Σειρά Προβλημάτων 4 Λύσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σειρά Προβλημάτων 4 Λύσεις"

Transcript

1 Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Θεωρήστε την ακόλουθη δομή Kripke. {entry} 0 1 {active} 2 {active, request} 3 {active, response} Να διατυπώσετε τις πιο κάτω προτάσεις στην LTL (αν αυτό είναι εφικτό) και να αποφασίσετε κατά πόσο ικανοποιούνται από τη δομή. (α) Η ατομική πρόταση active ικανοποιείται απείρως συχνά. (β) Η ατομική πρόταση entry ικανοποιείται απείρως συχνά. (γ) Είναι πάντα δυνατή η ικανοποίηση της ατομικής πρότασης entry. (δ) Κάθε αίτημα (request) ακολουθείται από μια ανταπόκριση (response). (ε) Αν από κάποια στιγμή και μετά δεν υπάρξει καινούριο request, τότε θα ικανοποιηθεί απείρως συχνά η ατομική πρόταση entry. (ζ) Η ατομική πρόταση response ικανοποιείται μόνο εφόσον έχει προηγηθεί ικανοποίηση της ατομικής πρότασης request. Λύση: (α) H ατομική πρόταση active ικανοποιείται απείρως συχνά. G F active Η πρόταση ικανοποιείται από την αρχική κατάσταση της δομής αφού κάθε μονοπάτι θα πρέπει να περάσει απείρως συχνά από τουλάχιστον την κατάσταση 1. (β) (γ) (δ) (ε) H ατομική πρόταση entry ικανοποιείται απείρως συχνά. G F entry Η πρόταση δεν ικανοποιείται από την αρχική κατάσταση της δομής. Για παράδειγμα, το μονοπάτι είναι τέτοιο ώστε η πρόταση entry να ικανοποιείται μόνο από την αρχική κατάσταση. Είναι πάντα δυνατή η ικανοποίηση της ατομικής πρότασης entry. Η πρόταση δεν μπορεί να διατυπωθεί στην LTL Κάθε αίτημα ακολουθείται από μια ανταπόκριση. G (request F response) Η πρόταση ικανοποιείται από την αρχική κατάσταση της δομής αφού σε κάθε μονοπάτι η κατάσταση 2 (ύπαρξη αιτήματος) ακολουθείται από την κατάσταση 3 (ύπαρξη ανταπόκρισης). Αν από κάποια στιγμή και μετά δεν υπάρξει καινούργιο request, τότε θα ικανοποιηθεί απείρως συχνά η ατομική πρόταση entry. FG request GF entry Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 1 από 7

2 Η πρόταση ικανοποιείται από την αρχική κατάσταση της δομής αφού στα μονοπάτια στα οποία ικανοποιείται η πρόταση FG request (δηλαδή τα μονοπάτια που οδηγούνται στον κύκλο ) ικανοποιείται απείρως συχνά η ατομική πρόταση entry. (ζ) Η ατομική πρόταση response ικανοποιείται μόνο εφόσον έχει προηγηθεί ικανοποίηση της ατομικής πρότασης request. G response G( response U request) Η πρόταση ικανοποιείται από την αρχική κατάσταση της δομής αφού σε κάθε μονοπάτι η κατάσταση 3 (ύπαρξη ανταπόκρισης) ακολουθεί την κατάσταση 2 (ύπαρξη αιτήματος). Άσκηση 2 Να ελέγξετε ποιες από τις πιο κάτω ιδιότητες αποτελούν ταυτολογίες χρησιμοποιώντας τη σημασιολογία της LTL δίνοντας είτε απόδειξη της συνεπαγωγής είτε κάποιο αντιπαράδειγμα δομής Kripke στην οποία να ικανοποιείται η μία ιδιότητα αλλά όχι η άλλη. i. X (a F a) F a ii. F a X (a F a) iii. GF p FG q FG (F p q) iv. (GF p FG q) FG (F p q) Λύση: i. Χ (a F a) F a Έστω δομή Μ με αρχική κατάσταση s και μονοπάτι w που ξεκινά από την s. Έχουμε ότι: ω Χ (a F a) ω 1 a F a ω 1 a ή ω 1 F a ω 1 a ή j 0, τ.ω. (ω 1 ) j a ω 1 a ή j 1, τ.ω. ω j a j 1, τ.ω. ω j a τότε Μ, s F a ii. Από την πιο πάνω απόδειξη παρατηρούμε ότι το αντίστροφο δεν θα ισχύει εάν το a αληθεύει στην αρχική κατάσταση και δεν το βρίσκουμε στη συνέχεια. Αντιπαράδειγμα: a b iii. GF p FG q FG (F p q) Έστω δομή Μ με αρχική κατάσταση s και μονοπάτι w που ξεκινά από την s. Έχουμε ότι: Αν w GF p FG q ω GF p και ω FG q (1) i 0, j 0, τέτοιο ώστε (ω i ) j p και (2) k 0, τέτοιο ώστε, m 0 (ω k ) m q Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 2 από 7

