Λύσεις των ασκήσεων Φυσική Θετικής & Τεχνολογικής κατεύθυνσης Γ τάξη Γενικού Λυκείου
ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: ΑΛΕΚΟΣ ΙΩΑΝΝΟΥ - ΓΙΑΝΝΗΣ ΝΤΑΝΟΣ ΑΓΓΕΛΟΣ ΠΗΤΤΑΣ - ΣΤΑΥΡΟΣ ΡΑΠΤΗΣ Ε.Π.Ε.Α.Ε.Κ. Υποπρόγραμμα : ΓΕΝΙΚΗ ΚΑΙ ΤΕΧΝΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Μέτρο.: ΑΝΑΜΟΡΦΩΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΓΕΝΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ενέργεια.α: Προγράμματα - βιβλία ΕΡΓΟ: ΑΝΑΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΠΡΟ- ΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ ΤΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕ ΣΥΓΧΡΟΝΗ ΠΑΡΑΓΩΓΗ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επανέκδοση του παρόντος βιβλίου πραγματοποιήθηκε από το Ινστιτούτο Τεχνολογίας Υπολογιστών & Εκδόσεων «Διόφαντος» μέσω ψηφιακής μακέτας, η οποία δημιουργήθηκε με χρηματοδότηση από το ΕΣΠΑ / ΕΠ «Εκπαίδευση & Διά Βίου Μάθηση» / Πράξη «ΣΤΗΡΙΖΩ». Οι αλλαγές που ενσωματώθηκαν στην παρούσα επανέκδοση έγιναν με βάση τις διορθώσεις του Παιδαγωγικού Ινστιτούτου.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΕΚΟΣ ΙΩΑΝΝΟΥ - ΓΙΑΝΝΗΣ ΝΤΑΝΟΣ ΑΓΓΕΛΟΣ ΠΗΤΤΑΣ - ΣΤΑΥΡΟΣ ΡΑΠΤΗΣ Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού Ινστιτούτου Λύσεις των ασκήσεων Φυσική Θετικής & Τεχνολογικής κατεύθυνσης Γ τάξη Γενικού Λυκείου ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»
4
ΗΛΕΚΤΡΙΚΕΣ - ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Απλή αρμονική ταλάντωση. (β), (γ), (ε). ΕΡΩΤΗΣΕΙΣ. Η αρχική φάση είναι 0 ή π rad. Για να επιλέξουμε ανάμεσα στις δύο χρειάζεται να γνωρίζουμε την κατεύθυνση (πρόσημο) της ταχύτητας τη χρονική στιγμή μηδέν..3 (γ)..4 Η ταχύτητα είναι: μηδέν στις θέσεις x = Α ή x = -Α, μέγιστη στη θέση ισορροπίας (x = 0). Η επιτάχυνση είναι: μηδέν στη θέση ισορροπίας (x = 0), μέγιστη στις θέσεις x = Α ή x = -Α. Η δύναμη είναι: μηδέν στη θέση ισορροπίας (x = 0), μέγιστη στις θέσεις x = Α ή x = -Α. Σύμφωνα με τη διατήρηση της ενέργειας στις ταλαντώσεις E = + U όταν U = τότε E = U ή A Επομένως x = ± DA = Dx.5 x U 0 0 5 J x 3 J J x 4 J J A 5 J 0.6 α) Τ/4, β) Τ/, γ) 3Τ/4..7 α), β) αρνητική, γ) 0..8 (β) 5
