Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη

Σχετικά έγγραφα
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

Mέτρα (παράμετροι) θέσεως

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

i Σύνολα w = = = i v v i=

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Μάθηµα 3 ο. Περιγραφική Στατιστική

Εισαγωγή στη Στατιστική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

Κεφάλαιο 5. Οι δείκτες διασποράς

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μέτρα θέσης και διασποράς


Θεματική Ενότητα 1 4 Ο.Σ.Σ. (27/01/2017)

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

Κεφάλαιο 5 Δείκτες Διασποράς

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

2.3. Ασκήσεις σχ. βιβλίου σελίδας Α ΟΜΑ ΑΣ

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Εφαρμοσμένη Στατιστική

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

Εισαγωγή στη Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ,05 Σύνολο. x i v i f i % N i F i , Άθροισμα 40

Στατιστική Ι Ασκήσεις 3

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Α. ΜΕΣΗ ΤΙΜΗ - ΙΑΜΕΣΟΣ

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Κεφάλαιο 9. Έλεγχοι υποθέσεων

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

Μάθηµα 14. Κεφάλαιο: Στατιστική

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Εύρεση ν-στού πρώτου αριθμού

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ Α.Π.Θ.

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Δειγματικές Κατανομές

ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ

Εισαγωγή στη Βιοστατιστική Βασικές έννοιες Στατιστικής. Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Ελλιπή δεδομένα. Εδώ έχουμε Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Θεωρία Πιθανοτήτων & Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Τάση συγκέντρωσης. Μέτρα Κεντρικής Τάσης και Θέσης. Μέτρα Διασποράς. Τάση διασποράς. Σχήμα της κατανομής

Ανάλυση διακύμανσης (Μονοδιάστατη) One-Way ANOVA

Περιγραφική Στατιστική

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Transcript:

Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές Διάλεξη 13-3-2015

Υπολογισμός Σταθμικού Μέσου Αριθμητικού X weighted n 1 n 1 w i w X i i

Παράδειγμα Υποψήφιος της Δ' Δέσμης πήρε στις εξετάσεις τους εξής βαθμούς: Μάθημα Βαθμοί (Χ i ) Συντελεστής Στάθμισης (w i ) X i w i Μαθηματικά 14 0.8 11.2 Εκθεση 16 0.8 12.8 Ιστορία 18 1.95 35.1 Πολιτική Οικονομία 17 1.95 33.15 Σταθμικός Απλός 65 5.5 92.25 16.77 16.25

Για τον υπολογισμό του Σταθμικού Μέσου Αριθμητικού ακολουθούμε τα εξής βήματα: Δημιουργούμε στήλη για να τοποθετήσουμε τα ζεύγη γινομένων fixi Αθροίζουμε τα επιμέρους γινόμενα για να βρούμε το w i X i

Αθροίζουμε στη στήλη των συντελεστών στάθμισης για να βρούμε το wi Διαιρούμε για να βρούμε το X weighted n 1 n 1 w i w X i i

Εφαρμογή Εύρεσης ΜΑ Κατανομής Πίνακας 1 Συχνοτήτων Κατανομή Ετήσιου Ισοδύναμου Εισοδήματος Νοικοκυριών Χώρας Α Τάξεις Εισοδήματος (χιλ. Ευρώ) Συχνότητα (σε χιλιάδες νοικοκυριά),fi 0-10 60 10-20 70 20-30 80 30-40 90 40-50 50 50-60 40 60-70 22 70-80 15 80-90 8

Για τον υπολογισμό του Μέσου Αριθμητικού της Κατανομής Συχνοτήτων ακολουθούμε τα εξής βήματα: Βρίσκουμε τους Κεντρικούς Όρους Xi ΑΦΟΥ έχουμε δημιουργήσει στήλη για να τους τοποθετήσουμε Δημιουργούμε στήλη για να τοποθετήσουμε τα ζεύγη γινομένων fixi

Αθροίζουμε τα επιμέρους γινόμενα για να βρούμε το n f i i 1

Αθροίζουμε στη στήλη των συχνοτήτων τις συχνότητες για να βρούμε το n 1 f i

Υπολογίζουμε τον ΜΑ σύμφωνα με τον τύπο X n 1 n 1 f i f X i i

Πίνακας 1 Κατανομή Ισοδύναμου Εισοδήματος Νοικοκυριών Ετήσιου Εισοδήματος Χώρας Α Τάξεις Εισοδήματος (χιλ. Ευρώ) Συχνότητα (σε χιλιάδες νοικοκυριά),fi Κεντρικός Ορος Xi fixi 0-10 60 5 300 10-20 70 15 1050 20-30 80 25 2000 30-40 90 35 3150 40-50 50 45 2250 50-60 40 55 2200 60-70 22 65 1430 70-80 15 75 1125 80-90 8 85 680 435 14185 32.61

Διάμεσος (Median), M Σε μία σειρά δεδομένων η Διάμεσος M βρίσκεται στο μέσον των παρατηρήσεων όταν αυτές είναι τοποθετημένες κατά τάξη μεγέθους (αύξουσα ή φθίνουσα). Εφαρμογή Σε έρευνα που έγινε ένα μεσημέρι στα 2 καταστήματα ταχείας εστίασης που βρίσκονται γειτνιάζουν άμεσα με το πανεπιστήμιο. Από το σύνολο των δεδομένων της έρευνας, επελέγη δείγμα 9 ατόμων και βρέθηκαν τα ακόλουθα ποσά σε Ευρώ που ξόδεψαν οι φοιτητές και οι φοιτήτριες. Σε ευρώ: 4, 14, 2, 6, 6, 4, 24, 10, 12