3 (1) i 0, j i, τέτοιο ώστε ω j p και (2) k 0, τέτοιο ώστε, m k ω m q τότε k 0, τέτοιο ώστε, m k, ω m q τότε k 0, τ.ω. m k, ω m F p q k 0, τ.ω. m 0, (ω k ) m F p q w FG (F p q) iv. GF p FG q FG (F p q) Αντιπαράδειγμα όπου ισχύει το αριστερό μέλος (GF p FG q ) αλλά όχι το δεξί FG (F p q). { } q Άσκηση 3 Θεωρήστε την ακόλουθη δομή Kripke. {a} s1 {b} s2 {c} s4 s3 s5 {b, c} {a, b, c} Να αποφασίσετε κατά πόσο οι πιο κάτω CTL ιδιότητες ικανοποιούνται από τη δομή. Να εξηγήσετε τις απαντήσεις σας χρησιμοποιώντας τον αλγόριθμο μοντελοελέγχου της CTL. i. Ε G [(b c) EF AG b] ii. [a EG EX A (b U c)] [a A X A(a U b)] Λύση: Αρχικά μετασχηματίζουμε την ιδιότητα σε μια ισοδύναμη όπου εμφανίζονται μόνο οι τελεστές του αλγόριθμου μοντελοελέγχου και στη συνέχεια δημιουργούμε το δέντρο που αντιστοιχεί στην ιδιότητα. Τέλος, χρησιμοποιώντας τον αλγόριθμο μοντελοελέγχου της CTL υπολογίζουμε τις καταστάσεις στις οποίες ικανοποιείται η ιδιότητα ξεκινώντας από τα φύλλα του δέντρου και προχωρώντας προς τα πάνω. i. EG [(b c) EF AG b] EG [(b c) EF ( EF b)] EG [(b c) E (true U ( E (true U b))] AF [(b c) E (true U ( E (true U b))] Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 3 από 7

4 {} AF { s1,s2, s3, s4, s5} { s1, s2, s3, s4, s5} {} {s2, s3, s4, s5} EU {} {s3, s4, s5} b c {s2, s3, s5} true {} {s1, s2, s3, s4, s5} {s1, s2, s3, s4, s5} EU true {s1, s2} {s1, s2, s3, s4, s5} {s3,s4, s5} b Η δομή δεν ικανοποιεί την ιδιότητα αφού οι αρχικές της καταστάσεις δεν την ικανοποιούν. ii. [a EG EX A (b U c)] [α ΑΧ Α(aUb)] [ a EG EX A (b U c)] [a EΧ Α (aub)] [ a EG EX ( E[ c U ( b c)] EG c)] [a EΧ (E[ b U ( a b)] EG b)] [ a EG EX ( E[ c U ( b c)] AF c)] [a EΧ (E[ b U( a b)] EG b)] [ a AF (EX (E[ c U ( b c)] AF c))] [a EΧ (E[ b U ( a b)] AF b)] Στο δέντρο που ακολουθεί παρουσιάζονται τα αποτελέσματα του αλγορίθμου για το πρώτο κομμάτι της ιδιότητας ([a EG EX A (b U c)]). Δεδομένου ότι αυτό ικανοποιείται σε όλες τις καταστάσεις και ακολουθεί το λογικό, ο αλγόριθμος θα επιστρέψει όλες τις καταστάσεις Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 4 από 7

