ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011

Σχετικά έγγραφα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου. Α= 2 1 : και :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Για το Διοικητικό Συμβούλιο

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 778 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2018

Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

x , οπότε : Α = = 2.

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2006

: :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

: :

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

Ευκλείδης Β' Λυκείου ΜΕΡΟΣ Α

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ τάξη. Λυκείου.

Ευκλείδης Β' Γυμνασίου Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

Θαλής Α' Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

B τάξη Γυμνασίου : : και 4 :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Θέματα μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

Α={1,11,111,1111,..., }

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017

Τάξη A Μάθημα: Γεωμετρία

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΓΔ + ΔΓΕ = ΚΓΒ + ΓΒΚ = 180 ΓΚΒ = = 90

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Transcript:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 665-67784 - Fax: 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές.. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις () ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 4, 06 79 Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 6 Φεβρουαρίου 0 στην Αθήνα. Από το διαγωνισμό αυτό και επί πλέον από ένα τελικό προκριματικό διαγωνισμό στην Ε.Μ.Ε. συνοδευόμενο από μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγούν οι εθνικές ομάδες, που θα συμμετάσχουν στην 8 η Βαλκανική Μαθηματική Ολυμπιάδα (Ρουμανία, Μάιος 0), στην 5 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Κύπρος, Ιούνιος 0) και στην 5η Διεθνή Μαθηματική Ολυμπιάδα (Ολλανδία, Ιούλιος 0). 0. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν αφιλοκερδώς στην επιτυχία των Πανελληνίων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας.. Παρακαλούμαι τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και την παραδώσει στους επιτηρητές. ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Γρηγόρης Καλογερόπουλος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 665-67784 - Fax: 6405 Αθήνα, 5 Ιανουαρίου 0 Αγαπητοί μαθητές, Σας καλωσορίζουμε στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ) ΕΥΚΛΕΙΔΗΣ. Σήμερα δεν δίνετε τις συνηθισμένες εξετάσεις. Συμμετέχετε σε έναν αγώνα του πνεύματος. Και μόνο η απόφασή σας για συμμετοχή και η πρόκρισή σας από τον προηγούμενο διαγωνισμό ΘΑΛΗΣ είναι μια επιτυχία. Με την ευκαιρία αυτής μας της επικοινωνίας θα θέλαμε να σας πληροφορήσουμε για τα εξής : Στα περιοδικά της ΕΜΕ Ευκλείδης Α και Ευκλείδης Β δημοσιεύονται εκτός των άλλων θεμάτων ανά τάξη και θέματα με τις λύσεις τους από Διεθνείς Μαθηματικούς Διαγωνισμούς. Επίσης έχουν εκδοθεί βιβλία της ΕΜΕ με τα θέματα των Διεθνών Μαθηματικών Ολυμπιάδων ( τεύχη), Βαλκανικών Μαθηματικών Ολυμπιάδων (984-008), Θεωρίας αριθμών και τα βιβλία με τα Θέματα των Ελληνικών Μαθηματικών Διαγωνισμών 997-007 σε τεύχη. Επιπλέον, η ΕΜΕ θα οργανώσει Θερινά Σχολεία διάρκειας μιας εβδομάδας προς το τέλος Ιουλίου και αρχές Αυγούστου 0. Τα μαθήματα θα επικεντρωθούν σε ειδικά Κεφάλαια της σχολικής ύλης και σε θέματα Μαθηματικών Ολυμπιάδων. Λεπτομέρειες θα ανακοινωθούν στον επόμενο διαγωνισμό και στην ιστοσελίδα της ΕΜΕ. Για το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα καλή χρονιά, προσωπική και οικογενειακή ευτυχία. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΓΙΑ ΤΟ Δ.Σ. ΤΗΣ Ε.Μ.Ε. Ο Πρόεδρος Καθηγητής Γρηγόρης Καλογερόπουλος Ο Γενικός Γραμματέας Ιωάννης Τυρλής

