Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Σχετικά έγγραφα
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

5.1 Μετρήσιμες συναρτήσεις

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Αναλυτικές ιδιότητες

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανελίξεις σε συνεχή χρόνο

Martingales. 3.1 Ορισμός και παραδείγματα

Επίλυση ειδικών μορφών ΣΔΕ

Εφαρμογές στην κίνηση Brown

Χαρακτηριστικές συναρτήσεις

Στοχαστικές διαφορικές εξισώσεις

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

{ i f i == 0 and p > 0

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Η εξίσωση Black-Scholes

Κατασκευή της κίνησης Brown και απλές ιδιότητες

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Εκφωνήσεις και Λύσεις των Θεμάτων

Επιχειρησιακή Ερευνα Ι

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Μαθηματικά Πληροφορικής

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Σχέσεις και ιδιότητές τους

Εκφωνήσεις και Λύσεις των Θεμάτων

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

τους στην Κρυπτογραφία και τα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

CSE.UOI : Μεταπτυχιακό Μάθημα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα

Συναρτήσεις. Σημερινό μάθημα

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

17 Μαρτίου 2013, Βόλος

Χαρτοφυλάκια και arbitrage

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Ισοπεριμετρικές ανισότητες για το

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Επίλυση δικτύων διανομής

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.

Βελτίωση Εικόνας. Σήμερα!

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x]

Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών

Το Θεώρημα Μοναδικότητας των Stone και von Neumann

Αλγόριθμοι & Βελτιστοποίηση

Το υπόδειγμα IS-LM: Εισαγωγικά

Διανυσματικές Συναρτήσεις

Συναρτήσεις & Κλάσεις

Transcript:

1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε δεν είναι η ισχυρότερη μορφή του νόμου, όμως η απόδειξή της είναι ευκολότερη τεχνικά και διατηρεί αρκετά από τα στοιχεία της απόδειξης της ισχυρής μορφής. 1.1 Το θεώρημα Θεώρημα 1.1 (Ισχυρός Νόμος των Μεγάλων Αριθμών). Εστω (X ) 1 ανεξάρτητες και ισόνομες τυχαίες μεταβλητές στον (Ω, F, P) με τιμές στο R έτσι ώστε E ( X 1) <. Θέτουμε µ = E(X1 ) και S = k=1 X k για κάθε 1. Τότε S = µ με πιθανότητα 1. Απόδειξη. Εστω σ = Var(X 1 ). Πρώτα θα αποδείξουμε το ζητούμενο για (X ) N με τιμές στο [0, ]. Για 1, θέτουμε Y = S µ. Τότε E(Y ) = 1 E(S ) µ = 1 E(X 1) µ = 0, και E ( ( Y) = Var(Y S ) ) = Var = 1 Var(S ). Ομως Var(S ) = Var(X 1 ) εφόσον οι (X ) 1 είναι ανεξάρτητες. Επομένως, Ετσι, για την υπακολουθία (Y ) 1, έχουμε ότι E ( Y ) σ =. { } E Y = =1 =1 σ <. Αρα, με πιθανότητα 1, =1 Y <, συνεπώς Y = 0. Τώρα, από το Y = 0, θέλουμε να περάσουμε στο Y = 0. Εστω k 1. Θέτουμε (k) = [ k]. Τότε S (k) ((k) + 1) S k k S ((k)+1) (k) εφόσον (k) k (k) + 1 και η S είναι άθροισμα θετικών όρων. Ομως, για, με πιθανότητα 1, S (k) ((k) + 1) = S ( (k) ) (k) µ (k) (k) + 1 7

