mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός

Σχετικά έγγραφα
Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke:

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Αικατερίνη Σκουρολιάκου

Υπολογισμός της σταθεράς ελατηρίου

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

vi) Η δύναµη που δέχεται το σώµα στο σηµείο Ν έχει µέτρο 4Ν και

Μονάδες β. Μονάδες Μονάδες 5

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΕ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΤΑΛΑΝΤΩΣΗ + ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ) Όνομα:...

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Θέματα Παγκύπριων Εξετάσεων

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

Κυκλική Κίνηση - Οριζόντια βολή

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ

ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Επιλέξτε τη σωστή απάντηση στη παρακάτω πρόταση :

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε)

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β ΘΕΜΑ Β

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 02/10/2016 ΔΙΑΡΚΕΙΑ: 3 ΩΡΕΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Ποιο είναι το πλάτος της ταλάντωσης ;

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Εκφώνηση 1. α). β). γ). Επιλέξτε τη σωστή πρόταση και αιτιολογείστε.

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ

Physics by Chris Simopoulos

Αρµονικοί ταλαντωτές

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗ ΕΠΙΜΕΛΕΙΑ : Α. ΤΣΟΡΤΟΣ Α. ΚΑΝΑΠΙΤΣΑΣ

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων;

Φυσική για Μηχανικούς

Προσδιορισμός της σταθεράς ενός ελατηρίου.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Συγγραφέας: Νικόλαος Παναγιωτίδης

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 4 ο και 5 ο

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Η επιτάχυνση και ο ρόλος της.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2016 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΑΠΑΝΤΗΣΕΙΣ

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ

1. Κίνηση Υλικού Σημείου

1 η χρονική στιγμή της

Τοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ / Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ ΒΡΙΛΗΣΣΙΑ

Transcript:

Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί. Κανονικά το μαθηματικό εκκρεμές δεν είναι κατασκευάσιμο, εφόσον σημειακή μάζα σημαίνει μάζα χωρίς όγκο, πράγμα το οποίο είναι αδύνατο. Η κατασκευή του γίνεται προσεγγιστικά: το ένα άκρο ενός νήματος στερεώνεται σε ένα σταθερό σημείο και στο άλλο άκρο του νήματος στερεώνεται ένα σφαιρίδιο. Το σφαιρίδιο αυτό, εφόσον εκτραπεί με κάποιον τρόπο από την θέση ισορροπίας του, εκτελεί μια κίνηση πάνω στην επιφάνεια μιας σφαίρας. Για την προσεγγιστική υλοποίηση του μαθηματικού εκκρεμές, θα πρέπει να πληρούνται οπωσδήποτε οι εξής δύο συνθήκες: α) Οι διαστάσεις του αναρτημένου σφαιριδίου θα πρέπει να είναι μικρές σε σχέση με το μήκος του νήματος και β) Η εκτροπή από την θέση ισορροπίας την στιγμή της εκκίνησης θα πρέπει να είναι μικρή έστω μερικές μοίρες. Εξίσωση δυνάμεων Σύμφωνα με το σχήμα 1, θεωρούμε και εξετάζουμε μια επίπεδη κίνηση, όπου μια μάζα m, κάτω από την επίδραση της βαρύτητας, εκτελεί ένα μέρος του κύκλου. Το βάρος δρα κατακόρυφα προς τα κάτω και έχει σημείο εφαρμογής το γεωμετρικό κέντρο του σφαιριδίου, δηλαδή της σημειακής μάζας. Αυτό το βάρος αναλύεται σε δύο συνιστώσες, εκ των οποίων η μια συνιστώσα είναι παράλληλη προς την διεύθυνση της τροχιάς και η άλλη συνιστώσα είναι κάθετη προς την διεύθυνση της τροχιάς. Η τάση του νήματος είναι αντίθετη προς την συνιστώσα η οποία είναι κάθετη προς την διεύθυνση της τροχιάς. Άρα προς το κέντρο του κύκλου υπάρχει μια κεντρομόλος δύναμη mu F B. n k Συνεπώς για την τάση του νήματος λαμβάνεται: F n mu B k Η τάση του νήματος είναι μια δύναμη εξαναγκασμού, η οποία αναγκάζει το σώμα να διαγράψει την κυκλική τροχιά. Όπως όλες οι δυνάμεις εξαναγκασμού, έτσι και η τάση του νήματος, είναι κάθετη προς την τροχιά της κίνησης. Οι τιμές των δυνάμεων συνιστωσών του βάρους, υπολογίζονται γεωμετρικά.