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 665-067784 - Fax: 0 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 B τάξη Γυμνασίου Πρόβλημα (α) Να συγκρίνετε τους αριθμούς 0 Α= : και : + + Β=. 7 8 4 6 7 9 Μονάδες 4 γ (β) Αν ισχύει ότι: + + =, α β 6 6 να βρείτε την τιμή της παράστασης: 8 α β γ Γ= + +. 4α β Μονάδες Πρόβλημα Ένας έμπορος αυτοκινήτων είχε στο κατάστημά του την αρχή της περυσινής χρονιάς 0 αυτοκίνητα τύπου Α και 60 αυτοκίνητα τύπου Β. Η τιμή πώλησης για κάθε αυτοκίνητο τύπου Α είναι 0000 ευρώ, ενώ για κάθε αυτοκίνητο τύπου Β είναι 000 ευρώ. Στο τέλος της χρονιάς είχε πουλήσει το 0% των αυτοκινήτων τύπου Α και το 60% του συνόλου των αυτοκινήτων τύπου Α και Β. Να βρείτε ποιο θα είναι το κέρδος του από την πώληση των αυτοκινήτων, αν γνωρίζετε ότι από καθένα αυτοκίνητο τύπου Α κερδίζει το 5% της τιμής πώλησής του, ενώ από καθένα αυτοκίνητο τύπου Β κερδίζει το 0% της τιμής πώλησής του. Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ και Α= ˆ 6 0. Από την κορυφή Α φέρουμε ευθεία ε παράλληλη προς την πλευρά ΒΓ. Η διχοτόμος της γωνίας Β τέμνει την πλευρά ΑΓ στο σημείο Δ και την ευθεία ε στο σημείο Ε. Να αποδείξετε ότι τα τρίγωνα ΑΒΔ, ΒΓΔ, ΑΔΕ και ΑΒΕ είναι ισοσκελή. Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 7, όπου Β= αγβ = 00α + 0γ + β. (ii) Το άθροισμα των ψηφίων β, γ ισούται με το μικρότερο ακέραιο που είναι λύση της ανίσωσης: x + < 5x. (iii) Ο αριθμός Α διαιρείται με το. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 665-067784 - Fax: 0 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Γυμνασίου Πρόβλημα (α) Να λύσετε την εξίσωση: x + 8 7 x =. Μονάδες 4 8 (β) Να βρείτε την τιμή της παράστασης: Α= + 9β 0, β 9 β για β =. Μονάδες Πρόβλημα Οι ακέραιοι α, β είναι μεγαλύτεροι ή ίσοι του 0 και τέτοιοι ώστε α 0, β και α 40 β 0. Να βρείτε τη μεγαλύτερη και τη μικρότερη της παράστασης Α = α β. Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α και ισόπλευρο τρίγωνο ΑΒΕ εξωτερικά του τετραγώνου ΑΒΓΔ. Δίνεται ακόμη ότι ο κύκλος C που περνάει από τα σημεία Γ, Δ και Ε έχει ακτίνα 4 cm. (i) Να αποδείξετε ότι το τρίγωνο ΕΔΓ είναι ισοσκελές. Μονάδες (ii) Να βρείτε την πλευρά α του τετραγώνου. Μονάδες (iii) Να βρείτε το εμβαδόν της επιφάνειας που βρίσκεται εξωτερικά του σχήματος ΕΑΒΓΔΕ και εσωτερικά του κύκλου C. Μονάδες Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 98, όπου Β= γβα = 00γ + 0β + α. x + α γ α γ (ii) Η εξίσωση = έχει δύο ρίζες με άθροισμα 4. α γ x (iii) Ο αριθμός Α διαιρείται με το 9. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 665-067784 - Fax: 0 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Α τάξη Λυκείου Πρόβλημα (i) Να βρείτε τις τιμές των ρητών αριθμών α, β για τις οποίες ο αριθμός α + β 0 είναι ρητός. Μονάδες (ii) Να αποδείξετε ότι ο αριθμός x = 5 + είναι άρρητος. Μονάδες Πρόβλημα Να προσδιορίσετε τις λύσεις της εξίσωσης x = x + 4α, για τις διάφορες τιμές του πραγματικού αριθμού α. Πρόβλημα Δίνεται τρίγωνο ΑΒΓ και ευθεία ( ε ) που διέρχεται από την κορυφή του Α και είναι παράλληλη προς τη πλευρά ΒΓ. Η διχοτόμος της γωνίας ˆΒ τέμνει την ευθεία (ε ) στο σημείο Δ και έ- στω Ε το συμμετρικό του Δ ως προς τη κορυφή Α. Από το Α τέλος θεωρούμε παράλληλη προς την ΕΒ η οποία τέμνει τη ΒΔ στο σημείο M και τη ΒΓ στο σημείο Κ. Να αποδείξετε ότι: ΑΒ = ΒΚ = ΚΔ = ΔΑ. Πρόβλημα 4 Να προσδιορίσετε τους πραγματικούς αριθμούς α, βγ, που ικανοποιούν τις ισότητες α + β + γ = 00 και αβ + βγ + γα = 5 67. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 665-067784 - Fax: 0 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Β τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση x = x + α, για τις διάφορες τιμές του πραγματικού αριθμού α. Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + y + z = 8 x + y + z = 6 Πρόβλημα Αν οι αβγ,, xy + xz = yz +. είναι θετικοί πραγματικοί αριθμοί τέτοιοι ώστε + + =, να αποδεί- α β γ αβγ ξετε ότι: ( α +β ) γ ( β +γ ) α ( γ +α ) β + + <. α +β β +γ γ +α Πότε ισχύει η ισότητα; Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ΑΒΓ (με ΑΒ< AΓ) εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Από το σημείο Α φέρνουμε τις δύο εφαπτόμενες προς τον κύκλο ( c ), που έχει κέντρο το σημείο O και ακτίνα r = OM ( M είναι το μέσο της BΓ ). Η μία εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο T, τέμνει την ΒΓ στο σημείο Ν και το κύκλο () c στο σημείο N (θεωρούμε BN < BM ). Η άλλη εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο Σ, τέμνει την ΒΓ στο σημείο K και το κύκλο () c στο σημείο K (θεωρούμε ΓK< ΓM). Να αποδείξετε ότι οι ευθείες BN, ΓΚ και AM περνάνε από το ίδιο σημείο (συντρέχουν). ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 665-067784 - Fax: 0 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Λυκείου Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με άθροισμα, να αποδείξετε ότι: ( 4 ) ( 4 ) ( 4 ) α + β γ β + γ α γ + α β + + > 4αβ 4βγ 4γα Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + xy = 5 y xy =. Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Ο περιγεγραμμένος κύκλος του τριγώνου ΑOB (έστω ( c )), τέμνει την AΓ στο σημείο K και την ΒΓ στο σημείο Ν. Έστω (c ) ο περιγεγραμμένος κύκλος του τριγώνου ΓΚΝ και (c ) ο περιγεγραμμένος κύκλος του τριγώνου O ΓΚ. Να αποδείξετε ότι οι κύκλοι ( c ), (c ) και ( c ) είναι ίσοι μεταξύ τους. Πρόβλημα 4 * Η ακολουθία a, n n, ορίζεται αναδρομικά από τις σχέσεις k * a = n a + n, n, n a =, όπου k θετικός ακέραιος. (i) Να προσδιορίσετε το γενικό όρο an της ακολουθίας ως συνάρτηση των n και k. Μονάδες (ii) Να αποδείξετε ότι υπάρχουν μοναδικοί θετικοί ακέραιοι k, n τέτοιοι ώστε : a n =. 000 Μονάδες ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 665-067784 - Fax: 0 6405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B τάξη Γυμνασίου Πρόβλημα (α) Να συγκρίνετε τους αριθμούς 0 Α= + + : και Β= : 8 4 6 7 9 (β) Αν ισχύει ότι: 4 γ + + =, α β 6 6 να βρείτε την τιμή της παράστασης: 8 α β γ Γ= + +. 4α β 7. (α) Έχουμε 9 Α= : 8 9 9 + + = + + = + = =, 8 4 6 64 4 6 64 6 6 64 64 0 9 0 6 9 8 4 9 8 7 9 9 Β= : : :. = 7 = = = 7 9 7 7 7 7 8 7 7 8 7 4 8 64 Άρα είναι Α=Β. Σημείωση. Λόγω της μη ύπαρξης παρενθέσεων που να δίνουν προτεραιότητα στις πράξεις διαίρεσης και πολλαπλασιασμού θεωρούμε δεκτή και τη λύση της μορφής 0 9 0 6 9 8 4 9 8 768 Β= : : : :. = 7 = = = 7 9 7 7 7 7 8 7 7 8 7 96 7 Στην περίπτωση αυτή είναι Α <<Β, δηλαδή Α < Β. (β) Λόγω της υπόθεσης 4 γ + + =, έχουμε ότι: α β 6 6 8 α β γ 8 α β γ Γ= + + = + + 4α β 4α 4α β β 4 γ 4 γ 7 = + + = + + + + = =. α 4 β 6 4 α β 6 4 4 6 6