Κύκλωμα ηλεκτρικών ταλαντώσεων.9 α),5 0-6 s, β) 3 0-6 s, γ) 0,75 0-6 s, δ) 0,75 0-6 s..0 Λόγω της τάσης από αυτεπαγωγή που εμφανίζει στα άκρα του το πηνίο.. U E 80x0-3 J 0x0-3 J 70x0-3 J 0 U B 40x0-3 J 0 50x0-3 J 0x0-3 J E 0x0-3 J 0x0-3 J 0x0-3 J 0x0-3 J. α) L a < L b, β) I A > Ι β..3 α) Q B = Q A β) Ε Β = Ε Α γ) Τ Β = Τ Α δ) Ι Β = I A.4 (γ)..5 (γ), (β)..6 δυναμική.ενέργεια μαγνητικού πεδίου. ενέργεια ηλεκτρικού παραμένει σταθερό. Φθίνουσα, ελεύθερη και εξαναγκασμένη ταλάντωση. Συντονισμός..7 (γ).8 (γ).9 (γ).0 Το Β.. (γ), (δ).. (β), (γ)..3 (β) 6
.4 Αν Α Κ, Α Κ+ είναι οι τιμές του πλάτους και Ε Κ, Ε Κ+ οι αντίστοιχες τιμές της ενέργειας της ταλάντωσης κατά τις χρονικές στιγμές ΚΤ και (Κ + )Τ όπου Κ =,,3... τότε α) β) A A Ε Ε + + ΛΤ = Ae o e + Ae = Λ( ) Τ o DA ΛΤ A = = DA A + + Σύνθεση ταλαντώσεων.5... 8 cm... cm..6 (β), (γ), (δ), (ε). = e ΛΤ ΑΣΚΗΣΕΙΣ Απλή αρμονική ταλάντωση.7 Θεωρούμε ότι στη θέση ισορροπίας (θέση ) το ελατήριο Κ έχει επιμηκυνθεί κατά x και το ελατήριο Κ έχει επιμηκυνθεί κατά x οπότε επειδή Σ F = 0 θα είναι x x = () 0 Σε μια τυχαία θέση που απέχει x από τη θέση ισορροπίας (θέση ) ισχύει ΣF = ( x x) ( x + x) () (θεωρούμε θετική τη φορά της απομάκρυνσης x) 7
η οποία αν λάβουμε υπόψη την () γίνεται ( ) Σ F = + x (3) Η (3) είναι της μορφής ΣF = Dx όπου D= + οπότε το Σ κάνει απλή αρμονική ταλάντωση με περίοδο m m T = π = π = 0, π s D + Στο ίδιο συμπέρασμα καταλήγουμε αν θεωρήσουμε ότι στη θέση ισορροπίας και τα δύο ελατήρια είναι συσπειρωμένα ή ότι έχουν το φυσικό τους μήκος..8 Θεωρούμε ότι η ταλάντωση είναι αμείωτη. α) Από τη διατήρηση της ενέργειας στην ταλάντωση έχουμε DA = Dx + mυ mυ οπότε D= = 00 N / m A x β) οπότε υ = DA = Dx + mυ DA ( x ) = 3 m/s m.9 To σώμα κάνει απλή αρμονική ταλάντωση με σταθερά επαναφοράς D= (δες παράδειγμα.). Στη θέση ισορροπίας ισχύει ΣF = 0 δηλαδή mg l = 0 mg οπότε = (). l Η περίοδος της κίνησης δίνεται από τη σχέση T = π l η οποία, αν λάβουμε υπόψη την (), γίνεται T = π = 0, 34 s g m 8
Ηλεκτρικές ταλαντώσεις.30 f = = = 6 Hz T π LC.3 Το φορτίο του πυκνωτή δίνεται από τη σχέση q= Qσυν ω t Για t = 0 q=q=cv = 0-3 C Η γωνιακή συχνότητα της ταλάντωσης είναι π π ω = = = = 000 rad / s T π LC LC Επομένως q= 3 0 συν 000t (SI) Η ένταση του ρεύματος που διαρρέει το κύκλωμα δίνεται από τη σχέση i= I t ηµω. Από τη διατήρηση της ενέργειας στο κύκλωμα έχουμε Τελικά i Q Q LI = οπότε I = = A C LC =ηµ000 t (SI) Φθίνουσες και εξαναγκασμένες ταλαντώσεις. Συντονισμός. t.3 A Ae Λ t A A = o ή e Λ = ή Λ t = ln και Ao A Λ= A ln o t A () o t A Ae Λ t A A = o ή e Λ = ή t = ln () A Λ Ao Η () γίνεται από την () t t ln = από όπου βρίσκουμε A Ao ln A o A o 0 0 0 0 5 t = ln = 3 = 3 = = 50s ln 3 ln ln (ln ln ) ln ln ln ln 9