1.1 Το θεώρημα 73 και S ((k)+1) = S ( (k) + 1 ) ((k)+1) µ. (k) ((k) + 1) (k) S k Αρα, με πιθανότητα 1, έχουμε ότι k k = µ. Στην περίπτωση που οι (X ) 1 παίρνουν τιμές στο [, ], έχουμε S = X 1 + X +... + X = X+ 1 + X+ +... + X+ X 1 + X +... + X Οι (X + ) N, όπως και οι (X ) N, είναι ανεξάρτητες και ισόνομες και E ( (X 1 + )) <, E ( (X1 )) < εφόσον (X 1 + ) X1, (X 1 ) X1. Από τα προηγούμενα, έχουμε ότι X 1 + + X+ +... + X+ και X1 + X +... + X με πιθανότητα 1. Συνεπώς, με πιθανότητα 1, = E(X + 1 ), = E(X + 1 ). S = E(X+ 1 ) E(X 1 ) = µ. Το συμπέρασμα του θεωρήματος ισχύει και αν αντί της E(X1 ) < υποθέσουμε ότι E X 1 <, δηλαδή κάτι λιγότερο. Αυτή είναι η γενική μορφή του νόμου των μεγάλων αριθμών και στο εξής θα τον θεωρούμε δεδομένο με αυτή, την ισχυρότερη μορφή. Στην Ασκηση 1.3 διατυπώνεται ένα είδος αντίστροφου του νόμου των μεγάλων αριθμών. Δηλαδή, αν ο μέσος όρος ανεξάρτητων και ισόνομων τυχαίων μεταβλητών συγκλίνει με πιθανότητα 1 σε πεπερασμένο αριθμό, τότε αναγκαστικά E X 1 <. Αρα η υπόθεση E X 1 < στο θεώρημα είναι απαραίτητη για την ισχύ του συμπεράσματος. Επίσης, στην Ασκηση 1. δείχνουμε ότι το συμπέρασμα του νόμου των μεγάλων αριθμών ισχύει ακόμα και όταν η μέση τιμή µ := E(X 1 ) είναι ή. Αρα το συμπέρασμα ισχύει πάντοτε όταν η E(X 1 ) μπορεί να οριστεί. Οταν η E(X 1 ) δεν μπορεί να οριστεί, δηλαδή όταν E(X 1 + ) = E(X 1 ) =, τότε ισχύει ακριβώς ένα από τα εξής (i) S (ii) S (iii) S = με πιθανότητα 1. = με πιθανότητα 1. =, S = με πιθανότητα 1. Ποιο από τα σενάρια συμβαίνει εξαρτάται από την κατανομή της X 1 και υπάρχει μάλιστα κριτήριο που το καθορίζει αλλά δεν θα το διατυπώσουμε [δες Erickso (1973)]. Σύμβαση: Αν (X ) 1 είναι ακολουθία τυχαίων μεταβλητών με τιμές στο R, στο εξής θα συμβολίζουμε με S το -οστό μερικό άθροισμά τους. Πόρισμα 1.. (Ο Ασθενής Νόμος των Μεγάλων Αριθμών) Εστω (X ) 1 ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με τιμές στο R έτσι ώστε µ := E ( X 1 ) R. Τότε S = µ κατά πιθανότητα.