Σχήμα 1 Μαθηματικό εκκρεμές Από το παραπάμω σχήμα προκύπτει: B m a E Η γωνία εκτροπής a θεωρείται θετική, εφόσον έχει αντίθετη φορά από την κίνηση του δείκτη του ρολογιού. Όλες οι δυνάμεις που έχουν αυτήν την φορά θεωρούνται θετικές. Με τις συνθήκες αυτές, από την παραπάνω σχέση προκύπτει: B ma Η συνιστώσα η οποία είναι παράλληλη προς την διεύθυνση της τροχιάς, ισούται με το αρνητικό γινόμενο της μάζας επί την επιτάχυνση της βαρύτητας επί το ημίτονο της γωνίας a. Από την παραπάνω σχέση, φαίνεται καθαρά ότι το ημίτονο της γωνίας a καθορίζει επ ακριβώς την δύναμη Bε. E

Σχήμα - Συνθήκη Για το ημίτονο a προκύπτει όμως σύμφωνα με το παραπάνω σχήμα και μια άλλη σημασία, η οποία δεν σχετίζεται με τις δυνάμεις, αλλά με τις γεωμετρικές διαστάσεις, x x εφόσον ισχύει: a Άρα προκύπτει η σχέση: BE m Για πολύ μικρές γωνίες εξάλλου, η καμπυλόγραμμη τροχιά, δηλαδή το τόξο ΓΔ, μπορεί να x θεωρηθεί και ως ευθεία. Στην περίπτωση αυτή, ισχύει: FX BE m Αυτό σημαίνει ότι η δύναμη BE έχει την διεύθυνση του άξονα x. Στο παραπάνω σχήμα, η γωνία εκτροπής, είναι a ( FX 1, BE ). Η δύναμη FX αποτελεί το ένα σκέλος της εξίσωσης των δυνάμεων. Το δεύτερο σκέλος είναι σύμφωνα με τον Δεύτερο νόμο του NEWTON - mx FX m mx x Συνεπώς για την εξίσωση δυνάμεων λαμβάνεται: ή x x

Εξίσωση κίνησης Η εξίσωση κίνησης προκύπτει από την λύση της εξίσωσης δυνάμεων και είναι της μορφής x=f(t). Η εξίσωση αυτή, είναι μια διαφορική εξίσωση, η οποία δεν μπορεί να λυθεί στο Α εξάμηνο, επειδή μας λείπει το μαθηματικό υπόβαθρο. Η λύση αυτή όμως είναι ήδη γνωστή x x ( wt ) από την μέση εκπαίδευση: ή m x x ( wt ) m 0 0 Σχήμα 3 Αρχή Διατήρησης της Ενέργειας Η ολική ενέργεια της μάζας ισούται με το γινόμενο της μάζας επί την επιτάχυνση της βαρύτητας επί το μέγιστο ύψος, το οποίο μπορεί να καταλάβει η μάζα. Στο σημείο αυτό η κινητική ενέργεια είναι μηδέν. Αν όμως μηδενιστεί το ύψος (h=0), τότε μηδενίζεται και η δυναμική ενέργεια ενώ η κινητική ενέργεια είναι μέγιστη. Συζήτηση της εξίσωσης κίνησης

Η σχέση x h( t 0) περιγράφει την ταλάντωση. Αυτό φαίνεται από το ημίτονο της γωνίας t 0 Συνεπώς, η κυκλική συχνότητα είναι: 1 επομένως:, T Αρμονική ονομάζεται η ταλάντωση η οποία περιγράφεται επ ακριβώς από το ημίτονο ή το συνημίτονο. Άρα το μαθηματικό εκκρεμές εκτελεί αρμονικές ταλαντώσεις. Αυτό ισχύει μόνο, εφόσον το εκκρεμές της πειραματικής διάταξης πληρεί πράγματι τις αρχικά αναφερόμενες συνθήκες, δηλαδή την συνθήκη X<L και μικρή εκτροπή από την θέση ισορροπίας. Αν η γωνία εκτροπής δεν είναι μικρή, τότε το πλάτος xm ότι η δύναμη επαναφοράς δεν ορίζεται από την σχέση της δύναμης και θα είναι μεγάλο. Αυτό σημαίνει Fx με την απόσταση x, η οποία σχέση αποτελεί το δεύτερο σκέλος της εξίσωσης των δυνάμεων, αλλά είναι μικρότερη. Επομένως η περίοδος T θα είναι μεγαλύτερη από αυτήν στην εξίσωση κίνησης. Εξάλλου η απομάκρυνση x δεν θα έχει ημιτονοειδή χαρακτήρα. Από την σχέση της ταχύτητας με την απομάκρυνση και την επιτάχυνση, προκύπτουν δύο πορίσματα: Η ταχύτητα προπορεύεται της επιτάχυνσης κατά. Η επιτάχυνση προπορεύεται της απομάκρυνσης κατά π. Από τα δύο παραπάνω πορίσματα έχουμε και δύο συμπεράσματα: Η ταχύτητα προπορεύεται της απομάκρυνσης κατά. Η επιτάχυνση προπορεύεται της απομάκρυνσης κατά. Συνεπώς η επιτάχυνση είναι πάντα αντίθετη της απομάκρυνσης. Πρακτικό μέρος 1) Κατασκευή του καλύτερου δυνατού μαθηματικού εκκρεμούς (νήμα, σφαιρίδιο, πλαίσιο ανάρτησης) ) Μετρήσεις σε γωνία εκτροπής a 5 και αξιολόγηση.1) Μετρήσεις Οι μετρήσεις για τα διάφορα μήκη νήματος γίνονται σύμφωνα με τον παρακάτω πίνακα Ι

