Γεννήτριες Συναρτήσεις

Σχετικά έγγραφα
Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Συνδυαστική Απαρίθμηση

α n z n = 1 + 2z 2 + 5z 3 n=0

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Συνδυαστική Απαρίθμηση

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Τι είναι Γραμμική Άλγεβρα;

Συνδυαστική Απαρίθμηση

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

Συνδυαστική Απαρίθμηση

Ασυμπτωτικός Συμβολισμός

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Υπολογιστικά & Διακριτά Μαθηματικά

Αρχή Εγκλεισµού-Αποκλεισµού

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Ψηφιακή Επεξεργασία Σημάτων

Συνδυαστική Απαρίθμηση

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

E [X ν ] = E [X (X 1) (X ν + 1)]

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γεννήτριες Συναρτήσεις

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

Συνδυαστική Απαρίθμηση

Εισαγωγή στις Ελλειπτικές Καµπύλες

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Ψηφιακή Επεξεργασία Σημάτων

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

όπου Η μήτρα ή πίνακας του συστήματος

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

Γλώσσες Χωρίς Συμφραζόμενα

Ψηφιακή Επεξεργασία Σημάτων

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

Σχέσεις Μερικής ιάταξης

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

website:

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

x y z xy yz zx, να αποδείξετε ότι x=y=z.

Γλώσσες Χωρίς Συμφραζόμενα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

Συνδυαστική Απαρίθµηση

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

Στοιχεία Προτασιακής Λογικής

Transcript:

Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Αναπαράσταση Ακολουθιών Ακολουθία: αριθμητική συνάρτηση με πεδίο ορισμού το N. Με γενικό (ή «κλειστό») τύπο α n : n-οστός όρος συναρτήσει n. Κωδικοποίηση σε δυναμοσειρά μιας (πραγματικής) μεταβλητής x. Γεννήτρια Συνάρτηση (ΓΣ) Α(x) ακολουθίας α: Συντελεστής του x n αντιστοιχεί σε n-οστό όρο ακολουθίας α. Επιλέγουμε διάστημα τιμών x ώστε σειρά να συγκλίνει (πάντα!). Έτσι θεωρούμε ότι Α(x) άπειρα παραγωγίσιμη (αναλυτική). Παραγωγίζουμε/ολοκληρώνουμε την A(x) ως πεπερασμένο άθροισμα. Κάθε ακολουθία α αντιστοιχεί σε μοναδική ΓΣ Α(x). ΓΣ Α(x) αντιστοιχεί σε μοναδική ακολουθία: Μετασχηματισμός και «αλγεβρικός» χειρισμός ακολουθιών και επίλυση των προβλημάτων που κωδικοποιούν. ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 2

Παραδείγματα ΓΣ ακολουθίας 1, 1, 1, 1,... : ΓΣ ακολουθίας α n = b λ n : ΓΣ για πεπερασμένες ακολουθίες (υπόλοιποι όροι θεωρούνται 0). ΓΣ ακολουθίας 0, 0, 1, 2, 3, 4, 5: x 2 + 2x 3 + 3x 4 + 4x 5 + 5x 6 ΓΣ ακολουθίας α k = C(n, k): ΓΣ ακολουθίας α n = n+1 : ΓΣ ακολουθίας β n = n : Ακολουθία που αντιστοιχεί σε ΓΣ A(x) = 5/(1 4x): α n = 5 4 n ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 3

Παραδείγματα Ακολουθία αντιστοιχεί σε ΓΣ Α(x) = 1/(1+x); Γενικευμένο δυωνυμικό ανάπτυγμα (όταν n δεν είναι φυσικός): Ειδικότερα, αν n φυσικός: ηλαδή η 1/(1-x) n είναι η ΓΣ για συνδυασμούς k από n αντικείμενα με επανάληψη (ή διανομήk ίδιων αντικειμένων σε n διακ. υποδοχές). Με βάση γενικευμένο δυωνυμικό ανάπτυγμα, Άρα η ΓΣ A(x) = 1/(1+x) αντιστοιχεί στην ακολουθία α n = (-1) n ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 4

Πράξεις Ακολουθιών Πράξεις μεταξύ ακολουθιών: ιαβάθμιση με συντελεστή c: Γραμμικός συνδυασμός: εξιά ολίσθηση κατά k θέσεις: Αριστερή ολίσθηση κατά k θέσεις: Ακολουθία μερικών αθροισμάτων: Ακολουθία συμπληρωματικών μερικών αθροισμάτων: Ευθεία διαφορά: Ανάστροφη διαφορά (ολίσθ. ευθείας 1 θέση δεξιά): Συνέλιξη: ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 5