74 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Απόδειξη. Επεται από τον ισχυρό νόμο των μεγάλων αριθμών (ισχυρή μορφή) και το ότι η σχεδόν βέβαιη σύγκλιση συνεπάγεται την κατά πιθανότητα [Θεώρημα 8.(ii))]. Παρατήρηση 1.3 (Η μέθοδος Mote Carlo). Ο νόμος των μεγάλων αριθμών δικαιολογεί την εξής μέθοδο για τον προσεγγιστικό υπολογισμό μέσης τιμής μιας δεδομένης τυχαίας μεταβλητής X. Παράγουμε με κάποιο τρόπο έναν μεγάλο αριθμό ανεξάρτητων πραγματοποιήσεων της τ.μ. X, έστω x 1, x,..., x, και υπολογίζουμε τον μέσο τους όρο (x 1 + x +... + x )/. Αυτός ο μέσος όρος είναι η ζητούμενη προσέγγιση. Με αυτή τη μέθοδο μπορούμε να βρούμε προσεγγίσεις για οποιαδήποτε ποσότητα μπορεί να παρασταθεί ως μέση τιμή κάποιας τ.μ. Η ποσότητα ενδέχεται να εμφανίζεται φυσιολογικά ως μέση τιμή σε κάποιο πρόβλημα πιθανοτήτων και να μην μπορεί να υπολογιστεί με κλειστό τύπο. Επίσης μπορεί να μην έχει καμία σχέση με πιθανότητες. Για παράδειγμα, για τον αριθμό π έχουμε την αναπαράσταση π = 4 E(1 U +V <1) όπου οι U, V είναι ανεξάρτητες ομοιόμορφες τυχαίες μεταβλητές στο ( 1, 1). Η τ.μ. (U, V) είναι ομοιόμορφη στο τετράγωνο ( 1, 1) ( 1, 1) και η μέθοδος Mote Carlo για την προσέγγιση της E(1 U +V <1) παίρνει πολλές πραγματοποιήσεις της (U, V) και υπολογίζει το ποσοστό αυτών που πέφτουν μέσα στον μοναδιαίο δίσκο. 1. Δύο εφαρμογές Ανανεωτική θεωρία. Εστω (X ) 1 ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με τιμές στο [0, ). Θέτουμε T 0 := 0, T := X 1 + X + + X για κάθε 1. Η ερμηνεία που σκεφτόμαστε για τις ακολουθίες (X ) 1, (T ) 1 είναι η εξής. Για το φωτισμό ενός δωματίου, έχουμε άπειρο πλήθος λαμπών, κάθε μία από τις οποίες έχει τυχαίο χρόνο ζωής. X είναι ο χρόνος ζωής της λάμπας. Τη χρονική στιγμή 0 τοποθετούμε τη λάμπα 1. Μόλις αυτή καεί, τοποθετούμε τη λάμπα και συνεχίζουμε όμοια. T είναι ο χρόνος που καίγεται η λάμπα. Τώρα για t 0, θέτουμε N t := sup{ 0 : T t}. Η τυχαία μεταβλητή N t μετράει πόσες λάμπες κάηκαν κατά το χρονικό διάστημα [0, t]. Εστω ότι µ := E(X 1 ). Αφού κάθε λάμπα ζει περίπου χρόνο µ, για το χρονικό διάστημα [0, t] αναμένουμε να χρειάζονται t/µ λάμπες περίπου. Δηλαδή N t t/µ. Θεώρημα 1.4. Με πιθανότητα 1 ισχύει N t t t Απόδειξη. Από το νόμο των μεγάλων αριθμών, υπάρχει ένα μετρήσιμο σύνολο A Ω με P(A) = 1 ώστε για κάθε ω A να ισχύει T = µ. (1.1) Από τον ορισμό του N t έχουμε T Nt t T Nt +1, και άρα Ισχυρισμος: Για κάθε ω Ω ισχύει N t. = 1 µ. T Nt t T N t +1 = T N t +1 N t + 1. (1.) N t N t N t N t + 1 N t