Πίνακας 1 Η περίοδος Τ για =0 προκύπτει μέσα από λογική σκέψη.) μεθοδολογία αξιολόγησης των μετρήσεων..1) συνάρτηση Τ=f() Από τις παραπάνω μετρήσεις, φαίνεται καθαρά, ότι η περίοδοςτ, είναι μια συνάρτηση του μήκους νήματος. Από την θεωρία γνωρίζουμε, ότι η σχέση που συνδέει αυτά τα δύο μεγέθη, είναι η σχέση T. Αλλά εδώ κάνουμε σαν να μην την γνωρίζουμε. Επομένως, με σκοπό να βρούμε την τάχα άγνωστη συνάρτηση, υποθέτουμε εντελώς αυθαίρετα ότι ισχύει π.χ. T c1 ή T c ή T c3 ή T c. Αν μια από τις σχέσεις αυτές ανταποκρίνεται στην πραγματικότητα, π.χ. η σχέση T c, τότε με x ως τετμημένη, προκύπτει μια ευθεία. Έστω, ότι αυτή η σχέση, είναι και η σωστή. Υπό την συνθήκη αυτή, ως τετμημένες χρησιμοποιούνται ή ή. T c c c και άρα 1 κυρτή (καμπυλώνεται προς τα πάνω) c c. Επομένως η καμπύλη 1 T c1 είναι c T c c c3 και άρα c c 3. Επομένως η καμπύλη είναι κοίλη (καμπυλώνεται προς τα κάτω). Στην τελευταία περίπτωση προκύπτει c T c c είναι κοίλη 3 και άρα 3 3 3..) Εφαρμογή της μεθοδολογίας c c. Άρα και εδώ η προκύπτουσα καμπύλη Ι Όλη η παραπάνω μεθοδολογία για την εξεύρεση της συνάρτησης Τ, γίνεται σύμφωνα με τον παρακάτω πίνακα ΙΙ. Στην πρώτη στήλη καταγράφονται οι μετρήσεις της περιόδου Τ.

1 Οι άλλες στήλες αναφέρονται στο μήκος νήματος και συγκεκριμένα στο,,,, δηλαδή σε μεγέθη που είναι υπολογίσιμα, εφόσον το μήκος νήματος είναι γνωστό. 1 1 ΙΙ Κατασκευή γραφικών παραστάσεων Τα αποτελέσματα 1 1 ( ), ( ), 1 ( ), ( ) T f T f T f T f, μεταφράζονται σε γραφικές παραστάσεις. Οι τέσσερεις αυτές γραφικές παραστάσεις σχεδιάζονται σε μια εικόνα, η οποία έχει κοινή τεταγμένη, αλλά διαφορετική τετμημένη. Οι υποδιαιρέσεις της τετμημένης επιλέγονται κατά τρόπο ώστε να καλύπτεται όλος ο χώρος. Όλες οι καμπύλες ξεκινούν από 0 0..3) Μαθηματική διαπίστωση της συνάρτησης Τ=φ(λ) στην μορφή T c1 c Ι Προσδιορισμός των σταθερών c1 και c από το γράφημα το οποίο ισχύει για το μαθηματικό εκκρεμές ως προς την τιμή και μονάδα μέτρησης

ΙΙ Σύγκριση της πειραματικής σχέσης με την θεωρητική σχέση T υπολογισμός της επιτάχυνσης και ) m ΙΙΙ Υπολογισμός του σφάλματος γ σε σύγκριση με την τιμή της βιβλιογραφίας ( = 9.81 s 3) Μετρήσεις σε μεγάλο πλάτος (π.χ. x = 10cm) Οι μετρήσεις σε διαφορετικά μήκη νήματος και η αξιολόγηση των μετρήσεων γίνεται με ευθύνη του πειραματιστή ) Μετρήσεις σύμφωνα με εδάφιο, αλλά με σφαιρίδιο διπλής μάζας Οι μετρήσεις της περιόδου, η καταχώρηση σε πίνακα και η αξιολόγηση των μετρήσεων γίνεται με ευθύνη του πειραματιστή