Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Σχετικά έγγραφα
Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο:

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

Τετραγωνική ρίζα πραγματικού αριθμού

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

1 ΘΕΩΡΙΑΣ...με απάντηση

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

B τάξη Γυμνασίου : : και 4 :

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηματικά προσανατολισμού Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

0 είναι η παράγωγος v ( t 0

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14

Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 93 96

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

: :

( ) ( ) ( ) ( ) ( ) Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2.

ραστηριότητες στο Επίπεδο 1.

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Μαθηματικά Γ Γυμνασίου

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

2 η δεκάδα θεµάτων επανάληψης

Transcript:

Εαρινό εξάμηνο 2012 14.03.12 Χ. Χαραλάμπους

Πριν: Σύμφωνα με την πυθαγόρεια αντιμετώπιση η διαγώνιος και η ακμή τετραγώνου δεν είναι συγκρίσιμα. Ορισμός Ευδόξου: δύο μεγέθη σχηματίζουν λόγο όταν (ακέραιο) πολλαπλάσιο του ενός ξεπερνά το άλλο. Παράδειγμα: 1. ευθύγραμμα τμήματα και εμβαδά δεν συγκρίνονται μεταξύ τους. 2. Η διαγώνιος και η ακμή του τετραγώνου σχηματίζουν λόγο.

Ορισμός (Εύδοξος): δύο μεγέθη σχηματίζουν λόγο όταν (ακέραιο) πολλαπλάσιο του ενός ξεπερνά το άλλο, («Στοιχεία» του Ευκλείδη, Βιβλίο 5, ορισμός 4). Θα συμβολίσουμε τον λόγο ανάμεσα στα a καιb με a:b. Πότε είναι δύο λόγοι ίσοι? Πότεείναιδύολόγοιάνισοι? (τι είδους ποσότητες είναι οι λόγοι?)

Για να είναι a:b = c:d θα πρέπει για κάθε m, n ακεραίους να ισχύει αν ma<nb τότε mc<nd αν ma=nb τότε mc=nd αν ma>nb τότε mc>nd (Είναι και οι τρεις συνθήκες αναγκαίες? Πότε μπορεί να επιτευχθεί ισότητα (δεύτερη συνθήκη)? Τι σημαίνει ότι a:b > c:d?)

Παράδειγμα: 3: 6 = 4:8 αφού αν m 3<n 6 τότε m<2 n και m 4<n 8 αν m 3=n 6 τότε m=2 n και m 4=n 8 αν m 3>n 6 τότε m>2 n και m 4>n 8

Παράδειγμα : Έστω κύκλοι c και C, με διαμέτρους d και D, εμβαδά a και A. Τότε a: A= d 2 : D 2 (Για τη πλήρη απόδειξη, βλ. Ευκλείδη, βιβλίο 12)

Λήμμα: Αν από ένα μέγεθος αφαιρέσουμε ένα τμήμα μεγαλύτερο ή ίσο του μισού του, και από το υπόλοιπο αφαιρέσουμε πάλι τμήμα μεγαλύτερο ή ίσο του μισού του και αν συνεχίσουμε αυτή τη διαδικασία των αφαιρέσεων, θα καταλήξουμε σε μέγεθος μικρότερο από οποιοδήποτε προκαθορισμένο μέγεθος του ίδιου είδους. Το Λήμμα αποδίδεται και αυτό στον Εύδοξο και είναι η Πρόταση 1 στα «Στοιχεία» του Ευκλείδη, βιβλίο 10. (δηλ. Δίνεται με απόδειξη!)

Πράγματι, το εμβαδό t του Ισοσκελούς Τριγώνου της εικόνας είναι Έτσι αν έχουμε δύο όμοια ισοσκελή τρίγωνα με πλευρές d/2 και D/2 kαι βάσεις 2c και 2C αντίστοιχα, έπεται ότι c/d= C/D και άρα γιαταεμβαδάτουςt και Τ έχουμε τη σχέση Τα κανονικά πολύγωνα που συγκρίνουμε είναι αθροίσματα τέτοιων τριγώνων Άραισχύεικαιοζητούμενοςλόγοςγιαταεμβαδάτους.

a: A= d : D 2 2 Για τον λόγο a:a έχουμε τρείς περιπτώσεις Θα αποκλείσουμε τις δύο τελευταίες περιπτώσεις.

Έστω ότι Τότε υπάρχει a έτσι ώστε Θέτουμε e=a-a. Εγγράφουμε κανονικά πολύγωνα στους Διπλασιάζουμε ταυτόχρονα τις πλευρές των πολυγώνων. Κάθε φορά που διπλασιάζουμε τον αριθμό των πλευρών, το εμβαδόν της περιοχής ανάμεσα στο κύκλο και στο πολύγωνο μικραίνει. Κάποια στιγμή σύμφωνα με το πρώτο Λήμμα, όταν ο αριθμός ακμών n είναι αρκετά μεγάλος θα ισχύει ότι

Όμως Άρα Η άλλη περίπτωση άτοπο. γίνεται με τον ίδιο τρόπο (άσκηση). Να ελεγχθεί επίσης ότι το εμβαδόν ανάμεσα στοκύκλοκαιτοπολύγωνομικραίνει τουλάχιστον κατά το ½ γιαναεφαρμοστεί το Λήμμα του Ευδόξου.

Τελικά τι είναι οι πραγματικοί αριθμοί? Ο ορισμός των λόγων του Ευδόξου ενέπνευσε τον Dedekind στην προσπάθεια της αξιωματικής θεμελίωσης των πραγματικών αριθμών. Πως ορίζονται αξιωματικά από το σύστημα των ρητών αριθμών οι πραγματικοί αριθμοί? Είναι το ρίζα 2 «όμοιο» με το π?

Ξεκινάμε από το σύνολο των ρητών και φτιάχνουμε τομές. Τομή για την ρίζα του 2: Έστω Α το σύνολο Έστω Β το σύνολο Παρατήρηση: Το σύνολο Α δεν έχει μέγιστο στοιχείο ενώ αν x είναι στο Α και y είναι μικρότερο του x τότε y ανήκει στο A.

Τη δυάδα {Α,Β} την ονομάζουμε ρίζα του 2. τετραγωνική Γιακάθεπραγματικόαριθμόμπορούμενα φτιάξουμε τέτοια δυάδα. Οι πραγματικοί αριθμοί μπορούν να θεμελιωθούν ως τέτοιες δυάδες, (και οι πράξεις ανάμεσα στις δυάδες? Πως ορίζονται?)

Dedekind κόκκινο μπλε

μοντέλο για τη σελήνη Καμπύλη ιπποπέδης Σφαίρες που ο άξονας της μίας είναι η διάμετρος της άλλης. Όταν περιστρέφεται η μία, περιστρέφεται και ο άξονας της άλλης.

O Αριστοτέλης ήταν κυρίως φιλόσοφος και βιολόγος. Η μεγάλη συνεισφορά του στην εξέλιξη των μαθηματικών είναιοιβάσειςτης λογικής που έθεσε και οι συνεχείς αναφορές σε μαθηματικές έννοιες και θεωρήματα. Η αριστοτέλεια μεθοδολογία (ταξινόμηση, παρατήρηση, ανάλυση) θα υιοθετηθεί απ τον Ευρωπαϊκό Διαφωτισμό