Σύνθεση ταλαντώσεων.33 Η σχέση που δίνει το πλάτος της σύνθετης ταλάντωσης είναι A= A + A + AAσυνϕ Αν θέσουμε A = 4m, A = 4m και ϕ = π rad προκύπτει A = 0 (το σώμα δεν ταλαντώνεται)..34 Το σώμα εκτελεί ταλάντωση με πλάτος A= A + A + AAσυνϕ Αν θέσουμε A = 0,m, A = 0,04m και ϕ = 0 προκύπτει A= 0,4m Η γωνιακή συχνότητα της σύνθετης ταλάντωσης είναι ίση με αυτή των ταλαντώσεων που τη συνθέτουν. ω = 50 rad / s. Η αρχική φάση της ταλάντωσης βρίσκεται από τη σχέση Aηµϕ εϕθ = η οποία για ϕ = 0 δίνει εϕθ = 0 και τελικά A + Aσυνϕ θ = 0. Επομένως, η εξίσωση απομάκρυνσης της σύνθετης ταλάντωσης είναι x= 0,4ηµ 50t.35 Το σώμα εκτελεί ταλάντωση με πλάτος A= A + A + AAσυνϕ Αν θέσουμε A = 0,08 m, A = 0,06 m και ϕ = π rad προκύπτει A= 00, m Η γωνιακή συχνότητα της σύνθετης ταλάντωσης είναι ίση με αυτή των ταλαντώσεων που τη συνθέτουν. ω = 50 π rad / s. Η αρχική φάση της ταλάντωσης βρίσκεται από τη σχέση Aηµϕ εϕθ = η οποία για ϕ = π δίνει εϕθ = 0 και τελικά A + Aσυνϕ θ = 0. Η εξίσωση απομάκρυνσης της σύνθετης ταλάντωσης είναι x= 0,0ηµ 50π t (SI) 0
Η ταχύτητα δίνεται από τη σχέση υ = Aωσυν ( ωt+ θ ) οπότε υ = 34, συν 50π t (SI) Η επιτάχυνση δίνεται από τη σχέση α = Aω ηµ ( ωt+ θ ) οπότε α = 493ηµ 50π t (SI) π Η περίοδος της ταλάντωσης δίνεται από τη σχέση T = = 004, s ω.36 Οι ήχοι που παράγονται από τα δυο διαπασών έχουν μικρή διαφορά συχνότητας, οπότε από συμβολή τους προκύπτουν διακροτήματα με συχνότητα f = f δ f = 05, Hz Ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών μηδενισμών της έντασης του ήχου ισούται με την περίοδο των διακροτημάτων, που δίνεται από τη σχέση Tδ = = s f δ ΠΡΟΒΛΗΜΑΤΑ.37 Η εξίσωση της απομάκρυνσης είναι της μορφής x= A ηµ ( ωt + ϕ) Θα βρούμε διαδοχικά τα Α, ω και φ m m T = π οπότε D = 4 π () D T Από τη διατήρηση της ενέργειας στην ταλάντωση έχουμε m DA = Dx + mυ άρα A= x + υ D Λαμβάνοντας υπόψη την () τελικά έχουμε T A= x + = 4 0 4π υ π ω = = 0 rad / s T m
