος move-to-front (MFT) e d b a c f g κόστος = 1+5+3+5+3

Αλγόριθμος move-to-front (MFT) e d b a c f g κόστος = 1+5+3+5+3+6

Αλγόριθμος move-to-front (MFT) f e d b a c g κόστος = 1+5+3+5+3+6

Αλγόριθμος move-to-front (MFT) f e d b a c g κόστος = 1+5+3+5+3+6+2

Αλγόριθμος move-to-front (MFT) e f d b a c g κόστος = 1+5+3+5+3+6+2 = 25

Λόγος ανταγωνιστικότητας κόστος του αλγορίθμου για την εξυπηρέτηση της ακολουθίας ελάχιστο κόστος εξυπηρέτηση της ακολουθίας αλγόριθμο (κόστος βέλτιστου αλγόριθμου) από οποιοδήποτε Ένας άμεσος αλγόριθμος είναι ανταγωνιστικός εάν υπάρχει σταθερά τέτοια ώστε για κάθε πεπερασμένη ακολουθία εισόδου ισχύει

Λόγος ανταγωνιστικότητας Θα δείξουμε ότι για λίστα με αρχεία και ακολουθία αιτημάτων Παρατηρήσεις : Ο βέλτιστος αλγόριθμος μπορεί να γνωρίζει εξς ολόκληρη την ακολουθία και να έχει προϋπολογίσει τις πράξεις που θα κάνει όταν θα εξυπηρετεί τα αιτήματα Είναι υπολογιστικά δύσκολο (NP-hard) πρόβλημα να βρεθεί η βέλτιστη σειρά πράξεων που πρέπει να κάνει ο.

Λόγος ανταγωνιστικότητας Πρώτα θα δείξουμε ότι για οποιαδήποτε ακολουθία με αιτήματα όπου κόστος του χωρίς τις πληρωμένες αντιμεταθέσεις αριθμός πληρωμένων αντιμεταθέσεων του αριθμός δωρεάν αντιμεταθέσεων του Θα χρησιμοποιήσουμε την ενεργειακή μέθοδο της αντισταθμιστικής ανάλυσης. Επειδή ο βέλτιστος αλγόριθμος μας είναι άγνωστος, χρησιμοποιούμε μια συνάρτηση δυναμικού που συσχετίζει τη λίστα του με τη λίστα του Αρχικά οι δύο λίστες έχουν την ίδια διάταξη αρχείων a b c d e f g a b c d e f g

Συνάρτηση δυναμικού Αντιστροφή : Το αρχείο εμφανίζεται μετά το στη λίστα αλλά το εμφανίζεται πριν το στη λίστα αριθμός αντιστροφών στη λίστα σε σχέση με τη λίστα a b e d c f g a b c d f e g 4 αντιστροφές : (e,c), (e,d), (d,c), (e,f)

Συνάρτηση δυναμικού Αντιστροφή : Το αρχείο εμφανίζεται μετά το στη λίστα αλλά το εμφανίζεται πριν το στη λίστα αριθμός αντιστροφών στη λίστα σε σχέση με τη λίστα δυναμικό μετά το i-οστό αίτημα. Αρχικά Εξετάζουμε το i-οστό αίτημα της ακολουθίας κόστος του για την εξυπηρέτηση του αιτήματος Ορίζουμε το αντισταθμιστικό κόστος Άρα

Εξετάζουμε το i-οστό αίτημα της ακολουθίας κόστος του για την εξυπηρέτηση του αιτήματος Ορίζουμε το αντισταθμιστικό κόστος Έστω x το αρχείο που ζητείται. Έστω ότι βρίσκεται στη θέση k στη λίστα και στη θέση j στη λίστα. Αν το x εμφανίζεται σε p αντιστροφές πριν την μετακίνηση του τότε υπάρχουν k-p-1 αρχεία που προηγούνται του x και στις δύο λίστες x x

Εξετάζουμε το i-οστό αίτημα της ακολουθίας κόστος του για την εξυπηρέτηση του αιτήματος Ορίζουμε το αντισταθμιστικό κόστος Έστω x το αρχείο που ζητείται. Έστω ότι βρίσκεται στη θέση k στη λίστα και στη θέση j στη λίστα. Αν το x εμφανίζεται σε p αντιστροφές πριν την μετακίνηση του τότε υπάρχουν k-p-1 αρχεία που προηγούνται του x και στις δύο λίστες Η μετακίνηση του x δημιουργεί k-p-1 αντιστροφές και καταργεί p. x x

Εξετάζουμε το i-οστό αίτημα της ακολουθίας κόστος του για την εξυπηρέτηση του αιτήματος Ορίζουμε το αντισταθμιστικό κόστος Έστω x το αρχείο που ζητείται. Έστω ότι βρίσκεται στη θέση k στη λίστα και στη θέση j στη λίστα. Αν το x εμφανίζεται σε p αντιστροφές πριν την μετακίνηση του τότε υπάρχουν k-p-1 αρχεία που προηγούνται του x και στις δύο λίστες Η μετακίνηση του x δημιουργεί k-p-1 αντιστροφές και καταργεί p. Άρα το αντισταθμιστικό κόστος είναι

Εξετάζουμε το i-οστό αίτημα της ακολουθίας κόστος του για την εξυπηρέτηση του αιτήματος Ορίζουμε το αντισταθμιστικό κόστος Έστω x το αρχείο που ζητείται. Έστω ότι βρίσκεται στη θέση k στη λίστα και στη θέση j στη λίστα. Άρα το αντισταθμιστικό κόστος είναι To κόστος του για την πρόσβαση στο x είναι ίσο με j. Επιπλέον για τον έχουμε ότι : Κάθε δωρεάν αντιμετάθεση μειώνει το δυναμικό κατά 1. Κάθε πληρωμένη αντιμετάθεση αυξάνει το δυναμικό το πολύ κατά 1.

Εξετάζουμε το i-οστό αίτημα της ακολουθίας κόστος του για την εξυπηρέτηση του αιτήματος Ορίζουμε το αντισταθμιστικό κόστος Έστω x το αρχείο που ζητείται. Έστω ότι βρίσκεται στη θέση k στη λίστα και στη θέση j στη λίστα. Άρα το αντισταθμιστικό κόστος είναι To κόστος του για την πρόσβαση στο x είναι ίσο με j. Επιπλέον για τον έχουμε ότι : Κάθε δωρεάν αντιμετάθεση μειώνει το δυναμικό κατά 1. Κάθε πληρωμένη αντιμετάθεση αυξάνει το δυναμικό το πολύ κατά 1. Επομένως

Λόγος ανταγωνιστικότητας Για οποιαδήποτε ακολουθία με αιτήματα όπου κόστος του χωρίς τις πληρωμένες αντιμεταθέσεις αριθμός πληρωμένων αντιμεταθέσεων του αριθμός δωρεάν αντιμεταθέσεων του Έχουμε άρα Αν η λίστα έχει αρχεία τότε οπότε λαμβάνουμε το παρακάτω Για λίστα με αρχεία και οποιαδήποτε ακολουθία αιτημάτων