5 {s1, s2, s3, s4, s5} {s1, s2, s3, s4, s5} {s2, s3, s4} {s1, s2, s3, s4, s5} a {s1, s5} AF {} {} EX {s1, s2, s3, s4, s5} {s2, s3, s4, s5} {s1} EU {s1} {} {s1, s4} {s1} {s1, s2, s3, s4, s5} AF {s2, s3, s5} c {s1, s2} {s1, s4} {s2, s3, s5} c {s3, s4, s5} b c {s2, s3, s5} Όλες οι καταστάσεις της δομής ικανοποιούν την ιδιότητα άρα και η δομή ικανοποιεί την ιδιότητα. Άσκηση 4 Δύο ιδιότητες φ και ψ είναι ισοδύναμες μεταξύ τους, φ ψ, αν, για κάθε δομή Kripke M, M φ M ψ. Να αποφασίσετε ποια από τα πιο κάτω ζεύγη προτάσεων περιέχουν ισοδύναμες προτάσεις. Αν δύο προτάσεις είναι ισοδύναμες να δώσετε απόδειξη χρησιμοποιώντας τη σημασιολογία, διαφορετικά, να παρουσιάσετε δομή Kripke στην οποία να ικανοποιείται η μία ιδιότητα αλλά όχι η άλλη. i. EG p EF q (EG p) E(p U q) Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 5 από 7

6 Λύση ii. AG p AF q (AG p) A(p U q) iii. A (p U q) q [p A X A(p U q)] i. Οι ιδιότητες δεν είναι ισοδύναμες και αυτό φαίνεται από το πιο κάτω αντιπαράδειγμα. Σε αυτό ικανοποιείται το αριστερό μέλος αλλά όχι και το δεξί. {p} {p} {p} {} {q} ii. iii. H ισοδυναμία ισχύει. Ακολουθεί η απόδειξη. Έστω δομή Μ με αρχική κατάσταση s, τότε Μ, s AG p AF q Μ, s AG p και Μ, s AF q σε κάθε μονοπάτι w που ξεκινά από την s ισχύει ότι Μ, w G p και Μ, w F q σε κάθε μονοπάτι w που ξεκινά από την s, για κάθε i 0, Μ,w[i] p και υπάρχει j 0 τ.ω. Μ, w[j] q σε κάθε μονοπάτι w που ξεκινά από την s, για κάθε i 0, Μ,w[i] p και για κάθε i 0 Μ, w[i] p και υπάρχει j 0 τ.ω. Μ, w[j] q σε κάθε μονοπάτι w που ξεκινά από την s, για κάθε i 0, Μ,w[i] p και υπάρχει j 0 Μ, w[j] q και για κάθε 0 < i j Μ, w[i] p σε κάθε μονοπάτι w που ξεκινά από την s, Μ, w G p και Μ, w p U q Μ, s AG p και Μ, s A (p U q) Μ, s AG p A (p U q) H ισοδυναμία ισχύει. Ακολουθεί η απόδειξη. Έστω δομή Μ με αρχική κατάσταση s, τότε Αν Μ, s A (p U q) για κάθε μονοπάτι w, M,w p U q για κάθε μονοπάτι w, j 0 τέτοιο ώστε M,w[i] q και i, 0 i < j, M,w[i] p για κάθε μονοπάτι w, είτε M,w[0] q, είτε M,w[0] p και j 1 τέτοιο ώστε M,w[i] q και i, 1 i < j, M,w[i] p είτε M,s q, είτε Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 6 από 7

7 s p και για κάθε μονοπάτι w, j 1 τέτοιο ώστε M,w[i] q και i, 1 i < j, M,w[i] p είτε M,s q, είτε M,s p και για κάθε μονοπάτι w, M,w 1 p U q είτε M,s q, είτε M,s p και για κάθε μονοπάτι w, M,w[1] A(p U q) είτε s q, είτε M,s p και για κάθε μονοπάτι w, M,w AX A(p U q) M,s q [p AXA(p U q)] Σειρά Προβλημάτων 4 Χειμερινό Εξάμηνο 2017 Σελίδα 7 από 7