Βασικές Ιδιότητες Γραμμική ιδιότητα: Ηακολουθίαcα + dβ έχει ΓΣ την c A(x) + d B(x). H ΓΣ H ΓΣ Ιδιότητα ολίσθησης: ΗακολουθίαS k α έχει ΓΣ την x k A(x), αφού: Π.χ. 0, 0, 0, 0, 1, 1, 1, 1,... έχει ΓΣ την x 4 /(1-x) 0, 0, 1, 2, 4,, 2 n-2 έχει ΓΣ την x 2 /(1-2x) ΗακολουθίαS k α έχει ΓΣ την Π.χ. η ακολουθία α n = 2 n+3 έχει ΓΣ την ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 6

Βασικές Ιδιότητες Μερικών αθροισμάτων: Παρατηρούμε ότι α n = γ n γ n-1 Άρα Α(x) = Γ(x) xγ(x) Γ(x) = A(x) / (1-x). Π.χ. γ n = n+1 είναι ακολουθία μερικών αθροισμάτων της α n = 1. ΆραέχειΓΣτηνΓ(x) = 1/(1-x) 2 Ποια είναι η ΓΣ της β n = n(n+1)/2; Ηβ n αποτελεί δεξιά ολίσθηση κατά 1 θέση της ακολουθίας μερικών αθροισμάτων της γ n. ΆραέχειΓΣτηνB(x) = x/(1-x) 3 Συνέλιξη α *β έχει ΓΣ την A(x) B(x). Ο συντελεστής του x n στο A(x) B(x) είναι Ποια είναι η ΓΣ της ακολουθίας Από ιδιότητα συνέλιξης, Α(x) = 1/[(1-3x)(1-2x)] ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 7

Βασικές Ιδιότητες Ιδιότητα της Κλίμακας: Ηακολουθίαγ n = n α n έχει ΓΣ την Γ(x) = x A (x), αφού Ηακολουθίαδ n = α n /(n+1) έχει ΓΣ την ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 8

Παραδείγματα Ποια είναι η ΓΣ της ακολουθίας β = c α + d; Β(x) = c A(x) + d/(1-x) Ποια είναι η ΓΣ της ακολουθίας β n = c n α n ; B(x) = A(cx) Ποια είναι η ακολουθία με ΓΣ την Α(x) = 4x + 2/(1-3x) ; α 0 = 2, α 1 = 10, α n = 2 3 n, για n 2. Ποια είναι η ακολουθία με ΓΣ την Α(x) = 2/(1 4x 2 ) ; Ανάλυση σε κλάσματα: A(x) = 1/(1-2x) + 1/(1+2x) Ακολουθία α n = 2 n + ( 2) n Ποια είναι η ακολουθία με ΓΣ την Ανάλυση σε κλάσματα: Ακολουθία α n = ( 1) n + ( 3) n 2 n (n+1)2 n+1 ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 9

Εφαρμογές... των ΓΣ είναι πολλές και σημαντικές. Μεταξύ άλλων: Υπολογισμός αθροισμάτων. Επίλυση προβλημάτων συνδυαστικής. Επίλυση αναδρομικών εξισώσεων. Μεθοδολογία επίλυσης προβλημάτων: ιατύπωση με βάση μια ακολουθία (ή συνδυασμό ακολουθιών) ώστε ο «κλειστός» τύπος για τον n-οστό όρο να δίνει τη λύση. Υπολογισμός της ΓΣ της ακολουθίας (με βάση ιδιότητες ΓΣ). Ανάπτυγμα ΓΣ και υπολογισμός έκφρασης για n-οστό όρο. Υπολογισμός αθροίσματος ΓΣ αντίστοιχης ακολουθίας α είναι η Α(x) = 1/[(1-3x)(1-2x)] Ανάλυση σε κλάσματα: Α(x) = 3/(1-3x) 2/(1-2x) Άθροισμα = α n = 3 n+1 2 n+1 ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 10

Υπολογισμός Αθροισμάτων Υπολογισμός αθροίσματος Ακολουθία α n = n έχει ΓΣ την A(x) = x/(1-x) 2 Ιδιότητα κλίμακας: β n = n 2 έχει ΓΣ την B(x) = x(1+x)/(1-x) 3 Άθροισμα αντιστοιχεί στην ακολουθία μερικών αθροισμάτων της ακολουθίας β, η οποίαέχειγστηνγ(x) = x(1+x)/(1-x) 4 Χρησιμοποιούμε... και έχουμε: Άθροισμα = Ομοίως να υπολογισθεί το άθροισμα ιακριτά Μαθηματικά (Άνοιξη 2012) Γεννήτριες Συναρτήσεις 11