i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

Σχετικά έγγραφα
i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις

Ενδεικτικές Λύσεις. Θέµα Α

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΚΕΜΒΡΙΟΣ 2018 ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΤΙΣ ΚΡΟΥΣΕΙΣ

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Β έκδοση Θέµα Α

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

i) Xρησιµοποιώντας το θεώρηµα µηχανικής ενέργειας-έργου να δείξε τε ότι η διαφορική εξίσωση της κίνησής του έχει την µορφή:

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.

1 η χρονική στιγμή της

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 2

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

(ΘΕΜΑ 17ο)

Ενδεικτικές Λύσεις. Θέµα Α

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β.

Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 8 Οκτώβρη 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

) ω ω. L λίγο πριν. . Nα βρεθούν:

Εκφώνηση 1. α). β). γ). Επιλέξτε τη σωστή πρόταση και αιτιολογείστε.

Σύνολο Σελίδων: Ενδεικτικές Λύσεις Κυριακή 30 Σεπτέµβρη Θέµα Α

ΘΕΜΑ Β Β1. Ένας ταλαντωτής εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται εκθετικά με το

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 02/10/2016 ΔΙΑΡΚΕΙΑ: 3 ΩΡΕΣ ΘΕΜΑ Α

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

υ r 1 F r 60 F r A 1

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ)

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Ταλαντώσεις. =+ και έχει θετική ταχύτητα. Να γραφεί η εξίσωση κίνησης του.

ΛΥΣΗ: i) Το σώµα αρχικά ισορροπεί επί του κεκλιµένου επιπέδου στην θέση Α (σχ. 1) υπό την επίδραση του βάρους του w!

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Θέμα Α(25 Μονάδες) Α1. (5 μονάδες) Α2. (5 μονάδες) Α3. (5 μονάδες) Α4. (5 μονάδες)

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ 5 ΚΑΙ 1 (ΚΡΟΥΣΕΙΣ - ΤΑΛΑΝΤΩΣΕΙΣ) ΚΥΡΙΑΚΗ 15 ΝΟΕΜΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 3

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

Πρόχειρες Λύσεις. Θέµα Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

α.- β. γ. δ. Μονάδες 5

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Transcript:

Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση ισορροπίας τους, ώστε τα νήµατα να σχηµατίζουν µε την κατακόρυφη διεύθυνση την ίδια γωνία φ και τα αφήνουµε ελεύθερα, οπότε τα σφαιρίδια συγκρούονται στην θέση ισορροπίας τους. Eάν η κρούση των δύο σφαιριδίων είναι ελαστική, να βρείτε: i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και ii) τον λόγο των µαζών των δύο σφαιριδίων, ώστε το σφαιρίδιο µάζας να ακινητοποιείται αµέσως µετά την κρούση. Ποια είναι στην περί πτωση αυτή η µέγιστη εκτροπή από την κατακόρυφη διεύθυνση του νήµατος που συγκρατεί το σφαιρίδιο µάζας 1, µετά την κρούση; ΛΥΣΗ: i) Κατά το πρόβληµα στις αρχικές θέσεις των σφαιριδίων τα νήµατα σχηµατίζουν την ίδια γωνία φ µε την κατακόρυφο διεύθυνση, οπότε οι ταχύτη τες µε τις οποίες φθάνουν ταυτόχρονα στο κατώτατο σηµείο Κ των τροχιών τους είναι αντίθετες, το δε κοινό τους µέτρο v θα βρεθεί εάν εφαρµόσουµε για το καθένα από αυτά το θεώρηµα διατήρησης της µηχανικής ενέργειας, Έτσι θα έχουµε την σχέση: Σχήµα 1 0 + 0 = v / - g(l - L"#) v = gl(1 - "#)