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Έστω το σύνολο ατομικών προτάσεων ΑΡ = {red, yellow, green}. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν την κατάσταση των φώτων της

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Θεωρήστε το σύνολο των ατομικών προτάσεων ΑΡ = {α, π, ε} που αντιστοιχούν στις ενέργειες αποστολής μηνύματος, παραλαβής μηνύματος και επιστροφής αποτελέσματος που εκτελούνται

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Άσκηση 1 (20 μονάδες) Οι ιδιότητες διατυπώνοντας στην PLTL ως εξής: (α) Αν ο καταχωρητής Κ 1 κάποια στιγμή πάρει την τιμή 1 θα διατηρήσει την τιμή αυτή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 0, PC 1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. P[0] P[1]

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 i. FG φ GF ψ G (φ U (ψ φ)) Έστω δομή Μ και w κάποιο μονοπάτι της δομής. Θα δείξουμε ότι w FG φ GF ψ αν και μόνο αν w G (φ U (ψ φ)) Ξεκινώντας με το αριστερό σκέλος έχουμε:

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 0 (25 μονάδες) Λύσεις Σειράς Ασκήσεων 4 (α) Θεωρήστε το πιο κάτω πρόγραμμα λογικού προγραμματισμού και χρησιμοποιήστε τη μέθοδο της SLD επίλυσης για να φθάσετε σε διάψευση του στόχου. concat([],

Διαβάστε περισσότερα

CTL - Λογική Δένδρου Υπολογισμού

CTL - Λογική Δένδρου Υπολογισμού CTL - Λογική Δένδρου Υπολογισμού Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL και CTL Δικαιοσύνη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL ΑΣΚΗΣΗ 1 Θεωρήστε το μοντέλο Μ ενός συστήματος που δίνεται από το αυτόματο του σχήματος p, q s 0 s 1 s 2 q, και το (άπειρο) δέντρο του σχήματος s0 p, q s1 q, s0 p, q

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16

Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16 ΜΕΡΟΣ Α Άσκηση 1 Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16 Δύο ιδιότητες φ και ψ είναι ισοδύναμες μεταξύ τους, φ ψ, αν, για κάθε δομή Kripke M, M φ αν και μόνο αν M ψ. Να αποφασίσετε ποια από

Διαβάστε περισσότερα

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4)

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL

Διαβάστε περισσότερα

Γραμμική και διακλαδωμένη χρονική λογική

Γραμμική και διακλαδωμένη χρονική λογική CTL - Λογική Δένδρου Υπολογισμού Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL και CTL Δικαιοσύνη

Διαβάστε περισσότερα

CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1)

CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1) CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος μοντέλου για τη CTL CTL* ΕΠΛ 412 Λογική στην Πληροφορική 8-1 Αλγόριθμος Μοντελο-ελέγχου Πως μπορούμε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ664: Ανάλυση και Επαλθευση Συστημάτων Τμμα Πληροφορικς Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC0, PC1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 664: Ανάλυση και Επαλήθευση Συστημάτων ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ ΗΜΕΡΟΜΗΝΙΑ : Πέμπτη, 21 Μαρτίου 2013 ΔΙΑΡΚΕΙΑ : 14:00 16:00 ΔΙΔΑΣΚΟΥΣΑ : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 1, PC 2, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. bool y 1

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC i, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. Process P i :

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Κανένα πιρούνι δεν χρησιμοποιείται ποτέ από περισσότερους από ένα φιλόσοφους. ΑG [ (l 0 r 2) (l 1 r 0) (l 2 r 1) (β) Ο φιλόσοφος i θα φάει τουλάχιστον μια φορά.