Η x= A ηµ ( ωt + ϕ) για t = 0 δίνει x= A ηµϕ οπότε ηµϕ = x A = δηλαδή π 5π ϕ = ή ϕ = 6 6 π (Η λύση ϕ = απορρίπτεται, γιατί για t = 0 δίνει υ > 0 ) 6 Οι ζητούμενες εξισώσεις είναι 5 4 0 π x= ηµ 0t+ 6 (SI) 5π υ = Aω συν( ωt+ ϕ) = 04, συν 0t + 6 (SI) 5π α = Aω ηµ ( ωt+ ϕ) = 4ηµ 0t+ 6 (SI).38 Το σώμα κάνει απλή αρμονική ταλάντωση με σταθερά επαναφοράς D= (βλέπε και παράδειγμα -). m α) T = π 5 f = = = Hz T π m π Η μέγιστη απομάκρυνση του σώματος είναι A= d. Η εξίσωση της απομάκρυνσης είναι x= dηµ ( ωt+ ϕ). Για t = 0 d = dηµϕ οπότε ηµϕ = π δηλαδή ϕ = rad Στην περίπτωση που η κατεύθυνση προς τα κάτω θεωρηθεί αρνητική 3π για t = 0 d = dηµϕ οπότε ηµϕ = δηλαδή ϕ = rad
γ) υmax = Aω = dπ f = 0, 5 m/ s δ) α = Aω = d4π f = 5 m s max / ε) Στη θέση ισορροπίας (θέση ) Σ F = 0 οπότε x = mg και mg x = Το σώμα δέχεται τη μέγιστη δύναμη στη θέση μέγιστης απομάκρυνσης (θέση ) F x d mg ελ max = ( + ) = + d mg d N = + = 5.39 π π ω = = / T 5 rad s π x= 0,ηµ t 5 Θέτουμε x = 0,m και λύνουμε ως προς το χρόνο π π ηµ t = = ηµ 5 6 Δύο διαδοχικές λύσεις της εξίσωσης αυτής είναι οι 5 5 t = s και t = s 6 6 Το χρονικό διάστημα που μεσολαβεί ανάμεσα στις δύο διαδοχικές στιγμές που το σώμα θα βρεθεί στη θέση x= 0, m είναι 0 t = t t = s 3.40 Θεωρούμε ότι το σύστημα κάνει τμήμα απλής αρμονικής ταλάντωσης με σταθερά επαναφοράς Κ. α) Από τη διατήρηση της ενέργειας για την ταλάντωση έχουμε Mυ A = Mυ οπότε A = = 0, m 3
Το χρονικό διάστημα που μεσολαβεί ανάμεσα στη στιγμή της πρόσκρουσης ( υ = υ ) και τη στιγμή που η ταχύτητα μηδενίζεται είναι max T π M π t = = = s. 4 00 β) Ο επιβάτης κάνει ταλάντωση ίδιας περιόδου με το σύστημα με σταθερά επαναφοράς D. Τ συστήματος = Τ επιβάτη δηλαδή π M M = π D m οπότε D=. M Η δύναμη που δέχεται από τη ζώνη παίζει το ρόλο της δύναμης επαναφοράς. Το μέτρο της δύναμης θα πάρει τη μέγιστη τιμή του τη χρονική T στιγμή t = όταν x= A. 4 3 Fmax = DA = m A = 5 0 N M.4 α) Μετά την (πλαστική) κρούση του συστήματος βλήμα-σώμα, η κοινή τους ταχύτητα θα είναι V για την οποία ισχύει mυ = ( m+ MV ) m επομένως V = υ = 5 m/ s. m+ M β) Το συσσωμάτωμα κάνει απλή αρμονική ταλάντωση με D=. Από τη διατήρηση της ενέργειας στην ταλάντωση έχουμε ( ) A = m + M V οπότε A V m + = M = 0, m 4
γ) Το σύστημα θα σταματήσει στιγμιαία, για πρώτη φορά, μετά από χρόνο T π m+ M 4 4 t = = = 3,4 0 s..4 α) I = ωq = πfq = 5 0 3 A Από τη διατήρηση της ενέργειας στο κύκλωμα έχουμε: Q q = + και q = Q LCi () Li C C Όμως f = π LC και LC = () 4π f Οπότε η () γίνεται από τη () i 7 q= Q = 4 0 C 4π f β) U E q = (3) C Q Q q UE + UB = επομένως U B C = C C (4) Q 8 Η ολική ενέργεια παραμένει σταθερή E = = 5 0 J (5) C Οι συναρτήσεις (3) (4) και (5) παριστάνονται γραφικά στο διάγραμμα που ακολουθεί 5