v = 4gLµ (" / ) v= glµ (" / ) (1) Επειδή µετά την κρούση τα σφαιρίδια φθάνουν στις αρχικές τους θέσεις, οι ταχύτητές τους αµέσως µετά την κρούση αντιστρέφονται (σχήµα 1) και συµφω να µε την αρχή διατήρησης της ορµής θα ισχύει η σχέση: 1 v - v = - 1 v+ v 1 v = v 1 / = ) ii) Aς δεχθουµε ότι οι µάζες 1, των δύο σφαιριδίων έχουν τιµές που εξασ φαλίζουν ότι το σφαιριδιο µάζας αµέσως µετά την κρούση ακινητοποιείται. Eάν v 1 είναι η ταχύτητα του σφαιριδίου µάζας 1 αµέσως µετά την κρούση (σχήµα ), τότε σύµφωνα µε την αρχή διατήρησης της ορµής για το σύστηµα των δύο σφαιριδίων θα έχουµε την σχέση: 1 v - v = 0-1 v 1 v 1 = ( - 1 )v / 1 Σχήµα Εξάλλου επειδή η κρούση των δύο σφαιριδίων είναι ελαστική, η συνολική κινητική τους ενεργειά δεν µεταβάλλεται και αυτό µας επιτρέπει να γράψουµε την σχέση: 1 v + v = v 1 1 + 0 1 v + v = 1 v 1 1 v + v = 1 ( - 1 ) v / 1 1 + = ( - 1 ) / 1 1 + 1 = 1-1 + 3 1 = / 1 = 3 (4) Eάν φ 1 είναι η µέγιστη εκτροπή του νήµατος που συγκρατεί το σφαιρίδιο µάζας 1 µετά την κρούση, τότε σύµφωνα µε το θεώρηµα διατήρησης της µηχανικής ενέργειας θα ισχύει η σχέση: 1 v 1-1 g(l - L"# 1 ) = 0 + 0 v 1 = gl(1 - "# 1 )

(1).(4) ( - 1 ) v / 1 = 4gLµ (" 1 / ) (3 1-1 ) 4gLµ (" / )/ 1 = 4gLµ (" 1 / ) µ (" 1 / ) = µ(" / ) P.M. fysios Δύο δίσκοι Δ 1 και Δ µε αντίστοιχες µάζες 1 και είναι στερεωµένοι στις άκρες ενός κατακόρυφου ιδανικού ελα τηρίου σταθεράς. Το σύστηµα ισορροπεί ώστε ο δίσκος Δ να εφά πτεται σε οριζόντιο έδαφος, όπως φαίνεται στο σχήµα. Εφαρµό ζουµε στο κέντρο του δίσκου Δ 1 κατακόρυφη δύναµη µε φορά προς τα κάτω, της οποίας το µέτρο έχει επιλεγεί, ώστε αν το σύστηµα αφε θεί ελεύθερο ο δίσκος Δ µόλις να χάνει την επαφή του µε το οριζόν τιο έδαφος. i) Nα βρείτε σε συνάρτηση µε τον χρόνο τον ρυθµό µεταβολής της ορ µής και της κινητικής ενέργειας του δίσκου Δ 1. ii) Nα βρείτε σε συνάρτηση µε τον χρόνο την δύναµη που δέχεται ο δίσκος Δ από το έδαφος. Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: i) i) Πριν την εφαρµογή της δύναµης F ο δίσκος Δ 1 ισορροπούσε στην θέση Ο (στάθµη ε 0 ) και το ελατήριο ήταν συµπιεσµένο κατά α από την φυσική του κατάσταση και ισχύει η σχέση: 1 g = α α = 1 g/ (1) Σχήµα 3 Σχήµα 4 Όταν επί του δίσκου Δ 1 εφαρµόζεται η δύναµη F αυτός ισορροπεί σε νέα θέση που βρίσκεται κάτω από την Ο (στάθµη ε 1 ) σε απόσταση x 0 από αυτήν (σχήµα 3)