1. Δύο εφαρμογές 75 Πράγματι, επειδή η N t είναι αύξουσα συνάρτηση του t, αν δεν ισχύει ο ισχυρισμός, τότε η N t θα ήταν φραγμένη. Δηλαδή θα υπάρχει φυσικός l 1 ώστε N t l για κάθε t 0. Αρα X 1 + X + + X l t για κάθε t 0, το οποίο δεν μπορεί να ισχύει γιατί οι X 1, X,.., X l παίρνουν πραγματικές τιμές (και όχι την τιμή ). Για ω A, και χρησιμοποιώντας τον ισχυρισμό και την (1.1), έχουμε T Nt t N t = t T Nt +1 N t + 1 = µ. Αρα για t, η (1.) δίνει t t/n t = µ που είναι το ζητούμενο. Εντροπία. Εστω X διακριτή τυχαία μεταβλητή, S το (αριθμήσιμο) σύνολο τιμών της, και f (x) = P(X = x) η συνάρτηση πιθανότητας της. Εντροπία της X ονομάζουμε τον αριθμό H(X) := f (x) log f (x) (1.3) x S με τη σύμβαση 0 log 0 = 0. Ισχύει H(X) 0 γιατί f (x) [0, 1]. Επίσης, H(X) = E{log f (X)}. Η εντροπία της X εκφράζει το μέγεθος της αβεβαιότητας που έχουμε για την τιμή που θα πάρει η X αν επιχειρήσουμε να παραγάγουμε μια πραγματοποίηση της. Ας πούμε ότι η X παίρνει τιμές στο {x 1, x,..., x k } με αντίστοιχες πιθανότητες p j := P(X = x j ). Αν p 1 = 1 και p = = p k = 0, τότε H(X) = 0, και βέβαια δεν υπάρχει καμία αβεβαιότητα για την πραγματοποίηση της X, θα είναι x 1. Η εντροπία μεγιστοποιείται όταν p 1 = p = = p k = 1/k ( Ασκηση 1.8). Τότε όλα τα ενδεχόμενα είναι το ίδιο πιθανά και η αβεβαιότητα μας μέγιστη. Σε περίπτωση άνισων πιθανοτήτων, η αβεβαιότητα είναι μικρότερη γιατί περιμένουμε η X να πάρει μία από τις τιμές που έχουν μεγαλύτερη πιθανότητα. Τον Ορισμό (1.3) υπαγορεύει ένας υπολογισμός που θα δούμε αμέσως τώρα. Ο ίδιος υπολογισμός δίνει και την εμπειρική σημασία της εντροπίας. Εστω (X k ) k 1 ακολουθία ανεξάρτητων και ισόνομων διακριτών τυχαίων μεταβλητών, καθεμία ισόνομη με τη X. Για 1 σταθερό και δεδομένα x 1, x,..., x S, υπολογίζουμε την πιθανότητα οι πραγματοποιήσεις (X 1, X,..., X ) της X να ταυτιστούν με το διάνυσμα (x 1, x,..., x ). Αυτή ισούται με p (x 1, x,..., x ) := P(X 1 = x 1, X = x,..., X = x ) = f (x 1 ) f (x ) f (x ). (1.4) Για παράδειγμα, όταν η X παίρνει τις τιμές 1 και 0 με πιθανότητες p := 1/3 και /3 αντίστοιχα, τότε f (x) = p x (1 p) 1 x 1 x {0,1} και η πιθανότητα εμφάνισης της -άδας (x 1, x,..., x ) {0, 1} είναι ( ) x1 + +x 1 ( ) x1 x 3 3 Αυτή η πιθανότητα παίρνει τιμές από (1/3) ως και (/3). Δεν είναι σταθερή, η τιμή της εξαρτάται από την επιλογή της -άδας (x 1, x,..., x ). Ομως η πιθανότητα πραγματοποίησης μιας τυχαίας -άδας (X 1, X,..., X ) είναι περίπου η ίδια σχεδόν για κάθε πραγματοποίηση της (X 1, X,..., X ). Πιο συγκεκριμένα, στη γενική περίπτωση θέλουμε να εκτιμήσουμε την p (X 1, X,..., X ). Αυτή η πιθανότητα είναι μια τυχαία μεταβλητή (εξαρτάται από τις X 1, X,..., X ), φθίνει εκθετικά με το και από το νόμο των μεγάλων αριθμών έχουμε 1 log p (X 1, X,..., X ) = 1 log f (X 1) f (X ) f (X ) = log f (X 1) + log f (X ) + + log f (X ) με πιθανότητα 1 καθώς. Δηλαδή, με πιθανότητα 1, για μεγάλο, ισχύει p (X 1, X,..., X ) e H(X). E(log f (X 1 )) = H(X) (1.5)