Για να βρούμε τη Διάμεσο Μ εργαζόμαστε ως εξής: Βήμα 1ο: Τοποθετούμε τα δεδομένα κατά τάξη μεγέθους 2, 4, 4, 6, 6, 10, 12, 14, 24 Βήμα 2ο: Εφαρμόζουμε τον τύπο όπου Ν ο αριθμός των παρατηρήσεων. Στην προκειμένη περίπτωση Μ=(9+1):2=5 Άρα η Διάμεσος των δεδομένων βρίσκεται στην 5η θέση. Άρα η Διάμεσος είναι 6 (ΠΡΟΣΟΧΗ! ΟΧΙ 5!!). Τεχνική παρατήρηση: Εάν ο αριθμός των παρατηρήσεων είναι άρτιος αριθμός π.χ 10, τότε Μ=(10+1)/2=11/2=5,5. Στην περίπτωση αυτή η Διάμεσος βρίσκεται μεταξύ της 5ης και της 6ης θέσης και θα πρέπει να βρούμε το Μέσο Αριθμητικό των δύο μεσαίων παρατηρήσεων για εντοπίσουμε τη Διάμεσο.

Η Διάμεσος λοιπόν υποδηλώνει ότι οι μισές παρατηρήσεις των δεδομένων μας είναι μικρότερες τις Διαμέσου και οι άλλες μισές μεγαλύτερες. Συνεπώς δεν επηρεάζεται από τις ακραίες τιμές της κατανομής. Δηλαδή, στο παραπάνω παράδειγμα εάν η τιμή 24 ήταν π.χ. 40, η Διάμεσος πάλι 6 θα ήταν. Εάν όμως υπολογίσουμε και για τις 2 περιπτώσεις τον Μέσο Αριθμητικό, θα διαπιστώσουμε ότι είναι διαφορετικός.

Διασπορά Η παραπάνω διαπίστωση μας οδηγεί στο ερώτημα του βαθμού αντιπροσωπευτικότητας του Μέσου Αριθμητικού. Ενας εύκολος τρόπος να εκτιμήσουμε τον βαθμό αυτόν είναι το Ευρος Μεταβολής (Range) που, απλά, αποτελεί τη διαφορά ανάμεσα στη μικρότερη και τη μεγαλύτερη τιμή των δεδομένων. Εφαρμογή Στο παραπάνω παράδειγμα, το Εύρος Μεταβολής είναι: 24-2=22. Εν προκειμένω είναι μία μεγάλη τιμή που θέτει ερωτηματικά για την αντιπροσωπευτικότατα του Μέσου Αριθμητικού.

Εφαρμογή Στο παράδειγμα των χρημάτων που ξόδεψαν οι φοιτήτριες και οι φοιτητές, σε ευρώ 4, 14, 2, 6, 6, 4, 24, 10, 12 ή 2, 4, 4, 6, 6, 10, 12, 14, 24 το Εύρος Μεταβολής είναι: 24-2=20. Εν προκειμένω είναι μία μεγάλη τιμή που θέτει ερωτηματικά για την αντιπροσωπευτικότητα του Μέσου Αριθμητικού.

2. Ένα άλλο μέτρο, περισσότερο ακριβές είναι η Διακύμανση (Variance) και η Τυπική Απόκλιση (standard Deviation) που αποτελεί την τετραγωνική ρίζα της Διακύμανσης. Όπως μας πληροφορούν και οι όροι τα μέτρα αυτά μετρούν τη διασπορά των διαφόρων τιμών από το μέσο. Όσο μεγαλύτερη είναι η διακύμανση ή η Τυπική Απόκλιση τόσο μεγαλύτερη είναι η διασπορά και τόσο λιγότερο αντιπροσωπευτικός είναι ο Μέσος.

Για την ύλη του μαθήματος δεν υπάρχει απαίτηση υπολογισμού της Διακύμανσης. Θα πρέπει όμως να γνωρίζουμε ότι αυτή είναι 0 όταν οι τιμές της σειράς είναι ίσες. Διότι, εάν ένας φοιτητής έχει π.χ 7 σε όλα τα μαθήματα, ο Μέσος Αριθμητικός είναι 7 και βέβαια είναι πλήρως αντιπροσωπευτικός της επίδοσής του. Οσο διαφοροποιούνται οι βαθμοί τόσο ο Μέσος Αριθμητικός «χάνει» την αντιπροσωπευτικότητά του, ιδιαιτέρως όταν έχουμε ακραίες τιμές

Τύπος ή Επικρατούσα Τιμή (Τ 0 ) (Mode) Ο Τύπος ή Επικρατούσα Τιμή μιας σειράς δεδομένων είναι η μία και μοναδική τιμή της σειράς με τη μεγαλύτερη συχνότητα εμφάνισης.

Εφαρμογή Ρίχνουμε 10 φορές ένα ιδανικό (και όχι κάλπικο) ζάρι και καταγράφουμε τα ακόλουθα αποτελέσματα: 5, 4, 5, 1, 5, 6, 2, 1, 4, 2 Επομένως έχουμε τον πίνακα: Ο Τ 0 είναι το 5 γιατί έρχεται 3 φορές. (ΠΡΟΣΟΧΗ: όχι το 3!) Ενδεχόμενα 1 2 3 4 5 6 Συχνότητες 2 2 0 2 3 1