Fourier Transform. Fourier Transform

Σχετικά έγγραφα
Fourier Series. Fourier Series

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

3 Frequency Domain Representation of Continuous Signals and Systems

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math221: HW# 1 solutions

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Lecture 12 Modulation and Sampling

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Oscillatory integrals

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

2 Composition. Invertible Mappings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

INTEGRAL INEQUALITY REGARDING r-convex AND

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Probability and Random Processes (Part II)

Example Sheet 3 Solutions

Second Order RLC Filters

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Multi-dimensional Central Limit Theorem

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ECE 468: Digital Image Processing. Lecture 8

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

Problem Set 3: Solutions

Finite Field Problems: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Managing Production-Inventory Systems with Scarce Resources

Section 7.6 Double and Half Angle Formulas

Solutions_3. 1 Exercise Exercise January 26, 2017

= 0.927rad, t = 1.16ms

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Multi-dimensional Central Limit Theorem

1. Τριγωνοµετρικές ταυτότητες.

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

Uniform Convergence of Fourier Series Michael Taylor

Ψηφιακή Επεξεργασία Φωνής

Section 8.3 Trigonometric Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

w o = R 1 p. (1) R = p =. = 1

10.7 Performance of Second-Order System (Unit Step Response)

PARTIAL NOTES for 6.1 Trigonometric Identities

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Matrices and Determinants

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

The Student s t and F Distributions Page 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Homework 3 Solutions

Θεωρία Σημάτων και Γραμμικών Συστημάτων

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Second Order Partial Differential Equations

6.003: Signals and Systems. Modulation

y[n] ay[n 1] = x[n] + βx[n 1] (6)

Tables of Transform Pairs

Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Fourier transform of continuous-time signals

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

F19MC2 Solutions 9 Complex Analysis

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

6.003: Signals and Systems

CRASH COURSE IN PRECALCULUS

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Approximation of distance between locations on earth given by latitude and longitude

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Inverse trigonometric functions & General Solution of Trigonometric Equations

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fractional Colorings and Zykov Products of graphs

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Transcript:

ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following ondiion. x ( d< The Fourier rnsform X( ω = xe ( d The inverse Fourier rnsform (IFT of X(ω is x(nd given by jω x( = X( ω e dω

Also, The Fourier rnsform n be defined in erms of frequeny of Herz s j f X( f x( e d = nd orresponding inverse Fourier rnsform is x( X( f e j π f df = Exmple: Deermine he Fourier rnsform of rengulr pulse shown in he following figure x( -/ / h / ω ω j j j h ω X( ω = he d= e e jω / ω h ω sin( = sin( = h ω ω ω = hsin π

Exmple: To find in frequeny domin, / f f j j j f h π Xf ( = he d= e e j f / h sin( π f = sin( π f = h πf πf = hsin ( f h =, = ω X( ω = sin π >> h=; >> =; >> f=-3.5:0.0:3.5; >> w=*pi*f; >> x=h**sin(w*/(*pi; >> plo (w,x >> ile ('X(\omeg' >> xlbel('\omeg'; >> h =, = ω X( ω = sin π >> h=; >> =; >> f=-3.5:0.0:3.5; >> w=*pi*f; >> x=bs(h**sin(w*/(*pi; >> subplo (,, >> plo (w,x >> ile (' X(\omeg ' >> xlbel('\omeg' >> xp=phse(h**sin(w*/(*pi; >> subplo (,, >> plo (w,xp >> ile ('phse X(\omeg' >> xlbel('\omeg'

Exmple Deermine he Fourier rnsform of he Del funion δ( jω jω0 ( ω = δ( = = X e d e X(ω ω Properies of he We summrize severl imporn properies of he s follows.. Lineriy (Superposiion If x x ( X ( ω ( X( ω nd Then, x( + x ( X( ω + X ( ω jω jω jω ( ( ( ( [ + ] = + x x e d x e d x e d = X( ω + X ( ω

Properies of he. Time Shifing If x ( Xω ( Then, x ( X( ω e ω 0 j 0 = + d = dτ Le τ = 0 hen τ 0 nd jωτ ( + 0 x ( 0 e d= x( τ e d = 0 jωτ e x( e d = e 0 τ X( ω τ τ Le y ( = x ( 0 Y( ω = X( ω e = X( ω e e = X( ω e jω0 j X( ω jω0 j( X( ω ω0 j Y( ω j ( X( ω ω0 Y( ω e = X( ω e Therefore, he mpliude sperum of he ime shifed signl is he sme s he mpliude sperum of he originl signl, nd he phse sperum of he ime-shifed signl is he sum of he phse sperum of he originl signl nd liner phse erm.

Exmple: Deermine he Fourier rnsform of he following ime shifed rengulr pulse. x( h 0 ω j X( ω = hsin e ω π >> h=; >> =; >> f=-3.5:0.0:3.5; >> w=*pi*f; >> x=bs(h**sin(w*/(*pi.*exp(- j*w*/; >> subplo (,, >> plo (w,x >> ile (' X(\omeg ' >> xlbel('\omeg' >> xp=phse(h**sin(w*/(*pi.*exp(- j*w.*/; >> subplo (,, >> plo (w,xp >> xlbel('\omeg' >> ile ('phsex(\omeg' 3. Time Sling If x ( Xω ( ω x ( X( hen Le τ = hen τ / nd = d = (/ dτ If, >0 hen ω j τ x( e d = x( τ e dτ ω = X ( If, <0 hen ω j τ xe ( d= x( τ e dτ ω j τ x( e ω = τ dτ X( =

Exmple. if, x ( Xω ( hen find he Fourier rnsform of he following signls. b.. x( X( ω x (/5 5 X(5 ω ω x( 5( X( e ω 5 5 j Exmple: Find he Fourier rnsform of he following signl.. b.. ω x( = ( X( ω = sin π x( (5 X( X( ω sin ω = ω = = 5 5 5 0π ω x3( = ( /5 X3( ω = 5 X(5 ω = 5sin 0.4 π 4. Duliy (Symmery If x ( Xω ( hen X ( π x( ω or X( x( f Sine nd ω re rbirry vribles in he inverse Fourier rnsform jω x( = X( ω e dω we n reple ω wih nd wih - ω o ge x( ω = X( e d Therefore, F{ } X ( = Xe ( d= π x( ω

Similrly, if we n reple f wih nd wih -f in he inverse Fourier rnsform x( X( f e j πf df = o ge j f x( f X( e df = Therefore, { } F X ( = x( f Exmple: x ( = δ ( X( ω = Applying symmery propery, x ( = Xω ( = πδ ( ω = πδ ( ω ( δ ( ω is even funion or x ( = Xf ( = δ ( f = δ ( f Exmple: ω x ( = re X( ω sin = π ω ω x ( = sin X( ω re re = = Le = hen = ω ω x( = sin ( X( ω = re re =

Time Reversl If x ( Xω ( hen x( X( ω Le = τ. Then = τ nd d = dτ jω j( ω τ ( = ( τ τ = ( ω x e d x e d X Frequeny Shifing If x ( Xω ( hen jω xe ( X( ω ω ( ( j ω j ω ( j ω ω = = ( ω ω xe e d xe d X

Exmple: Deermine he Fourier rnsform of osω nd sinω ( os j ω j ω x = ω = e + e X( ω = π δ( ω ω + δ( ω + ω or [ ] x( os j j e ω ω = ω = + e X( f = δ( f f + δ( f + f X(f / [ ] -f The phse sperum is zero everywhere. f f ( sin j ω j ω x = ω = e e X( ω = jπ δ( ω ω δ( ω + ω j j [ ] ( sin j ω j ω j x ω e e = = X( f = δ( f f δ( f + f j j X(f / [ ] -f θ(f π/ f f f -f f -π/

7. Modulion If x ( Xω ( hen x ( os( ω X( ω ω + X( ω + ω [ ] jω jω jω jω x (os( ωe d= x ( e + e e d = + = + + j( ω ω j( ω+ ω xe ( d xe ( d [ X( ω ω X( ω ω ] 8. Time Differeniion: If x ( Xω ( hen dx( jωx( ω d Generl se n d x( n ( jω X( ω n d we obin Therefore Tking he derivive of he inverse Fourier rnsform jω x( = X( ω e dω dx( jω = jωx( ω e dω d dx( jωx( ω d

9. Time Differeniion: If x ( Xω ( hen Generl se x( dx( jω j dω n x( j n n d X( ω n dω Tking derivive of X( ω = xe ( d wih respe o ω, we obin dx( ω = ( j xe ( dω dx( jω Therefore x( j dω d 0 Conjuge If x ( Xω ( hen * * x ( X ( ω If x( is rel * * jω j( ω * x ( e d = x( e d = X ( ω x * ( x( * = X ω X so h ( = ( ω

. Convoluion If x ( Xω (, h ( Hω (, nd y ( Yω ( y ( = h (* x ( = h( τ x ( τ dτ Y( ω = h( τ x( τ dτ e d Inerhnging he order of inegrion, we obin Y( ω = H( ω X( ω Y( ω = h( τ x( τ e d dτ jωτ jωτ Y( ω = h( τ X( ω e dτ = X( ω h( τ e dτ = X( ω H( ω. Mulipliion If x ( X ( ω, nd x ( X ( ω x x( X( ω* X( ω = X( vx ( ω vdv or x x( X(* f X( f = X( vx ( f vdv

3. Prsevl s Theorem If x( X( ω, hen ol normlized(bsed on one ohms resisor energy E of nd x( is given by Proof E = x( d = X( ω dω = X( f df x( d = x( x ( d = x( X ( ω e dω d * * Inerhnging he order of inegrion, we obin Proof (on x( d = X ( ω x( e d dω * = = * X X d ( ω ( ω ω X( ω dω