και ισχύει η σχέση: F = x 0 x 0 = F/ () Aς δεχθούµε ότι το µέτρο της δύναµης F είναι τέτοιο, ώστε όταν αυτή αποσυρ θεί ο δίσκος Δ οριακά να χάνει την επαφή του µε το οριζόντιο έδαφος. Αυτό σηµαίνει ότι ο µεν δίσκος Δ 1 εκτελεί κατακόρυφη απλή αρµονική ταλάντωση µε κέντρο ταλάντωσης το Ο και σταθερά ταλάντωσης, ο δε δίσκος Δ ισορροπεί επί του εδάφους και την στιγµή που ο Δ 1 βρίσκεται στην ανώτατη θέση του (στάθµη ε στο σχήµα 4) η δύναµη επαφής του δίσκου Δ µε το έδαφος µηδενίζε ται. Εποµένως την στιγµή αυτή ο δίσκος Δ ισορροπεί οριακά υπό την επίδραση του βάρους του g και της δύναµης F " από το ελατήριο, δηλαδή η F " την στιγµή αυτή είναι αντίθετη του βάρους g, δηλαδή έχει φορά προς τα πάνω, οπότε το ελατήριο είναι τεντωµένο κατά β από την φυσική του κατάσταση (σχήµα 4) και θα ισχύει η σχέση: g = β β = g/ Όµως από το σχήµα (4) προκύπτει ότι α+β= x 0, η οποία µε βάση τις σχέσεις (1), () και γράφεται: 1 g + 1 g = F F = ( 1 + )g (4) Aν λάβουµε ως αρχή µέτρησης του χρόνου την στιγµή που το σύστηµα αφήνε ται ελευθερο, δηλαδη την στιγµή που αποσύρεται η δύναµη F και ως θετική φόρα στην κατακόρυφη διεύθυνση την προς τα κάτω, τότε η εξίσωση κίνησης του δίσκου Δ 1 θα έχει την µορφή: () x = x 0 µ (" + #/) x = F "# & ' (4) ) x = ( 1 + )g "#& ' ) (5) Eξάλλου κάθε στιγµή ο ρυθµός µεταβολής της ορµής του δίσκου Δ 1 είναι ίσος µε την συνισταµένη δύναµη που δέχεται, δηλαδή µπορουµε για τις αλγεβρικές τιµές των δύο αυτών διανυσµάτων να γράψουµε την σχέση: dp d = F(x) = -x (5) dp d = -g( 1 + )"#& ' ) (6) Ας δεχθούµε ότι µεταξύ των χρονικών στιγµών και +d η κινητική ενέργεια του δίσκου Δ 1 µεταβάλλεται κατά dk. Εφαρµόζοντας κατά τον χρόνο d για τον δίσκο Δ 1 το θεώρηµα έργου-ενέργειας παίρνουµε την σχέση: dk = dw F(x) = F(x)dx dk = -xdx

dk d = -x dx d = -xv (7) όπου dx η µεταβολή του µεγέθους x κατά τον χρόνο d, v η αλγεβρική τιµή της ταχύτητας του δίσκου την στιγµή και dk/d o αντίστοιχος ρυθµός µεταβολής της κινητικής ενέργειας του δίσκου. Όµως για την αλγεβρική τιµή της ταχύτη τας του δίσκου Δ 1 ισχύει η σχέση: () v = x 0 "µ ( + #) = -x 0 "µ v = - F " µ (4) ' v = - g( 1 + ) " µ ' (8) H (7) µε βάση την (6) και (8) γράφεται: dk d = g ( 1 + ) " µ ' ()* " # ' (9) ii) Eπειδή στην διάρκεια της ταλάντωσης του δίσκου Δ 1 ο δίσκος Δ ισορροπεί, µπορουµε να γράψουµε για τον Δ την σχέση: F " - N + g = 0 N = F " + g (10) Σχήµα 5 όπου N η δύναµη επαφής του δίσκου Δ µε το έδαφος και F ελ η αλγεβρική τιµή της δύναµης F " που δέχεται ο δίσκος αυτός από το ελατήριο (η δύναµη F " αλ λάζει φορά στην διάρκεια που ο δίσκος Δ 1 ταλαντεύεται). Όµως ισχύει: (5) F " = 1 g + x & F " = 1 g + g( 1 + )#( ' ) + 1 *