Πρόβλημα Ένας έμπορος αυτοκινήτων είχε στο κατάστημά του την αρχή της περυσινής χρονιάς 0 αυτοκίνητα τύπου Α και 60 αυτοκίνητα τύπου Β. Η τιμή πώλησης για κάθε αυτοκίνητο τύπου Α είναι 0000 ευρώ, ενώ για κάθε αυτοκίνητο τύπου Β είναι 000 ευρώ. Στο τέλος της χρονιάς είχε πουλήσει το 0% των αυτοκινήτων τύπου Α και το 60% του συνόλου των αυτοκινήτων τύπου Α και Β. Να βρείτε ποιο θα είναι το κέρδος του από την πώληση των αυτοκινήτων, αν γνωρίζετε ότι από καθένα αυτοκίνητο τύπου Α κερδίζει το 5% της τιμής πώλησής του, ενώ από καθένα αυτοκίνητο τύπου Β κερδίζει το 0% της τιμής πώλησής του. 0 Το 0% των αυτοκινήτων τύπου Α είναι 0 = 6 αυτοκίνητα, ενώ το 60% του συνόλου 00 60 60 των αυτοκινήτων τύπου Α και Β είναι ( 0 + 60) = 80 = 48 αυτοκίνητα. Επομένως από 00 00 τα αυτοκίνητα τύπου Β πουλήθηκαν 48 6 = 4 αυτοκίνητα. 5 Από την πώληση καθενός αυτοκινήτου τύπου Α κερδίζει 0000 = 500 ευρώ, ενώ από 00 0 την πώληση καθενός αυτοκινήτου τύπου Β κερδίζει 000 = 00 ευρώ. Επομένως από 00 την πώληση των αυτοκινήτων ο έμπορος κέρδισε 6 500 + 4 00 = 000 + 50400 = 5400 ευρώ. Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ και Α= ˆ 6 0. Από την κορυφή Α φέρουμε ευθεία ε παράλληλη προς την πλευρά ΒΓ. Η διχοτόμος της γωνίας Β τέμνει την πλευρά ΑΓ στο σημείο Δ και την ευθεία ε στο σημείο Ε. Να αποδείξετε ότι τα τρίγωνα ΑΒΔ, ΒΓΔ, ΑΔΕ και ΑΒΕ είναι ισοσκελή. Σχήμα Το άθροισμα των γωνιών του ισοσκελούς τριγώνου ΑΒΓ είναι 80 o Α= ˆ 6 o, θα έχουμε: Β=Γ= ˆ ˆ 7 o. Επειδή όμως ισχύει

ˆ o Η ΒΔ είναι διχοτόμος της γωνίας ˆΒ, οπότε ˆ ˆ Β 7 o Β =Β = = = 6. o Επειδή τώρα A ˆ ˆ = Β = 6, το τρίγωνο ΑΒΔ είναι ισοσκελές. Στο τρίγωνο ΒΓΔ ισχύει Β ˆ = 6 o και Γ= ˆ 7 o. Άρα Δ ˆ = 7 o. Από την ισότητα των γωνιών Γ=Δ ˆ ˆ = 7 o, προκύπτει ότι το τρίγωνο ΒΓΔ είναι ισοσκελές. Οι γωνίες ˆΑ και ˆΓ είναι ίσες διότι είναι εντός εναλλάξ των παραλλήλων ΑΕ και ΒΓ που τέμνονται από την ΑΓ. Από την ισότητα τέλος των γωνιών Δ ˆ ˆ =Δ = 7 o (ως κατά κορυφή), προκύπτει η ισότητα Δ ˆ ˆ =Α = 7 o. Επομένως το τρίγωνο ΑΕΔ είναι ισοσκελές. Οι γωνίες ˆΒ και ˆΕ είναι ίσες διότι είναι εντός εναλλάξ των παραλλήλων ΑΕ και ΒΓ που ˆ τέμνονται από την ΒΕ. Επίσης ˆ ˆ Β o Β =Β = = 6, οπότε θα είναι και Β ˆ ˆ =Ε. Επομένως και το τρίγωνο ΑΒΕ είναι ισοσκελές. Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 7, όπου Β= αγβ = 00α + 0γ + β. (ii) Το άθροισμα των ψηφίων β, γ ισούται με το μικρότερο ακέραιο που είναι λύση της ανίσωσης: x + < 5x. (iii) Ο αριθμός Α διαιρείται με το. Σύμφωνα με την πρόταση (i) έχουμε: Α Β= 7 9β 9γ = 7 9 β γ = 7 β γ =. () Για την ανίσωση του ερωτήματος (ii) έχουμε: x+ < 5x x 5x< x< x> x>. Άρα, ο μικρότερος ακέραιος που είναι λύση της είναι ο 7, οπότε έχουμε: β + γ = 7. () Με πρόσθεση και αφαίρεση κατά μέλη των () και () λαμβάνουμε β = 0, γ = 4 β = 5, γ =. Διαφορετικά, θα μπορούσαμε να σκεφθούμε ως εξής: Επειδή οι ακέραιοι β, γ είναι ψηφία με διαφορά β γ = θα είναι β > γ και επειδή επιπλέον έχουν άθροισμα 7, οι δυνατές τιμές τους είναι β = 7, γ = 0 ή β = 6, γ = ή β = 5, γ = ή β = 4, γ =. Επειδή πρέπει β γ = οι αποδεκτές τιμές είναι β = 5, γ =. Άρα ο θετικός ακέραιος Α θα έχει τη μορφή Α= α5 με άθροισμα ψηφίων α + 7. Επειδή, σύμφωνα με την πρόταση (iii) ο Α διαιρείται με το, πρέπει και αρκεί ο ακέραιος α + 7 να είναι πολλαπλάσιο του, οπότε, αφού το α είναι ψηφίο, οι κατάλληλες τιμές του είναι: α = ή α = 5 ή α = 8. Επομένως, έχουμε Α= 5 ή Α= 55 ή Α= 85