Διαβάστε περισσότερα

Άλγεβρες ιεργασιών και Τροπικές Λογικές

Άλγεβρες ιεργασιών και Τροπικές Λογικές Άλγεβρες ιεργασιών και Τροπικές Λογικές Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Οι λογικές HML και WHML Ο λογικός χαρακτηρισµός των ~ και Η λογική CTL- ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστηµάτων

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ. 29 Ιουνίου 2007 ΔΙΑΦΑΝΕΙΑ 1

ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ. 29 Ιουνίου 2007 ΔΙΑΦΑΝΕΙΑ 1 ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΗλογικήCTL* (Computation Tree Logic) χρησιμοποιείται από εργαλεία ελέγχου μοντέλων για την τυπική περιγραφή ιδιοτήτων καταστάσεων που αναφέρονται στις εκτελέσεις ενός συστήματος. Χρησιμοποιεί

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι

ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι Ιδιότητες προσεγγισιμότητας (reachability properties): αναφέρονται στο ενδεχόμενο προσέγγισης μιας συγκεκριμένης κατάστασης. Ιδιότητες ασφαλείας (safety properties):

Διαβάστε περισσότερα

Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα:

Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Χρονικά αυτόματα Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Συστήματα πραγματικού Χρόνου Διακριτός και συνεχής χρόνος Χρονικά αυτόματα Χρονική CTL ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 7-1 Συστήματα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις Να αποφασίσετε κατά πόσο οι πιο κάτω προδιαγραφές είναι ορθές σύμφωνα με την έννοια της μερικής ορθότητας και την έννοια της ολικής ορθότητας. Να αιτιολογήσετε σύντομα

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,

Διαβάστε περισσότερα

Στοιχεία προτασιακής λογικής

Στοιχεία προτασιακής λογικής Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο

Διαβάστε περισσότερα

Αυτοματοποιημένη Επαλήθευση

Αυτοματοποιημένη Επαλήθευση Αυτοματοποιημένη Επαλήθευση Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος Μοντέλου Αλγόριθμοι γράφων Αλγόριθμοι αυτομάτων Αυτόματα ως προδιαγραφές ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 4-1

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 (15 μονάδες) Σειρά Προβλημάτων 5 Λύσεις Να δώσετε προδιαγραφές (τριάδες Hoare) για τα πιο κάτω προγράμματα: (α) Ένα πρόγραμμα το οποίο παίρνει ως δεδομένο εισόδου δύο πίνακες Α και Β και ελέγχει

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 p q r p (q r) (p q) p q r ( r p q) T T T T F T T T T F F F F T T F T T T T T T F F T T T T F T T T F T T F T F T F T T F F T T F T F F F F T F T T Ο πιο πάνω πίνακας παρουσιάζει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Σειρά Προβλημάτων 4 Λύσεις Άσκηση Θεωρήστε τις πιο κάτω διεργασίες: A....A B....B.... P ( A B \{ P ( A A \{,,, },,, } (α Να κτίσετε τα συστήματα μεταβάσεων που αντιστοιχούν στις διεργασίες P, Ρ. Ακολουθούν

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 13 Ιανουαρίου 18 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Απόδειξη

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Λύσεις 1 ης Σειράς Ασκήσεων

Λύσεις 1 ης Σειράς Ασκήσεων Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 α) p q r (p s) ((s t) t) 1. p q r προϋπόθεση 2. p s προσωρινή υπόθεση 3. s t προσωρινή υπόθεση 4. p e 1 5. s ΜP 2,4 6. t ΜP 3,5 7. (s t) t i 3, 6 8. (p s) ((s t) t)

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 5 Να υπολογίσετε τις ασθενέστερες προσυνθήκες έτσι ώστε οι πιο κάτω προδιαγραφές να είναι ορθές σύμφωνα (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων

ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων k 2 n k n k n n k n k k S S k 2 n O(n) O(k n) O(kn) O( n) ) O(k n) O(n) O( n) O(n) O( k) O(n k) O( k) O( n n n k n k > 2 Ω( n + k) k n n k k n n n/2 S = d 1,..., d k m > 1 j 1 m, j k k S S O(k n) k n k

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3Β

Λύσεις Σειράς Ασκήσεων 3Β ΕΠΛ 412 Λογική στην Πληροφορική Χειμερινό Εξάμηνο 2012 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3Β i. Ανά πάσα στιγμή ο εκτυπωτής χρησιμοποιείται από το πολύ ένα χρήστη. G ( Αλίκη.χρήση Βαγγέλης.χρήση) ii. iii.