76 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο παράδειγμα πιο πάνω, H(X) = (1/3) log(1/3) (/3) log(/3) και η e H(X) είναι μια πιθανότητα ανάμεσα στις (1/3), (/3). Ας υποθέσουμε ότι το S είναι πεπερασμένο. Αν ορίσουμε A ε = {(x 1, x,..., x ) S : e (H(X)+ε) < p (x 1, x,..., x ) < e (H(X) ε) }, τότε P(A ε ) 1 λόγω της (1.5). Ακολουθίες στο A ε τις λέμε ε-τυπικές. Αφού όλες τους έχουν πιθανότητα περίπου e H(X) και το άθροισμα των πιθανοτήτων τους είναι σχεδόν 1, το A ε έχει πληθικότητα περίπου e H(X). Στη γενική περίπτωση ισχύει H(X) < log S ( Ασκηση 1.8), οπότε το A ε είναι (από πλευράς πληθικότητας) ένα πολύ μικρό κομμάτι του S αφού το S έχει πληθικότητα S = e log S. Παρ όλα αυτά, το A ε συγκεντρώνει σχεδόν όλη την πιθανότητα. Η έννοια της εντροπίας είναι κεντρικής σημασίας στη Θεωρία Πληροφορίας και έχει πολλές εφαρμογές (δες Cover ad Thomas (014)). Ασκήσεις 1.1 (Ασθενής Νόμος των Μεγάλων Αριθμών. Ασθενής έκδοση.) Εστω (X ) N ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με τιμές στο R έτσι ώστε E ( X1) <. Θέτουμε µ = E(X1 ). Χωρίς χρήση του ισχυρού νόμου των μεγάλων αριθμών να δειχθεί ότι Δηλαδή η ακολουθία S ( P S µ συγκλίνει στο µ κατά πιθανότητα. ) > ɛ = 0 για κάθε ɛ > 0. 1.* Εστω (X ) N ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με τιμές στο R έτσι ώστε E(X 1 + ) = και E(X 1 ) <. Να δείξετε ότι S = με πιθανότητα 1. 1.3* (Αντίστροφο του Νόμου των Μεγάλων Αριθμών) Εστω (X ) 1 ανεξάρτητες και ισόνομες τυχαίες μεταβλητές S με τιμές στο R έτσι ώστε = µ σχεδόν βεβαίως με µ R. Να δείξετε ότι E X 1 < και E(X 1 ) = µ. [Υπόδειξη: Χρήσιμη είναι η Ασκηση 11.11.] 1.4 Εστω (X ) 1 ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με X 1 N(1, 3). Να δείξετε ότι με πιθανότητα 1. X 1 + X +... + X (X 1 ) + (X ) +... + (X ) = 1 4 1.5 Εστω (X ) N ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με τιμές στο R έτσι ώστε E( X 1 ) < και E(X 1 ) > 0. Να δείξετε ότι S = με πιθανότητα 1. 1.6 Εστω (U i ) i 1 ακολουθία ανεξάρτητων και ισόνομων τυχαίων μεταβλητών, καθεμία με κατανομή U(0, 1), δηλαδή ομοιόμορφη στο (0, 1). Να δειχθεί ότι (α) (U 1 U U ) 1/ = e 1 με πιθανότητα 1. (β) U 1 U U = 0 με πιθανότητα 1. U1 (γ) a 1 + +Ua 1+a με πιθανότητα 1 αν a > 1, = με πιθανότητα 1 αν a 1. 1.7 Εστω (X i ) i 1 ακολουθία ανεξάρτητων και ισόνομων τυχαίων μεταβλητών με µ = E(X 1 ) R και σ = V(X 1 ) <. Να δειχθεί ότι 1 (X k µ) = σ με πιθανότητα 1. k=1

1. Δύο εφαρμογές 77 1.8 Εστω k, S = {x 1,..., x k } σύνολο με k στοιχεία, και X τυχαία μεταβλητή με τιμές στο S. Να δειχθεί ότι H(X) log k και η ισότητα ισχύει αν και μόνο αν P(X = x j ) = 1/k για κάθε 1 j k. [Υπόδειξη: Εφαρμόστε κατάλληλα την ανισότητα Jese.] 1.9 Εστω (X k ) k 1 ακολουθία ανεξάρτητων και ισόνομων τυχαίων μεταβλητών με τιμές στο S = {1,,..., r} και f η συνάρτηση πιθανότητας της X 1. Εστω επίσης (Y k ) k 1 ακολουθία ανεξάρτητων και ισόνομων τυχαίων μεταβλητών με τιμές στο S και g η συνάρτηση πιθανότητας της Y 1. Υποθέτουμε ότι για k S ισχύει f (k) = 0 g(k) = 0. Ορίζουμε την p όπως στην (1.4). Δείξτε ότι η πιθανότητα p (Y 1, Y,..., Y ) φθίνει εκθετικά και υπολογίστε το ρυθμό μείωσης. Αυτή είναι η πιθανότητα στις πρώτες συντετεγμένες η ακολουθία X να μοιάζει με δείγμα παρμένο από την Y.