4 Γ τάξη Γυμνασίου Πρόβλημα (α) Να λύσετε την εξίσωση: x + 8 7 x =. 4 8 (β) Να βρείτε την τιμή της παράστασης: Α= + 9β 0, β 9 β για β =. (α) Έχουμε x+ 8 7 x = ( x+ 8) ( 7 x) = 8 4x+ 6 7+ x= 8 4 8 7x+ 9= 8 7x= 8 9 7x= x=. (β) Για β = η παράσταση Α γίνεται: Α= + 9 0= 9 0 9 9 9 = 9 0 = 9 0 = 9 = 0. Πρόβλημα Οι θετικοί ακέραιοι α, β είναι μεγαλύτεροι ή ίσοι του 0 και τέτοιοι ώστε α 0, β και ( α ) ( 40 β) 0. Να βρείτε τη μεγαλύτερη και τη μικρότερη τιμή της παράστασης Α = α β. Είναι α 0, οπότε α < 0. Άρα, για να αληθεύει η ανίσωση ( α )( 40 β) 0, αρκεί να ισχύει ότι: 40 β 0 40 β β 0. Έτσι έχουμε: 0 α 0και β 0 0 α 0 και 4 β 40 0 α 0 και 40 β 4, από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: 40 Α= α β 6, οπότε η μεγαλύτερη τιμή της παράστασης Α είναι 6, ενώ η μικρότερη τιμή της είναι -40. Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α και ισόπλευρο τρίγωνο ΑΒΕ εξωτερικά του τετραγώνου ΑΒΓΔ. Δίνεται ακόμη ότι ο κύκλος C που περνάει από τα σημεία Γ, Δ και Ε έχει ακτίνα 4 cm. (i) Να αποδείξετε ότι το τρίγωνο ΕΔΓ είναι ισοσκελές.

(ii) (iii) Να βρείτε την πλευρά α του τετραγώνου. Να βρείτε το εμβαδόν της επιφάνειας που βρίσκεται εξωτερικά του σχήματος ΕΑΔΓΒΕ και εσωτερικά του κύκλου () c. 5 (i) Στα τρίγωνα ΑΕΔ και ΒΕΓ ισχύουν: ˆ ˆ o o o ΕΑΔ = ΕΒΓ = 90 + 60 = 50. ΑΕ=ΒΕ= α, ΑΔ=ΒΓ= α και Σχήμα Άρα τα τρίγωνα ΑΕΔ και ΒΕΓ είναι ίσα και κατά συνέπεια ΕΔ=ΕΓ, δηλαδή το τρίγωνο ΕΔΓ είναι ισοσκελές. (ii) Εφόσον ΕΔ = ΕΓ, το σημείο Ε ανήκει στη μεσοκάθετη του τμήματος ΔΓ (που ταυτίζεται με τη μεσοκάθετη του τμήματος ΑΒ ). Επίσης ΕΑ=ΕΒ, οπότε το σημείο Ε ανήκει στη μεσοκάθετη του τμήματος ΑΒ. Άρα η OE είναι μεσοκάθετη της ΑΒκαι κατά συνέπεια διχοτόμος της γωνίας ΑΕΒ ˆ του ισόπλευρου τριγώνου ΑΕΒ. Άρα είναι Ε ˆ = 0 o. ΑΕ = ΑΔ = α ΟΑ μεσοκάθετη της ΕΔ ΟΑ διχοτόμος της ΔΑΕ ˆ Α ˆ = 75 o. ΟΕ = ΟΔ = 4 Στο τρίγωνο ΑΟΕ έχουμε: Α ˆ = 75 o και Ε ˆ = 0 o. Άρα Ο ˆ = 75 o, οπότε το τρίγωνο ΑΟΕ είναι ισοσκελές με ΕΑ = ΕΟ = α = 4cm. (iii) Το εμβαδόν του κύκλου ( c ) είναι: Ε c = π 4 = 6π. Το εμβαδόν του τετραγώνου ΑΒΓΔ είναι: Ε = 4 = 6, ενώ το εμβαδόν του τριγώνου ΑΒΕ είναι: Ε τρ = 4. Άρα το εμβαδόν της ζητούμενης επιφάνειας είναι: Ε= 6π 6 4. τετ Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο Α = αβγ = 00α + 0β + γ, αν ισχύουν και οι τρεις επόμενες προτάσεις: (i) Α Β= 98, όπου Β= γβα = 00γ + 0β + α, x + α γ α γ (ii) Η εξίσωση = έχει δύο ρίζες με άθροισμα 4. α γ x

6 (iii) Ο αριθμός Α διαιρείται με το 9. Σύμφωνα με την πρόταση (i) έχουμε: Α Β= 98 99 α γ = 98 α γ =. () Η εξίσωση της πρότασης (ii), αν γ α και x 0, γράφεται: x+ α γ α γ x+ α γ x+ α γ = 0 = 0 ( x + α γ) = 0 α γ x α γ x α γ x x+ α γ = 0 ή = 0 x= γ α ή x= α γ α γ x Επειδή, λόγω της (ii) το άθροισμα των ριζών της εξίσωσης είναι 4, έχουμε ότι γ α + α γ = 4 α + γ = 4, () με τους περιορισμούς για τις παραμέτρους γ α και α γ. Από τις () και () με πρόσθεση και αφαίρεση κατά μέλη λαμβάνουμε α = 6, γ = α =, γ = και εύκολα διαπιστώνουμε ότι ικανοποιούνται οι περιορισμοί για την εξίσωση. Άρα ο θετικός ακέραιος Α θα έχει τη μορφή Α= β με άθροισμα ψηφίων 4+ β. Επειδή, σύμφωνα με την πρόταση (iii) ο Α διαιρείται με το 9, πρέπει και αρκεί 4 + β = πολ.(9), οπότε, αφού το β είναι ψηφίο, η μοναδική δυνατή τιμή του είναι β = 5. Επομένως, ο ζητούμενος θετικός ακέραιος Α είναι ο 5. Α τάξη Λυκείου Πρόβλημα (i) Να βρείτε τις τιμές των ρητών αριθμών α, β για τις οποίες ο αριθμός α + β 0 είναι ρητός. (ii) Να αποδείξετε ότι ο αριθμός x = 5 + είναι άρρητος. (i) Κατ αρχή παρατηρούμε ότι για β = 0, ο αριθμός α + β 0 = α είναι ρητός, για κάθε ρητό αριθμό α. Έστω ότι, για β 0, ο αριθμός ρ = α + β 0 είναι ρητός. Τότε και ο αριθμός ρ α = α + β 0 α = β 0 ρ α θα είναι ρητός, αλλά και ο αριθμός = 0 θα είναι ρητός, που είναι άτοπο. β Άρα ο αριθμός α + β 0 είναι ρητός, για β = 0 και για κάθε ρητό αριθμό α. (ii) Έστω ότι ο αριθμός x = 5 + είναι ρητός. Τότε και ο αριθμός x = 5 + = 5 + + 0 = + 0, 4

θα είναι ρητός, το οποίο είναι άτοπο, σύμφωνα με το (i). 7 Πρόβλημα Να προσδιορίσετε τις λύσεις της εξίσωσης x = x + 4α, για τις διάφορες τιμές του πραγματικού αριθμού α. Η δεδομένη εξίσωση είναι ισοδύναμη με την εξίσωση x 4 x + 4= x + 4α x 4 x + 4= x + 4α x = α. Επειδή είναι x 0, για κάθε πραγματικό αριθμό x, διακρίνουμε τις περιπτώσεις: α <, οπότε είναι α > 0. Τότε η εξίσωση έχει δύο λύσεις: x= α ή x= α. α =, οπότε η εξίσωση έχει μόνο τη λύση x = 0. α >, οπότε η εξίσωση είναι αδύνατη. Πρόβλημα Δίνεται τρίγωνο ΑΒΓ και ευθεία ε που διέρχεται από την κορυφή του Α και είναι παράλληλη προς τη πλευρά ΒΓ. Η διχοτόμος της γωνίας ˆΒ τέμνει την ευθεία ε στο σημείο Δ και έστω Ε το συμμετρικό του Δ ως προς τη κορυφή Α. Από το Α τέλος θεωρούμε παράλληλη προς την ΕΒ η οποία τέμνει τη ΒΔ στο σημείο Μ και τη ΒΓ στο σημείο Κ. Να αποδείξετε ότι : ΑΒ = ΒΚ = ΚΔ = ΔΑ. ˆ Επειδή είναι ΑΔ P ΒΓ θα ισχύει: ˆ ˆ Β Δ ˆ =Β = x =. ˆ Επίσης η ΒΔ είναι διχοτόμος της γωνίας ˆΒ, οπότε θα ισχύει: ˆ ˆ Β Β ˆ =Β = x =. ˆ Άρα ˆ ˆ Β Δ ˆ =Β = x = και κατά συνέπεια το τρίγωνο ΑΒΔ είναι ισοσκελές, δηλαδή: ΑΒ=ΑΔ. () Σχήμα Επειδή Ε είναι το συμμετρικό του Δ ως προς το Α, θα ισχύει: ΑΔ=ΑΕ. ()

8 Από τις σχέσεις (), () έχουμε ΑΕ = ΑΒ και κατά συνέπεια Ε ˆ ˆ =Β = ˆω. Από το τρίγωνο τώρα ΒΕΔ έχουμε: Δ ˆ +Β ˆ ˆ ˆ +Β +Ε = 80 o o o xˆ+ ˆ ω = 80 xˆ+ ˆ ω = 90, δηλαδή το τρίγωνο ΒΕΔ είναι ορθογώνιο ( ΒΕ ΒΔ) και εφόσον ΑΜP ΒΕ καταλήγουμε: AM ΒΔ. Στο ισοσκελές τρίγωνο ΒΑΔ η ΑΜ είναι ύψος, άρα και μεσοκάθετη της πλευράς ΒΔ. Επειδή τώρα το σημείο Κ ανήκει στη μεσοκάθετη του ΒΔ, το τρίγωνο ΚΒΔ είναι ισοσκελές και ίσο με το ισοσκελές τρίγωνο ΑΒΔ (διότι ˆ ˆ Β ˆ Β =Β = και ΒΔ κοινή πλευρά). Άρα θα έχουν και ΑΒ = ΑΔ = ΒΚ = ΚΔ, οπότε το τετράπλευρο ΑΒΚΔ είναι ρόμβος. Πρόβλημα 4 Να προσδιορίσετε τους πραγματικούς αριθμούς α, βγ, που ικανοποιούν τις ισότητες α + β + γ = 00 και αβ + βγ + γα = 5 67. Από τις δεδομένες ισότητες λαμβάνουμε α + β + γ = 00 α + β + γ + αβ + βγ + γα = 00 α + β + γ = 00 ( αβ + βγ + γα) α + β + γ = 00 5 67 00 α + β + γ = 00 00 =. Άρα έχουμε 00 α + β + γ ( αβ + βγ + γα) = 00 = 0 α + β + γ αβ βγ γα = 0 ( α + β + γ αβ βγ γα) = 0 ( α β) + ( β γ) + ( γ α) = 0 α β = β γ γ α = 0 α = β = γ, γιατί, αν ήταν α β 0 ή β γ 0 ή γ α 0, τότε θα είχαμε ( α β) + ( β γ) + ( γ α) > 0. Επομένως, από την ισότητα α + β + γ = 00 λαμβάνουμε α = β = γ = 670. Β τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση ( x ) = x+ α, για τις διάφορες τιμές του πραγματικού αριθμού α. Η δεδομένη εξίσωση είναι ισοδύναμη με την εξίσωση x x + = x+ α x x + x + α = 0. ()

Λόγω της παρουσίας της απόλυτης τιμής του x, διακρίνουμε τις περιπτώσεις: (i) x 0. Τότε η εξίσωση () είναι ισοδύναμη με την εξίσωση x 4x+ α = 0, () Δ = 6 4 α = 4 + α. η οποία είναι δευτέρου βαθμού με διακρίνουσα Άρα η εξίσωση () έχει ρίζες στο, αν, και μόνον αν, α. Για να διαπιστώσουμε πόσες από αυτές είναι δεκτές θεωρούμε το γινόμενο και το άθροισμα των ριζών που είναι Ρ= α και S= 4> 0. Έτσι, για την εξίσωση () έχουμε τις υποπεριπτώσεις: Αν α =, τότε η εξίσωση έχει μία διπλή ρίζα, x =. Αν < α, τότε η εξίσωση έχει δύο ρίζες μη αρνητικές, x = ± + α. Ειδικότερα, αν α =, τότε η εξίσωση έχει τις ρίζες x = 4 και x = 0. Αν α >, τότε η εξίσωση έχει μία μόνο ρίζα μη αρνητική, τη x = + + α (ii) x < 0. Τότε η εξίσωση () είναι ισοδύναμη με την εξίσωση x + α = 0, () η οποία έχει μία μόνο αρνητική ρίζα, τη x = α, αν α >. Συνοπτικά, από τις δύο προηγούμενες περιπτώσεις, έχουμε για τη δεδομένη εξίσωση, τα α- κόλουθα συμπεράσματα: Αν α <, η εξίσωση δεν έχει ρίζες στο. Αν α =, τότε η εξίσωση έχει μία διπλή ρίζα, x =. Αν < α, τότε η εξίσωση έχει δύο ρίζες, x = ± + α. Αν α >, τότε η εξίσωση έχει δύο ρίζες, τις x = + + α, x = α. Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + y + z = 8 x + y + z = 6 xy + xz = yz +. Έχουμε x + y + z = 8 x + y + z = 8 x + y + z = 8 x + y + z = 6 ( x + y + z) ( xy + yz + zx) = 6 xy + yz + zx = 9 xy + xz = ( yz + ) xy + xz = ( yz + ) xy + xz = ( yz + ) x + y + z = 8 x + ( y + z) = 8 x + ( y + z) = 8 xy + yz + zx = 9 x ( y + z) + yz = 9 x ( y + z) + yz = 9 9 yz ( yz ) ( yz) ( yz) 8 0 yz = 6 ή yz = = + + = x + y + z = 8 x + y + z = 8 x+ y + z = 8 x+ y + z = 8 x y + z + yz = 9 ή x y + z + yz = 9 x y + z = 6 ή x y + z = 5 yz = yz = 6 yz = yz = 6 9

0 x+ y + z = 8 x+ y + z = 8 x+ y + z = 8 x+ y + z = 8 x 8 x = 6 ή x 8 x = 5 x 8x+ 6= 0 ή x 8x+ 5= 0 yz = yz = 6 yz = yz = 6 x+ y + z = 8 x+ y + z = 8 x = 4 x= 4 ή x 8x+ 5= 0(αδύνατη στο ) y + z = 4 yz = yz = 6 yz = x = 4 x = 4 z = 4 y z = 4 y ( x, y, z) = ( 4,,) ή ( x, y, z) = ( 4,, ). y( 4 y) = y 4y+ = 0 Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με + + =, να αποδείξετε ότι: α β γ αβγ α +β γ β +γ α γ +α β + + <. α +β β +γ γ +α Πότε ισχύει η ισότητα; Παρατηρούμε ότι ( α +β ) γ ( α+β)( α αβ+β ) γ ( α+β)( α +β ) γ = < = ( α+β) γ, () α +β α +β α +β α +β ( ( α+β) α +β γ α +β γ α+β)( α αβ+β ) γ = = ( α+β) γ. () α +β α +β α +β Η ισότητα στη () ισχύει, αν, και μόνον αν, α= β. Άρα έχουμε ( α +β ) γ ( α+β) γ < ( α+β) γ. () α +β Ομοίως λαμβάνουμε ( β +γ ) α ( β + γ) α < ( β + γ) α, (4) β +γ ( γ +α ) β ( γ +α) β < ( γ +α) β. (5) γ +α Οι ισότητα στις (4) και (5) ισχύει αν, και μόνον αν, β = γκαιγ = α, αντίστοιχα. Από τις (), (4) και (5) με πρόσθεση κατά μέλη λαμβάνουμε :. ( α +β ) γ ( β +γ ) α ( γ +α ) β αβ +βγ + γα + + < ( αβ +βγ + γα) (6) α +β β +γ γ +α Όμως από την υπόθεση έχουμε: + + = αβ+βγ+γα =, (7) α β γ αβγ οπότε από τις (6) και (7) προκύπτουν οι ζητούμενες ανισότητες.

Η ισότητα ισχύει αν, και μόνον αν, α= β= γ, οπότε από τη σχέση αβ+βγ+γα=, προκύ- πτει ότι α= β= γ =. Παρατήρηση. Η δεύτερη ανισότητα είναι γνήσια από την κατασκευή της άσκησης με τους αβγ,, θετικούς πραγματικούς αριθμούς, λόγω της ισότητας + + =. Στην περίπτωση α β γ αβγ που επιτρέψουμε οι αβγ,, να είναι μη αρνητικοί πραγματικοί αριθμοί, δίνοντας στην παραπάνω ισότητα τη μορφή αβ + βγ + γα =, τότε η δεύτερη ανισότητα γίνεται α +β γ β +γ α γ +α β + +, α +β β +γ γ +α όπου η ισότητα ισχύει, αν, και μόνον αν, ένας μόνον από τους α, βγ, είναι μηδέν και οι άλλοι δύο αντίστροφοι. Πρόβλημα 4 Δίνεται οξυγώνιο και σκαληνό τρίγωνο ΑΒΓ (με ΑΒ< AΓ) εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Από το σημείο Α φέρνουμε τις δύο εφαπτόμενες προς τον κύκλο ( c ), που έχει κέντρο το σημείο O και ακτίνα r = OM ( M είναι το μέσο της BΓ ). Η μία εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο T, τέμνει την ΒΓ στο σημείο Ν και το κύκλο () c στο σημείο N (θεωρούμε BN < BM ). Η άλλη εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο Σ, τέμνει την ΒΓ στο σημείο K και το κύκλο () c στο σημείο K (θεωρούμε ΓK<ΓM ). Να αποδείξετε ότι οι ευθείες BN, ΓΚ και AM περνάνε από το ίδιο σημείο (συντρέχουν). Οι χορδές AN, AΚ και ΒΓ του κύκλου ( c ), είναι εφαπτόμενες του κύκλου ( c ) στα σημεία ΤΣ, και Μ αντίστοιχα. Άρα οι ακτίνες OΤ,ΟΣ και OΜ του κύκλου ( c ), είναι κάθετες προς τις χορδές AN, AΚ και ΒΓ του κύκλου ( c ) αντίστοιχα. Δηλαδή οι ακτίνες OΤ,ΟΣ και OΜ του κύκλου ( c ), είναι τα αποστήματα που αντιστοιχούν στις χορδές AN, AΚ και ΒΓ του κύκλου ( c ). Τα αποστήματα OΤ,ΟΣ και OΜ είναι ίσα μεταξύ τους, αφού είναι ακτίνες του κύκλου ( c ). Άρα AN = AΚ = ΒΓ (*) και τα σημεία Τ, ΣΜ, είναι τα μέσα των χορδών AN, AΚ και ΒΓ, αντίστοιχα. Από τους προηγούμενους συλλογισμούς, προκύπτουν οι παρακάτω ισότητες ευθυγράμμων τμημάτων: ΜΒ=ΜΓ=ΤΑ=ΤΝ =ΣΑ=ΣΚ () Το σημείο N βρίσκεται εκτός του κύκλου ( c ) και NM, NT είναι τα εφαπτόμενα τμήματα, οπότε NM = NT () Συνδυάζοντας τις σχέσεις () και () έχουμε: () : ΜΒ = ΤΝ (:) ΜΒ ΤΝ = ΤΜP ΒΝ () (): ΝΜ = ΝΤ ΜN ΝΤ Συνδυάζοντας και πάλι τις σχέσεις () και () έχουμε: () : ΜΓ = ΤΑ (:) ΜΓ ΤΑ = ΤΜ// ΑΓ (4) (): ΝΜ = ΝΤ ΝΜ ΝΤ

Από τις () και (4) έχουμε ΒN Σχήμα 4 P ΑΓ. Με ανάλογο τρόπο αποδεικνύουμε ότι ΓK P ΑΒ. Αν λοιπόν Ρ είναι η τομή των ευθειών ΒN και ΓK, τότε το τετράπλευρο ΑΒΡΓ είναι παραλληλόγραμμο. Άρα οι ευθείες ΒN, ΓK και ΑΜ θα συντρέχουν στο Ρ. (*) Δύο χορδές ενός κύκλου είναι ίσες αν και μόνο αν τα αποστήματά τους είναι ίσα. (Θεώρημα ΙΙΙ, Σελ.46, του Σχολικού βιβλίου της ΕΜΕ) Γ τάξη Λυκείου Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με άθροισμα, να αποδείξετε ότι: ( α + 4β ) γ ( β + 4γ ) α ( γ + 4α ) β + + > 4αβ 4βγ 4γα Από τις γνωστές ανισότητες α + 4β 4 αβ, β + 4γ 4 βγ, γ + 4α 4γα, () λαμβάνουμε τις ανισότητες: α + 4β 4αβ ( α + 4β ) γ = ( η ισότητα ισχύει για α = β) γ () 4αβ 4αβ 4αβ ( β + 4γ ) β + 4γ 4βγ α = (ηισότητα ισχύει για β= ) γ α () 4βγ 4βγ 4βγ ( γ + 4α ) γ + 4α 4γα β = (ηισότητα ισχύει για γ = α) β (4) 4γα 4γα 4γα Από τις (), () και (4) με πρόσθεση κατά μέλη λαμβάνουμε: ( 4 ) ( 4 ) ( 4 ) α + β γ β + γ α γ + α β + + α+β + γ =. (5) 4αβ 4βγ 4γα

Η ισότητα στη σχέση (5) ισχύει, αν, και μόνον αν, ισχύουν οι ισότητες και στις τρεις σχέσεις (), () και (4) ή ισοδύναμα: α= β, β= γ, γ= α, από τις οποίες προκύπτει ότι α=β=γ= 0, που είναι άτοπο, αφού οι αριθμοί αβγ,, είναι θετικοί. Επομένως έχουμε αποδείξει ότι: ( α + 4β ) γ ( β + 4γ ) α ( γ + 4α ) β + + >. 4αβ 4βγ 4γα Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + xy = 5. ( Σ ) y xy = Αν υποθέσουμε ότι υπάρχει λύση ( x, y ) του συστήματος ( Σ ), με x= 0 ή y = 0, τότε λαμβάνουμε 0 = 5 ή 0 = -, άτοπο. Για xy 0, η μία εξίσωση του συστήματος μπορεί να αντικατασταθεί με αυτήν που προκύπτει από τις δύο εξισώσεις του συστήματος, με διαίρεση κατά μέλη: y + m 5 + = 5m m+ = 0 x + xy 5 x 5 m m = = y y xy y y y m m = = x x x x m= ή m= m= 5 m = 5 ή. y y = x x = m y = x 5 Επομένως έχουμε: 7x 5 7 x + xy = 5 = 5 5 5 5 5 x x =± x + xy = x = =± ή ή ή 7 Σ x y = x y = y = x x y = x x 5 y y = = 5 5 5 7 7 5 7 7, =, ή, =, ή, =, ή, =,. 7 7 7 7 ( xy) ( xy) ( xy) ( xy) Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Ο περιγεγραμμένος κύκλος του τριγώνου ΑOB (έστω ( c ) ), τέμνει την AΓ στο σημείο K και την ΒΓ στο σημείο Ν. Έστω ( c ) ο περιγεγραμμένος κύκλος του τριγώνου ΓΚΝ και ( c ) ο περιγεγραμμένος κύκλος του τριγώνου OΓΚ. Να αποδείξετε ότι οι κύκλοι ( c ), ( c ) και ( c ) είναι ίσοι μεταξύ τους. Έστω R,R, R οι ακτίνες των κύκλων ( c ),( c ) και ( c ) αντίστοιχα. Θα αποδείξουμε ότι R = R =. R

4 Από το εγγεγραμμένο τετράπλευρο AKOB έχουμε: Α ˆ ˆ = B. Από το εγγεγραμμένο τετράπλευρο AOΝB έχουμε: Α ˆ ˆ = Β. Από το ισοσκελές τρίγωνο OBΓ, έχουμε: Β ˆ ˆ = Γ. Από το ισοσκελές τρίγωνο OΑΓ, έχουμε: Α ˆ ˆ = Γ. Από τις παραπάνω ισότητες των γωνιών, προκύπτει ΝΑΓ ˆ = ΚΒΓ ˆ = Γˆ, δηλαδή τα τρίγωνα ΝΑΓ και ΚΒΓ είναι ισοσκελή, οπότε ΝΑ = ΝΓ και ΚΒ = ΚΓ. Τα τρίγωνα τώρα ΟΚΒ και ΟΚΓ είναι ίσα διότι έχουν:. ΟΒ = ΟΓ (ακτίνες του κύκλου ( c ) ). ΟΚ (κοινή). ΚΒ = ΚΓ (από το ισοσκελές τρίγωνο ΚΒΓ ). Εφόσον λοιπόν τα τρίγωνα ΟΚΒ και ΟΚΓ είναι ίσα, θα έχουν ίσους τους περιγεγραμμένους κύκλους τους ( c ) και ( c ). Απόδειξη της Ισότητας των Κύκλων ( c ) και ( c ) ( ος τρόπος) Θεωρούμε τώρα τα τρίγωνα ΚΝΒ και ΚΝΓ που έχουν περιγεγραμμένους κύκλους ( c ) και ( c ) αντίστοιχα. αβγ Θα χρησιμοποιήσουμε στη συνέχεια τον τύπο E = (ΑΒΓ) = που εκφράζει το εμβαδό 4R τριγώνου συναρτήσει του μήκους των πλευρών και της ακτίνας του περιγεγραμμένου κύκλου. Έστω λοιπόν E = (ΚΝΒ) το εμβαδό του τριγώνου ΚΝΒ και E = (ΚΝΓ) το εμβαδό του τριγώνου ΚΝΓ. Τότε: ΝΒ ΝΚ ΒΚ E = (ΚΝΒ) = 4R Ε 4R ΝΒ ΝΚ ΒΚ Ε = R ΝΒ =, () ΝΓ ΝΚ ΓΚ Ε 4R ΝΓ ΝΚ ΓΚ E = (ΚΝΓ) = Ε R ΝΓ 4R (για τη τελευταία συνεπαγωγή χρησιμοποιήσαμε την ισότητα ΚΒ = ΚΓ, που προκύπτει από το ισοσκελές τρίγωνο ΚΒΓ ). Σχήμα 5

Τα τρίγωνα ΚΝΒ και ΚΝΓ έχουν τις γωνίες τους Άρα: E ΝΒ ΝΚ Ε = = E ΝΓ ΝΚ Ε Από τις σχέσεις () και () έχουμε R = R. ΝΒ ΝΓ ˆ ΚΝΒ και 5 ˆ ΚΝΓ παραπληρωματικές.. () Απόδειξη της Ισότητας των Κύκλων ( c ) και ( c ) ( ος τρόπος) Για την απόδειξη, θα χρησιμοποιήσουμε το νόμο των ημιτόνων: a β γ = = = R. ημα ημβ ημγ Εφαρμόζοντας το νόμο των ημιτόνων στα τρίγωνα ΚΝΒ και ΚΝΓ έχουμε: ΚΝ ΚΝ = R και = R. ημ( ΚΒΝ ˆ ) ημ( Γˆ ) Από την ισότητα τώρα των γωνιών ΚΒΝ ˆ = Γ ˆ, καταλήγουμε: R = R. Πρόβλημα 4 Η ακολουθία * a,, n n ορίζεται αναδρομικά από τις σχέσεις k * a = n a + n, n, n a =, όπου k θετικός ακέραιος. (i) Να προσδιορίσετε το γενικό όρο a n της ακολουθίας ως συνάρτηση των n και k. (ii) Να αποδείξετε ότι υπάρχουν μοναδικοί θετικοί ακέραιοι k, n τέτοιοι ώστε : a n =. 000 (i) Από τις υποθέσεις έχουμε a = a k, a = a k,..., a k n = an n, n =,,,... από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: n an = a k k + + + n = + n k an = + k k = ( k) +, n=,,,... n (ii) Έστω ότι: k n + 000 000 n an = 000 ( k) + = 000 ( k) + k =, n όπου k θετικός ακέραιος και n *, n>. Τότε έχουμε n + 000 n n + 000 000 = k. n + 000 n k = > 0, k Ά. () n + 000 000

6 Αν υποθέσουμε ότι n > 000 n> 00, τότε από τη σχέση () προκύπτει, ότι k ( 0,), άτοπο. Αν υποθέσουμε ότι n < 000 n< 00, τότε έχουμε: k = = = n + 000 n 000 n n 00 n + 000 000 n + 000 000 n οπότε θα είναι 0< k <, που είναι άτοπο. Άρα είναι n = 000 n= 00, οπότε από την () προκύπτει ότι k =.,