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Αντώνιος Δ. Γουγλίδης

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Αντώνιος Δ. Γουγλίδης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΕΛΕΓΧΟΥ Γραμμική και μη-γραμμική λογική: Σύγκριση και πρακτικές εφαρμογές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Χρονικά αυτόµατα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Συστήµατα πραγµατικού Χρόνου ιακριτός και συνεχής χρόνος Χρονικά αυτόµατα Χρονική CTL ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστηµάτων 12-1 Συστήµατα

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 (α) {x = 12 y = 7} skip {y = 7} Λύσεις Σειράς Ασκήσεων 5 Η προδιαγραφή αυτή είναι ορθή τόσο με την έννοια της μερικής ορθότητας όσο και με την έννοια της ολικής ορθότητας. Αυτό οφείλεται στο γεγονός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL 8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να το αποδείξετε,

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση Λύσεις Σειράς Ασκήσεων 5 Έστω P και Q συνθήκες και S ένα πρόγραμμα. Να εξηγήσετε με λόγια τις πιο κάτω προδιαγραφές (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της ολικής ορθότητας.

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 N φιλόσοφοι κάθονται γύρω από ένα τραπέζι με N καρέκλες, N πιάτα και N πιρούνια. Όταν κάποιος φιλόσοφος πεινάσει παίρνει τα δύο πιρούνια που βρίσκονται δίπλα από το πιάτο

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 5 3 α) f 3 1 1 γ) f 9 β) f 3 δ) f log 1 4 α) Για να ορίζεται η f() πρέπει και αρκεί 3 3 + (1) Έχουμε: (1) ( 3+), και 1,

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access) Έχουμε αποθηκεύσει μια συλλογή αρχείων σε μια συνδεδεμένη λίστα, όπου κάθε αρχείο έχει μια ετικέτα ταυτοποίησης. Μια εφαρμογή παράγει μια ακολουθία από αιτήματα πρόσβασης στα αρχεία της λίστας. Για να

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας

Διαβάστε περισσότερα

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων. Εισαγωγή στη Λογική Α Τάξης Σ. Κοσμαδάκης Συντακτικό τύπων Α τάξης Α Θεωρούμε δεδομένο ένα λεξιλόγιο Λ, αποτελούμενο από (1) ένα σύνολο συμβόλων για σχέσεις, { R, S,... } (2) ένα σύνολο συμβόλων για συναρτήσεις,

Διαβάστε περισσότερα

9. Κόκκινα-Μαύρα Δέντρα

9. Κόκκινα-Μαύρα Δέντρα Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

x < A y f(x) < B f(y).

x < A y f(x) < B f(y). Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη 24 Οκτωβρίου, 2018 Διάρκεια : 12:00 13:30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: ΠΡΟΧΕΙΡΕΣ

Διαβάστε περισσότερα

108/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματ

108/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματ 8/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματισμού κάτω από μετασχηματισμούς Lorentz ώστε να φτιάξουμε

Διαβάστε περισσότερα

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των,

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των, Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Θεωρία συνόλων Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ). Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

Λύσεις 2 ης Σειράς Ασκήσεων

Λύσεις 2 ης Σειράς Ασκήσεων Λύσεις 2 ης Σειράς Ασκήσεων Άσκηση 1 Στην άσκηση αυτή σας ζητείται να διατυπώσετε στον Κατηγορηματικό Λογισμό ένα σύνολο από απαιτήσεις/προτάσεις που σχετίζονται με ένα κοινωνικό δίκτυο χρησιμοποιώντας

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Φροντιστήριο 8 Λύσεις Θεωρήστε την πιο κάτω Μηχανή Turing όπου όλες οι μεταβάσεις που απουσιάζουν οδηγούν στην κατάσταση απόρριψης (q απόρριψης). Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

α Α και α Β, β Α και β Β, γ Α και γ Β, δ Α και δ Β, ε Α και ε Β, ζ Β και ζ Β, η Α και η Β, θ Α και θ Β.

α Α και α Β, β Α και β Β, γ Α και γ Β, δ Α και δ Β, ε Α και ε Β, ζ Β και ζ Β, η Α και η Β, θ Α και θ Β. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018 Χειμερινό Εξάμηνο Ρόδος, Νοέμβριος 2017 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθημα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα